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Abstract

This report presents guidelines for estimating pre-stress loss in high-strength precast pre

tensioned concrete Decked Bulb-Tee (DBT) bridge girders in cold climate regions. The 

guidelines incorporate procedures yielding more accurate predictions of shrinkage and concrete 

creep than current 2017 American Association of State Highway and Transportation Officials 

(AASHTO) specifications. The results of this report will be of particular interest to researchers 

and cold climate bridge design engineers in improved predictions of design life and durability.

The use of high-strength concrete in pre-tensioned bridge girders has increased in 

popularity among many state highway agencies. This fact is due to its many beneficial economic 

and constructability aspects. The overall cost of longer girders with increased girder spacing in a 

bridge that is precast with high strength concrete can be significantly reduced through the proper 

estimating factors. Recent research indicates that the current provisions used for calculating pre

stress losses in cold regions for high-strength concrete bridge girders may not provide reliable 

estimates. Therefore, additional research is needed to evaluate the applicability of the current 

provisions for estimating pre-stress losses in high-strength concrete DBT girders. Accurate 

estimations of pre-stress losses in design of pre-tensioned concrete girders are affected by factors 

such as mix design, curing, concrete strength, and service exposure conditions. The development 

of improved guidelines for better estimating these losses assists bridge design engineers for such 

girders and provide a sense of security in terms of safety and longevity.

The research includes field measurements of an environmentally exposed apparatus set 

up to measure shrinkage, creep and strain in cylinders loaded under constant pressure for a full 

calendar year.
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Chapter 1 Introduction
1.1 Research Need

The popularity of using high-strength concrete for bridges has increased in recent years 

among many state highway agencies, such as Departments of Transportation and the Federal 

Highway Administration (FHWA). As of 2014, 44% of Alaska's state and local bridge inventory 

is concrete, but concrete accounts for approximately 80% of the new bridges built by the Alaska 
Department of Transportation & Public Facilities (ADOT&PF) (Daugherty and Marx 2014). The 

economic benefits are obtained through increased girder spacing, length, and lifespan. Due to its 

excellent adaptability to the constraints in Alaska, the Decked Bulb-Tee (DBT) girder is the most 

common type of bridge superstructure used by ADOT&PF. The DBT girder is a precast, pre

stressed concrete bulb-tee girder with a deck that is cast monolithically and pre-stressed with the 

girder (Oesterle et al. 2009, PCI 2011). Figure 1-1 shows the standard cross-section of Alaska- 
style DBT girders, where the deck width can reach 8.5 feet (ADOT&PF 2017).

Figure 1-1: Standard Alaska-Style Precast DBT Girder Section (ADOT&PF 2017)

The long-term durability and wear-resistance of DBT girders to the Alaskan environment 

has proven to be outstanding. During the last ten years, approximately 80% of the new bridges 

constructed in Alaska have been bulb-tee girders. There has been almost no girder-related 

maintenance required on the 273 bridges of this style built in Alaska since 1973 (Daugherty and 
Marx 2014).
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A DBT girder utilizes pre-stressing force applied to the girder by pre-stressing strands 

inside the girder during the fabrication. The pre-stressing force lets a DBT girder span a long 

distance. The amount of pre-stressing force in the entire life of the girder ensures the 

serviceability and safety of the bridge. As other types of pre-stressed concrete girders, the pre

stressing force initially applied during fabrication of a DBT girder decreases. The amount of 

force decreased, known as “pre-stress loss,” is caused by several mechanisms when the bridge is 

both under construction and in service.

The pre-stress applied to a bridge girder counteracts the dead and live loads, in order to 

keep the tensile stress of the girder (i.e., the bottom flange) less than a specified tensile stress 

limit in the design. Meanwhile, the magnitude of pre-stress force in a girder decreases over time; 

from the fabrication of a girder to the end of the bridge's service life. The amount of pre-stress 

change, or pre-stress loss, should be well-known for girder design to assure the serviceability and 

safety of the bridge over the structure's life.

Since the climate conditions vary among the United States' locations, a more accurate 

representation of pre-stress loss with emphasis on temperature and relative humidity is required 

to assure accuracy. This is especially true for those in cold climate regions since the low 

temperature nature of the environment can have big impacts on the material properties of 

concrete and pre-stressing strands. Data for pre-stress losses in the design of pre-stressed 

concrete girders in cold climates are minimal and therefore require additional research to provide 

such information for better understanding of cold climate effects.

In Alaska, long-term pre-stress losses are different from other states due to;

• Different aggregate: the influence of different aggregate on the elastic modulus and creep 

coefficient of concrete was noted in Tadros et al. (2003).

• Few DBT girder fabricators in Alaska: there have been only three fabricators, with most of 

the work performed by one fabricator in Anchorage; so the material quality and 

workmanship can be relatively uniform among girders.

• Shorter time between fabrication and placement of girders: typically the time period in a 

storage yard is 60 days1 in Alaska. Storage time is much longer in other states.

• Cold climates and extreme annual temperature variation in Alaska.

1 From a DBT girder fabricator in AggPro in Anchorage, AK. Girders have been known to be placed two weeks 
after being cast while others sit in storage through the winter.
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1.2 Objective and Scope of the Study

The goal of this research is to develop more accurate design parameters for estimating 

pre-stress losses in DBT girders due to concrete creep in cold climates. In the design of DBT 

girders, the amount of pre-stress force determines short-term and long-term stresses in concrete. 

If the pre-stress loss is underestimated, the concrete of a girder at midspan may experience the 

tensile stresses that exceed the bottom flange tension limit of concrete, which can compromise 

the durability and long-term performance of the girder. If the pre-stress loss is overestimated, 

however, more pre-stressing strands will be required than necessary, which may increase the cost 

of girder fabrication, reduce the maximum span length, or increase the number of girders. The 

accurate estimation of pre-stress losses, therefore, is essential in the design process.

Pre-stress loss can vary dramatically depending on its thermal environment, which 

directly affects its curing process. While this subject has been long studied by many researchers, 

it is hard to find research focused on DBT girders. Specifically, in-situ measurement of pre-stress 

loss data for DBT girders over a long period of time is extremely rare or does not exist. As the 

major portion of time-dependent pre-stress loss is due to concrete creep, the major part of the 

research focused on this specific mechanism.

The objectives of the present research are:

1. Acquiring a better understanding of concrete creep in cold climate regions. Since 

concrete creep depends on concrete mix design and environmental conditions, a physical 

concrete creep test in ambient environment of cold climate is done to accurately evaluate 

concrete creep. The study contained two identical concrete creep test setups; one outdoors in the 

natural Alaskan environment, while the second is in a lab indoors with controlled conditions.

2. Understanding specific design issues for DBT girders that are related to time

dependent pre-stress losses. The difference in design and construction between DBT girders and 

conventional pre-stressed girders should be well understood, since the majority of existing pre

stress loss provisions have been developed for conventional pre-stressed girders.

3. Proposing time-dependent pre-stress loss provisions for DBT girders in cold climate 

regions. Within the framework of current provisions in AASHTO LRFD, design 

recommendations are proposed.

3



1.3 Scope of This Report

This report presents all of the work performed in this project, including a literature 

review, the design and construction of concrete creep test frames, experiment procedures, 

concrete creep measurement results, and design implication.

In Chapter 2, the results of literature review are provided. In particular, design provisions 

for pre-stress losses from different design specifications and guidelines are compared. The 

provisions in AASHTO LRFD are discussed in details.

In Chapter 3, the design and fabrication of concrete frame are described. The specimen 

preparation and concrete creep test procedures are also explained. Sensors and a data acquisition 

system used for long-term creep measurement are presented.

In Chapter 4, the strain measurement results are presented. Also, the change of concrete 

compressive strength and elastic modulus are described. Additional measurements including 

temperature and relative humidity are summarized.

In Chapter 5, the measured pre-stress losses due to concrete creep are provided. These 

measured losses are compared with those in several design provisions. Design implications from 

the measured pre-stress losses are discussed.

In Chapter 6, summary of findings and conclusions are presented.
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Chapter 2 Literature Review
2.1 Background

Over the past 20 years, the use of precast modular components to accelerate bridge 

construction has increasingly gained attention in the United States. Pre-cast concrete components 

are separately transported and assembled at the construction site, minimizing cast-in-place 

concrete work. Since the time period occupying the construction site can be substantially 

reduced, pre-cast modular construction allows bridge engineers to minimize accidents in the 

work zone, reduce traffic disruptions, and increase the speed of construction, all while 

maintaining construction quality, and minimizing the life-time costs and environmental impact 
(Shahawy 2003, PCINE 2014). The Linn Cove Viaduct in North Carolina (Figg and Pate 2004) 

and the Getty Museum People-Mover Guideway in California (Josten et al. 1995) are good 

examples where pre-cast concrete components have been used to substantially minimize 

environmental impact during the construction of substructures. In cold climate regions, 

accelerated bridge construction (ABC) is a particularly important strategy due to the short 
construction season (ADOT&PF 2017).

The environment where concrete cures and concrete structures are placed is one of the 

important factors that control the mechanical properties of the concrete. Just after the completion 

of construction, concrete bridges in cold climate regions are exposed to severely cold weather in 

the winter. Figure 2-1 shows daily average temperature and ambient relative humidity of several 

cities in cold climate regions (ClimaTemps 2016; Current Results Nexus 2016a; NOWData). The 

average winter (December - February) temperature is -6.7 °F in Fairbanks, AK, 29.4 °F in 

Spokane, WA, and 22.4 °F in Helena, MT. For the entire U.S., excluding Hawaii and Alaska, the 

average winter temperature is 33.2 °F (Current Results Nexus 2016b). Also, the ambient relative 

humidity has a significant influence on concrete creep (Park and Paulay 1975). Creep strains are 

low when the relative humidity is high, because creep is reduced if water loss from the member 

is restricted. During a typical construction season (June - October), the average relative humidity 
is 58.2% in Fairbanks, AK, 52.7% in Spokane, WA, and 51.8% in Helena, MT. In the AASHTO 

LRFD Bridge Design Specifications (AASHTO LRFD), the average annual ambient relative 

humidity in Fairbanks and Spokane is greater than 70% (AASHTO 2017). The concrete creep 

strains in such regions could be different from those anticipated in AASHTO LRFD.
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Figure 2-1: Daily Average Temperature and Daily Average Relative Humidity of Several Cities

in Cold Climate Regions

When designing a concrete bridge there are many factors that must be take into account 

to ensure safety and longevity. The most important of these aspects includes pre-stress loss, 

environmental characteristics, curing conditions, and method of testing. Theoretically, total loss 

of pre-stress is the reduction of tension from the time strands are tensioned until the end of 

service life of the pre-stressed concrete member (Tadros et al. 2003). This includes both 

instantaneous and time-dependent losses and, for the pre-stressing steel, stress gains. Losses due 

to creep, shrinkage, and relaxation are time-dependent, whereas losses due to anchorage set, 

friction, and elastic shortening are instantaneous. The main resources that designers choose to 

use comes from the American Association of State Highway and Transportation Officials 

(AASHTO), the National Cooperative Highway Research Program (NCHRP), and some of their 

own state funded research operations which usually give insight into that particular geographic 

location. Upon studying how these organizations configure their work based on cold locations, 

the estimations of pre-stress loss do not emphasize the effects of ambient temperature and 

relative humidity with their temperature effects, which can have dramatic and permanent effects 

of the concrete.

In Alaska, the extreme environment makes it especially difficult to predict the pre-stress 

losses of a high-strength DBT girder. The time-dependent losses for standard precast, pre
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tensioned members subject to normal loading and environmental conditions can be found in the 
AASHTO LRFD section 5.9.3 regarding pre-stress loss (AASHTO 2017). In most cases this 

section would be useful, however, Alaska has never fit under the normal environmental 

conditions classification. The instantaneous loss can sometimes be identified under more 

controlled circumstances, due to the manufacturers pre-casting the girders indoors depending on 

the need. Although, the long term effects are more relative to the transfer and natural 

environment that the girders are in. The effects of ambient temperature and relative humidity 

need an emphasis on how it impacts pre-stress loss estimations.

The total pre-stress loss is separated into two groups: (1) instantaneous losses and (2) 

long-term time-dependent losses (AASHTO 2017). Losses due to anchorage set, friction, and 

elastic shortening are grouped as an instantaneous loss; losses due to concrete creep, concrete 

shrinkage, and relaxation of pre-stressing strands are classified as time-dependent losses. Figure 

2-2 demonstrates the change in pre-stress force that occurs during bridge construction activities.

• A - C: Pre-stress loss due to pre-stressing bed anchorage seating, relaxation between 

initial tensioning and transfer, and temperature change in strand embedded in concrete. 

The losses from the bed anchorage seating (A - B) are not present in either pre-stressing 

strands or concrete.

• C - D: Instantaneous pre-stress loss at transfer due to elastic deformation and self-weight.

• D - E and F - G: Time-dependent pre-stress loss due to shrinkage and creep of girder 

concrete and relaxation of pre-stressing strands.

• E - F: Increasing tensile stress due to superimposed dead loads (SIDL).

Figure 2-2: Pre-stressing Strand Force Changes with Time [modified from (Tadros et al. 2003) 

to represent DBT girders]
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At transfer, compressive stresses are imposed to the concrete. In the current AASHTO 

LRFD (AASHTO 2017), the maximum allowable compressive stress at pre-stress transfer is 

0.65 fc'i , where, fc'i is concrete strength at transfer2. Figure 2-3 shows corresponding 

compressive stress changes at the bottom fiber concrete (tension side when subject to gravity 

loads) of a girder. When superimposed dead loads (SIDL) are placed, tensile stress increases 

both in the pre-stressing strands and the concrete. This induces stress “gain” in the pre-stressing 

strands (see Figure 2-2) and additional tensile stress at the bottom of the girder (see Figure 2-3). 

The tension side of the girder experiences only an increase in tensile stress and pre-stress “gains” 

do not equate to a reduction in pre-stress losses over time.

2 This revision was made in 2016 Interim

Figure 2-3: Bottom-Fiber Compressive Stress Changes [modified from Garber et al. (2013) to 

represent DBT girders]

Concrete shrinkage, concrete creep, and relaxation of pre-stressing strands are three 

major mechanisms contributing to time-dependent pre-stress losses. Among them, pre-stress loss 

due to creep is the most significant. For instance, the percentages of pre-stress losses due to 

creep, shrinkage, and relaxation to the total time-dependent losses were 68%, 24%, and 8%, 

respectively, for two example bridges in Tadros et al. (2003) and Roller et al. (2011). Due to 
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creep, concrete strain under a constant stress increases with time. This occurs because the elastic 

modulus of the concrete under a constant stress decreases with the rate of loading.

Figure 2-4 shows the concrete stress-strain relationships that depend on the rate of 

loading (Rüsch 1960). When hardened concrete cylinders were loaded with a slow rate of 

loading (longer than 1 hour), the strength of concrete decreased compared to the strength 

observed from a loading occurring in minutes, which is typical for a concrete cylinder test. 

Collins and Mitchell (1997) reported that the strength reduction was about 20% of the 28-day 

strength. Also, concrete typically gains 20 to 40% in strength due to continuing hydration. These 

two phenomena compensate for each other, resulting in a conservative assumption on the 28-day 

concrete strength, so the strength reduction caused by long-term loading was not considered in 
the design (Collins and Mitchell 1997).

Figure 2-4: Stress-Strain Relationships for Eccentric Compression after Various Durations of

Loading at Constant Strain Rates (Rüsch 1960)

Concrete creep in stress-strain relationships is demonstrated in Figure 2-5, shown below 

(Rüsch 1960). When a stress is applied to a concrete cylinder with a rate of t = 20min. and held 

constant for a long time, the strain increases as the stress-strain relationship changes with time. 

Theoretically, the creep stops as the strain reaches the creep limit, a stress-strain relationship for 

a load with a rate of t = ∞ . For estimating concrete creep, therefore, the stress-strain 

relationship of concrete at different ages and under different stress histories should be known.
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Figure 2-5: Influence of Load Intensity and Duration on Concrete Strain (Rüsch 1960)

The creep deformation of concrete with time under constant axial compressive stress is 

illustrated in Figure 2-6 (Park and Paulay 1975). The creep would proceed at a decreasing rate 

with time. If the load is removed, the elastic strain is immediately recovered. However, the 

elastic recovery is less than the initial elastic strain, because the elastic modulus of concrete 

increases with age3. The creep strain occurring over a given period of time is proportional to the 

applied stress if the stress level is not high. Concrete creep strain is the permanent strain that 

remains after concrete that was loaded for some time was then unloaded. For the usual range of 

concrete stress used in structural design, the assumption of a linear relationship between creep 

strain and applied stress is acceptable.

3 After the start of concrete hardening, the stress-strain relationship under short-term loading is different from the 
stress-strain relationship under long-term loading for the same concrete.
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Figure 2-6: Typical Creep Curve with Constant Axial Compressive Stress 

(Park and Paulay 1975)

The stress-strain relationship of concrete can be represented by various models, and a 

linear elastic relationship in Eq. (2-1) can be used if the stress is low, fc < 0.6 f'c (Collins and 

Mitchell 1997).

fc = Ecεcf (2-1)

where, 

fc = the concrete stress 

fc' = the maximum stress (strength), 

εcf = the concrete strain caused by fc

Ec = the tangent modulus when εcf = 0 .

In AASHTO LRFD (AASHTO 2017), Eq. (2-2) is used for the estimation ofEc.

Ec = 120,000K1wc2.0(f'c)0.33 (ksi) (2-2)

where

K1 = correction factor for source of aggregate

wc2.0 = unit weight of concrete (kcf)
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The difference between this secant modulus and the tangent modulus is negligible for the 

concrete used in typical pre-stressed concrete (Collins and Mitchell 1997). The total concrete 

strain due to a sustained stress f c, long can be expressed as the sum of an elastic strain ε c, el and a c,long c,el

creep strain εc,c in Eq. (2-3): 

where

φ(fτ) = creep function 

t = the age of the concrete

τ = the age when the stress fc long is applied

The creep function can be expressed in Eq. (2-4) as (Menn 1986): 

where

φn = the creep coefficient that depends on material properties and environmental conditions 

k (τ) = a correction factor for the age of concrete at time of loading

f (t -τ) = the time-varying behavior of creep and depends on an effective thickness parameter.

There are various factors that affect concrete creep and shrinkage, and Table 2-1 shows 

the ones in ACI 209.2R-08 Guide for Modeling and Calculating Shrinkage and Creep in 
Hardened Concrete (ACI 2008).
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Table 2-1: Factors Affecting Concrete Creep and Shrinkage (ACI 2008)

Factors Variables considered

Concrete
(creep and shrinkage)

Concrete composition

Cement paste content

Water-cement ratio

Mixture proportions

Aggregate characteristics

Degrees of compaction

Type of cement
Slump

Air content
Fine aggregate percentage

Cement content

Initial curing

Length of initial curing
Moist cured
Steam cured

Curing temperature
Moist cured

Steam cured
Curing humidity Relative humidity

Member geometry and 
environment (creep and 

shrinkage)

Environment
Concrete temperature

Concrete water content

Concrete temperature

Ambient relative humidity

Geometry Size and shape
Volume-surface ratio 

or 
minimum thickness

Loading (creep only)

Loading history

Concrete age at load application
Moist cured
Steam cured

During of loading period Sustained load
Duration of unloading period

Number of load cycles

Stress conditions
Type of stress and distribution 

across the section Compressive stress

Stress/strength ratio Stress/strength ratio

Since the adoption of the current pre-stress loss provisions in the AASHTO LRFD, the 

accuracy and usability of the provisions have been called into question. For example, in a study 

comparing measured and calculated pre-stress losses, a significant discrepancy was found in the 

time-dependent losses of high-strength concrete bulb-tee girders (Roller et al. 2011). Brewe 

observed that the AASHTO LRFD refined method underestimates the total pre-stress losses for 

all beams by an average of 22% (Brewe et al. 2008). Garber discussed that the current refined 

estimation method resulted in underestimation of the pre-stress loss by nearly half (Garber et al. 

2013). Mertol et al. investigated creep and shrinkage of high-strength concrete of which 

compressive strengths were 10 ksi, 14 ksi, and 18 ksi (Mertol et al. 2010). It was shown that the 

creep coefficient in AASHTO LRFD (AASHTO 2017) was closer to the measured value for 

moist-cured HSC specimens but overestimated the measured value for heat-cured HSC 

specimens. For shrinkage strain, AASHTO LRFD provided reasonably good predictions 

compared to the measured strains except that the predicted shrinkage strains are higher than the
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measured values at an early age. In addition, there was less shrinkage for heat-cured specimens 

than for the moist-cured cylinders. The difference in the shrinkage having different strength (10 

ksi to 18 ksi) was small.

Based on measured pre-stress loss data, different methods for estimating pre-stress losses 
are compared in Figure 2-7 (Garber et al. 2016). The PCI simplified method and 2004 AASHTO 

LRFD provisions are conservative in the estimation of the final pre-stress loss; whereas, the 

other methods generate many cases where measured pre-stress losses are significantly larger than 

estimated losses. It was mentioned that the current provisions are less conservative, possibly 

more accurate, and significantly more complex without accurately predicting pre-stress losses.

Figure 2-7: Estimated and Measured Pre-stress Losses (Garber et al. 2016)

2.2 Design Provisions in AASHTO LRFD (2017)

The pre-stress loss provisions in AASHTO LRFD were based on findings in NCHRP 
Project 18-07 (AASHTO 2017, Tadros et al. 2003). The total pre-stress loss is represented in Eq. 

(2-5) as:
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where,

ΔfpES = instantaneous loss due to elastic shortening in members and

ΔfpLT = the sum of time-dependent losses.

For the estimation of the time-dependent losses, two methods were provided: 

approximate estimation and refined estimation methods. The approximate estimation method 

was developed for pre-stressed, I-beams and inverted tee beams with which a concrete deck was 

compositely built. Furthermore, it was assumed that moment from live load was about 1/3 of the 

total load moments. Therefore, the application of the approximate estimation method to DBT 

girders is questionable, and modification of the method may be necessary.

2.2.1 Instantaneous Pre-stress Losses

Interpretation of concrete strain prior to transfer, especially in high-strength concrete, is 

rather complicated. When pre-stressing force is released to the concrete and the temperature of 

the concrete is still elevated due to hydration and curing, the amount of pre-stressing force 

applied to the girder is significantly impacted by the temporary high temperature. Eq. (2-6) 

represents strand stress loss due to a temperature rise, ∆T (Tadros et al. 2003): 

where,

Δfpt = pre-stress changes (loss or gain) due to temperature change 

as = the coefficient of the thermal expansion of steel

Ep = modulus of elasticity of pre-stressing strands

Pre-stress loss due to the elastic shortening of pre-stressing strands in Eq. (2-7) is shown
as: [AASHTO 5.9.3.2.3a-1]: 

where,

ΔfpES = pre-stress loss due to elastic shortening (ksi)

Ep = modulus of elasticity of pre-stressing steel (ksi)

Ect = modulus of elasticity of concrete at transfer or time of load application (ksi)
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fcgp= concrete stress at the center of gravity of pre-stressing tendons due to the pre-stressing 

force immediately after transfer and the self-weight of the member at the section of maximum 

moment (ksi)

Historically, the conservative approach is to account for the effect of elastic deformation 

to occur at all stages of loading in the calculation of elastic shortening and creep losses 

considering only the pre-stress force present after transfer. The pre-stress may be assumed to be 

90% of the initial pre-stress before transfer and the analysis is iterated until acceptable accuracy 

is achieved. When using transformed section properties, the pre-stressing strand and the concrete 

are treated together as a composite section. The effective stress in these strands consists of the 

sum of the ΔfpES values that must be included. However, analysis with gross (or net) section 

properties involves using the effective stress in the strands at any given stage of loading to 

determine the pre-stress force and resulting concrete stresses.

2.2.2 Time-Dependent Pre-stress Losses

In the refined estimation method, the time-dependent pre-stress loss is calculated from 
Eq. (2-8) [AASHTO 5.9.3.4.1-1].

where 

(∆fpsr)= pre-stress loss due to shrinkage of girder concrete between transfer and deck placement

(ksi)

(∆fpcr) = pre-stress loss due to creep of girder concrete between transfer and deck placement 

(ksi) 

(∆fpr1) = pre-stress loss due to relaxation of pre-stressing strands between time of transfer and 

deck placement (ksi) 

(∆fpR2) = pre-stress loss due to relaxation of pre-stressing strands in composite section between 

time of deck placement and final time (ksi) 

(∆fpSD) = pre-stress loss due to shrinkage of girder concrete between time of deck placement 

and final time (ksi)
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(∆fpcD) = pre-stress loss due to creep of girder concrete between time of deck placement and 

final time (ksi)

(∆fpss) = pre-stress gain due to shrinkage of deck in composite section (ksi) 

(∆fpsR + ∆fpcR +∆fpRl)id = sum of time-dependent pre-stress losses between transfer and deck 

placement (ksi)

(∆fpsD +∆fpcD +∆fpR2 -∆fpss)df = sum of time-dependent pre-stress losses after deck 

placement (ksi)

For the estimation of each component in time-dependent pre-stress losses, the concrete 

strain is estimated based on the stress-strain relationship of slow-loading which can be 

represented by elastic modulus, Ec" , in Eq. (2-9): (Tadros et al. 2003): 

where,

Eci = the concrete elastic modulus at pre-stress transfer, 

χ = 0.7 = the relaxation coefficient, and 

ψb (tf, ti) = the creep coefficient.

The creep coefficient in Eq. (2-10) is the ratio of creep strain at time t= tf to elastic 

strain when a load is applied at time t= ti and held constant (Tadros et al. 2003).

where,

Wu = an ultimate creep coefficient

ktd = the time-development factor

ks = the factor for the effect of the volume-to-surface ratio

khc = the humidity factor

kf = the factor for effect of concrete strength

Correction factors are used in various prediction methods to modify the ultimate values 

of creep coefficient and shrinkage strain of concrete for any period of time. Factors are
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introduced to account as much as possible for the average conditions commonly encountered in 

practices; such as 70% annual average ambient relative humidity, V/S ratio of 3.5in., loading age 

of 1 day for precast pre-tensioned members and 7 days for cast-in-place deck slabs, and 

accelerated curing for 1 day or moist curing for 7 days. (Tadros et al. 2003)

For the ambient relative humidity, the range of 30% to 80% encountered in the United 

States can be applied to the humidity factors for shrinkage and creep in Eq. (2-11) and Eq. (2-12) 
(Tadros et al. 2003):

Shrinkage: khs = 2.00 - 0.0143H (2-11)

Creep: khc = 1.56 - 0.008∕ (2-12)

where,

H = relative humidity (%)

The pre-stress loss due to shrinkage of girder concrete between the time of transfer and 
the time of deck placement shall be determined in Eq. (2-13) and Eq. (2-14) [AASHTO 

Equations 5.9.5.4.2a-1 and 5.9.5.4.2a-2] as:

where,

εbid = concrete shrinkage strain of girder between the time of transfer and deck placement per Eq.

5.4.2.3.3-1 (in. / in.)

Kid = transformed section coefficient that accounts for time-dependent interaction between

concrete and bonded steel in the section being considered for time period between transfer and 

deck placement

epg= eccentricity of pre-stressing force with respect to the centroid of girder (in.); positive in 

common construction where it is below girder centroid

ψb (tf, ti) = girder creep coefficient at final time due to loading introduced at transfer per Eq.

5.4.2.3.2-1

tf = final age (day)
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ti = age of concrete at time of transfer (day)

The pre-stress loss due to shrinkage of girder concrete between the time of deck 
placement and the final time found in Eq. (2-15) and Eq. (2-16) [AASHTO Equation 5.9.3.4.3a-1 

and 5.5.9.4.3a-2] shall be determined as: 

where,

εbdf = shrinkage strain of girder between time of deck placement and final per Eq. 5.4.2.3.3-1

Kdf = transformed section coefficient that accounts for time-dependent interaction between 

concrete and bonded steel in the section being considered for time period between deck 

placement and final time

epc= eccentricity of pre-stressing force with respect to centroid of composite section (in.) 

positive in typical construction where pre-stressing force is below centroid of section

Ac = area of section calculated using the gross composite concrete section properties of the girder 

and the deck and the deck-to-girder modular ration (in.2)

Ic = moment of inertia of section calculated using the gross composite concrete section 

properties of the girder and the deck and the deck-to-girder modular ration (in.4) 

where,

∆fpcR = pre-stress loss due to creep of concrete between time of transfer and deck placement

ψb (td, ti )= girder creep coefficient at time of deck placement due to loading per Eq. 5.4.2.3.2-1 

td = age at deck placement (day)
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The pre-stress loss due to creep of girder concrete between the time of transfer and the 
time of deck placement in Eq. (2-17) [AASHTO Equation 5.9.3.4.2b-1] shall be determined as:



where,

ΔfpCD = the change in pre-stress (loss is positive, gain is negative) due to creep of girder concrete 

between time of deck placement and final time

∆fcd = change in concrete stress at centroid of pre-stressing strands due to long-term losses 

between transfer and deck placement, combined with deck weight and superimposed loads (ksi) 

ψb (tf, td )= girder creep coefficient at final time due to loading at deck placement per Eq. 

5.4.2.3.2-1

The pre-stress loss due to relaxation of pre-stressing strands between the time of transfer 

and the time of deck placement shall be determined in Eq. (2-19) [AASHTO Equation 
5.9.3.4.2c-1] as:

A more accurate prediction of relaxation loss between transfer and deck placement is

given in Eq. (2-20) (Tadros et al. 2003):

where,

K'L = factor accounting for type of steel, equal to 45 for low relaxation steel
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The pre-stress loss due to creep of girder concrete between time of deck placement and 
final time in Eq. (2-18) [AASHTO Equation 5.9.5.4.3b-1] shall be determined as:

where,

fpR1 = The pre-stress loss due to relaxation of pre-stressing strands between time of transfer and 

deck placement, may be assumed equal to 1.2ksi for low-relaxation strands.

KL= factor accounting for type of steel taken as 30 for low relaxation strands and 7 for other 

pre-stressing steel, unless more accurate manufacturer's data are available

fpt = stress in pre-stressing strands immediately after transfer, taken not less than 0.55 fpy in Eq. 

5.9.3.4.2c-1



Kid = factor accounting for restraint of concrete member caused by bonded reinforcement = 0.8 

t = time between strand tensioning and deck placement (day) = 120 days 

ti = 0.75 day

The pre-stress loss due to relaxation of pre-stressing strands in composite section between 

time of deck placement and final time, ∆fpR2, shall be determined in Eq. (2-21) [AASHTO

Equation 5.9.3.4.3c-1] as:

∆fpR 2 =∆fpRl (2-21)

The pre-stress gain due to shrinkage of deck composite section, ∆fpSS , shall be determined

in Eq. (2-22) and in Eq. (2-23) [AASHTO Equation 5.9.3.4.3d-1 & 5.9.3.4.3d-2] as:

where,

∆fcdf = change in concrete stress at centroid of pre-stressing strands due to shrinkage of deck

concrete (ksi)

εddf = shrinkage strain of deck concrete between placement and final time per Eq. 5.4.2.3.3-1

(in./in.)

Ad = area of deck concrete (in.2)

Ecd = modulus of elasticity of deck concrete (ksi)

ed = eccentricity of deck with respect to the gross composite section, positive in typical 

construction where deck is above girder (in.)

Ψd (tf,td ) = creep coefficient of deck concrete at final time due to loading introduced shortly 

after deck placement
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2.3 Other Design Provisions

For pre-stress loss estimation, three methods have been used: lump-sum estimates, 

rational approximate methods, and detailed time-dependent analyses. The approximate 

estimation method of time-dependent losses (section 5.9.3.3) in AASHTO LRFD and the total

loss method in the PCI Design Handbook are lump-sum estimate methods (AASHTO 2017, PCI 

2010). The refined estimation of time-dependent losses method (section 5.9.3.4) in AASHTO 

LRFD and a method in the PCI Design Handbook can be classified as rational approximate 

methods. Detailed time-dependent analyses may provide accurate prediction of pre-stress losses. 

Some of these methods are presented in the PCI Bridge Design Manual (PCI 2000). In the 

present study, the following methods are of primary concern.

• 2004 AASHTO Lump-sum method

• 2004 AASHTO Refined method

• 2017 AASHTO Approximate estimation

• 2017 AASHTO Refined estimation

In NCHRP report 496, the final form of the approximate method of pre-stress loss 

formula is shown as (Tadros et al. 2003) in Equation (2-24) through (2-26): 

where,

γh = correction factor for relative humidity of the ambient air

χst = correction factor for specified concrete strength at time of pre-stress transfer to concrete 

member
2

Aps = area of pre-stressing steel (in )

fpi = pre-stressing steel stress immediately prior to transfer (ksi)
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The following assumptions were made to arrive at the approximate method coefficients.

(a) Pre-stress losses are calculated for conditions at the maximum positive moment section

(b) No mild steel reinforcement exists at that section

(c) Elastic losses at transfer or elastic gains due to application of external loads are not 

considered.

(d) Pre-stress is transferred to the concrete at 1 day in accelerated plant curing conditions.

(e) The cast-in-place deck weight (composite construction) is applied to the precast concrete 

section without any shoring after at least 28 days from the time of pre-stress transfer.

(f) V/S ratio for the girder cross section is 3 in. to 4 in.

In the third edition of the AASHTO LRFD specifications, pre-stress losses due to concrete 
creep and shrinkage were determined from Eq. (2-27) and Eq. (2-28) (AASHTO 2004):

The 28 day compressive strength of concrete in structural elements can be found in the 
ADOT&PF tables in Chapter 14 regarding structural concrete (ADOT&PF 2017). Normal 

weight concrete varies between 145 pcf for cast-in-place concrete, and 155 pcf for precast
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where,

fcgp = the concrete stress at the center of gravity of the pre-stressing

Δfcdp = the concrete stress change due to permanent loads 

H = average relative humidity (%).

The Alaska Bridges and Structures Manual (ADOT&PF 2017) was mainly based on the 

6th edition of the AASHTO LRFD (2012), but provisions for the estimation of time-dependent 

pre-stress losses for DBT girders in Eq. (2-29) were adopted from the lump-sum method in the 

3rd edition (or before) of the AASHTO LRFD. Specifically, the equation of average loss for 

single T or double T girders was adopted with a pre-stress loss reduction of -8 ksi for low- 

relaxation strands. In this equation, the sum of time-dependent pre-stress losses is expressed as a 

function of concrete strength, fc' .



concrete excluding the weight of the internal steel reinforcement. The common sizes for the pre

stressing strands used in bridge construction are 0.5 and 0.6 inches in diameter. For girders 

within Alaska, the diameter of the pre-stressing strands in pre-tensioned girders is 0.5 inches, 

while the diameter is typically 0.6 inches for girders fabricated outside Alaska.
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Chapter 3 Concrete Creep Test Setup
The amount of concrete creep that a particular concrete experiences is difficult to 

estimate accurately unless concrete cylinder tests are conducted to determine the creep 

characteristics. Without such tests, accuracies of better than ±30% should not be expected 

(Collins and Mitchell 1997). From the measurement of small size test specimens, it was observed 

that the most of pre-stress loss occurred between 140 and 168 days, and the loss increases 

significantly within the first 6 months (Brewe et al. 2008).

In the present research, two concrete creep test frames were fabricated based on ASTM C 
512 “Standard Test Method for Creep of Concrete in Compression” (ASTM 2015). One test 

frame was placed in the structural engineering laboratory at University of Alaska Fairbanks 

(UAF) and the other frame was located outside a building on the UAF campus under ambient 

environment conditions. The effects on concrete creep from the cold climate were evaluated by 

comparing the measured strain changes from the two test frames for 11 months (7/26/2017 - 
6/21/2018).

3.1 Concrete Creep Test Frame

Two concrete creep test frames were designed based on ASTM C 512 (ASTM 2015). 

One test apparatus was set up in the laboratory while the other remained exposed to the outdoor 

weather. The design for the apparatus is shown in Figure 3-1 with a maximum capacity of 

192,000 lbf., and a maximum stress to the frame of 6,795 psi. In each of the test frames, two 

6"×12" cylindrical specimens were placed on top of one another with 1" thick circular steel 

plates as spacers and tested under the same compression while an additional two specimens were 

placed unloaded near the frame.

The load was applied by means of a hydraulic jack, with a maximum capacity of 120,000 

lbf., and monitored by a calibrated load cell. When the desired load is reached, the nuts on the 

threaded rods are turned so that they are snugly pressing against the plate underneath the 

hydraulic jack, holding the plate in position and the applied load remains continuous and steady. 

After the nuts are securely positioned, the jack can be removed from the test frame and used to 

set the load on another test frame. After the jack is removed, the 9 sets of springs (D2 inner and 

D2 outer types) in the frame maintain the load applied to the specimens consistently. Standard 

railroad springs, which are much less expensive than custom-made springs, were used at the base
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of the frame as to apply equal force upward. This design has the advantage of when a smaller 

load is applied, a smaller number of springs are used as to maintain the applied load more 

accurately.

Figure 3-1: Creep Test Apparatus

Each spring set consists of two springs. The spring constant of the outer spring, kl, is 

9,778 lbf/in, while the spring constant of the inner spring,ks is 3,520 lbf/in. When they are used 

as a set, the combined is 13,298 lbf/in, and the solid capacity is 21,345 lbf4. Under the maximum 

load, the set of springs deforms 1.61 inches. If all nine sets of springs are used, the maximum 

load, Cmax, that the springs can hold can be calculated to 192,000 lbf. The maximum stress, ϭmax 
, that can be applied to a 6"×12"cylindrical concrete specimen in the creep frame can be 

calculated as 6,795 psi. In consideration that the concrete test specimens may be loaded up to

4 Personal e-mail communication with a vendor.
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50% of its compressive strength in the creep test, this creep apparatus can be used to test 

concretes with a maximum ultimate compressive strength of 13,590 psi.

When the concrete specimens are loaded in the creep frame, each of the four steel rods 

will carry one quarter of total load. The steel rods are 1.25 in. in diameter and are made of a 

high-strength alloy steel with a yield strength of 105,000 psi. If the concrete specimens were 

loaded up to the maximum capacity of the creep apparatus of 192,000 lbf, the maximum stress in 

the steel rods would be equal to 48,300 psi. This maximum possible stress in the steel rod is less 

than half of the yield strength of the steel of 105,000 psi.

As the concrete specimens are loaded in the creep frame, the rectangular steel plates, 

which are in between each cylinder, are slightly deflected. To keep the loading surfaces flat and 

the test specimens vertical when the load is applied, four 1-inch thick circular steel plates with a 

diameter of 6 inches are placed on the top and bottom of the stack of concrete test specimens and 

as in between the cylinders.

As the concrete specimens creep under the sustained load in the creep frame, the load 

applied on the concrete will be reduced. The load relaxation due to the creep deformation of the 

concrete specimens can be calculated by multiplying the total creep deformation by the total 

spring constant of the springs, as follows:

Load Relaxation = (Total Spring Constant) × (Creep Deformation)

= (Total Spring Constant) × (Creep Strain) × number of specimens × 12 in.

When all nine sets of springs are used, the total spring constant is equal to 119,682 lbf/in. 

Table 3-1 presents the load relaxation of the creep frame for various values of creep strains for 

the case when all nine sets of springs are used. Also, two test setup cases, two specimens and 

three specimens, are compared. Depending on the creep strain and the number of specimens, re

adjustment of load may be necessary to maintain the load constant on the concrete specimens.
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Table 3-1: Load Relaxation in the Creep Apparatus due to Creep Strain of Concrete

Creep Strain 5.0×10-5 1.0×10-4 5.0×10-4 1.0×10-3 2.0×10-3

Load Relaxation (lbf) 
: 2 specimens 140 280 1400 2800 5600

Load Relaxation (lbf) 
: 3 specimens 210 420 2100 4200 8400

3.2 Concrete Cylinder Specimens

A single large batch of cylinders, used for compression and stress-strain tests, were made 

at AggPro in Anchorage, Alaska during a girder pour for the 76th Avenue Undercrossing Girders 

on July 12th at 10:00am. The design concrete strength was fc'i = 7000 psi at stress transfer and 

fc' = 8500 psi at 28 days which can be found in the submitted and approved girder plan in 

Appendix A.

The concrete mix design was submitted to and approved by ADOT&PF. The water 

reducing admixture should be noted to effect the total creep, basic and drying creep, at an 

increase by 20% at the same water-cement ratio (ACI 2005), however, this calculation was not 

utilized for our purposes.

The mix ingredients are described as follows:

• Cement

ABI Type III Cement were used in the batches.

• Coarse Aggregate

The coarse aggregate used was AASHTO Gr. # 67 with a saturated surface dry 
(SSD) Specific Gravity of 2.70, Absorption Percent of 0.69, and a Dry-Rodded 

Unit Weight of 110.7

• Intermediate Aggregate

The coarse aggregate used was AASHTO Gr. # 8 with a SSD Specific Gravity of 
2.69, Absorption Percent of 0.62, and a Dry-Rodded Unit Weight of 110.3

• Fine Aggregate
The fine aggregate used was AASHTO Gr. # M6 with a SSD Specific Gravity of 

2.64, Absorption percent of 1.39, and a Fineness Modulus of 2.76

• Water-Reducing Admixture
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The water-reducing admixture used included BASF PS 1466: a ready-to-use high- 

range water-reducing admixture effective in assisting with workability.

The grain size distribution chart for the materials pit that produced the aggregates for the 

concrete mix design are seen in Figures 3-2 through 3-4.

Figure 3-2: Fine Concrete Aggregate Grain Size Distribution

Figure 3-3: Coarse Concrete Aggregate Grain Size Distribution
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Figure 3-4: 3/8” Aggregate Grain Size Distribution

The concrete specimens were created in conformance with ASTM standard C31 “Making 

and Curing Concrete Test Specimens in the Field” utilizing a tamping rod as seen in Figure 3-5 

(ASTM 2012). During the girder pour, 24 cylinders of size 4"×8" and 15 cylinders of size 

6"×12" were made and cured on site. Thermistors were placed inside the cylinders carefully as to 

not create voids. Figure 3-6 shows the completion of the fieldwork with the sensors in position. 

The superintendent of operations from Aggpro also made 3 cylinders, following the metal mold 

and vibratory method, to be steam cured along with the girder to approximate a similar 7-day 

steam cured strength. The following morning the vibratory cylinders were broke to test 

compression strength on the steam-cured specimens to ensure minimum strength. An employee 

from DOWL HKM, who specializes in quality assurance for concrete, also ran field tests for 

slump (9 inches), percent air entrained (2.5%), unit weight (152.2 pcf), and recordings of 

ambient temperature (57oF) and concrete temperature (64oF) were recorded5.

5 From a data sheet from DOWL HKM. Attached in Appendix B.
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Figure 3-5: Making Concrete Test Specimens in the Field

Figure 3-6: Completion of Making Concrete Cylinders in the Field

Transportation of the concrete cylinders from Aggpro in Anchorage to Fairbanks 

followed ASTM C31 section 11 “Transportation of Specimens to Laboratory”. The cylinders 

were capped and placed at the bottom of a 5 gallon bucket as to remain flat, then sand was 

poured around as to maintain a solid, vertical surrounding. The transportation time specified 
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shall not exceed 4 hours according to the specification, however, ADOT&PF in Alaska realizes 

that this feat is an impossibility in such a large state for certain locations. After leaving 

Anchorage around 10am and arriving in Fairbanks roughly 6 hours later, the cylinders were 

stripped of their molds and placed in a lime bath at the ADOT&PF Northern Region Materials 

Lab.

3.3 Sensors and Data Acquisition System

Two pairs of gage points with a gage distance of 8 inches were placed in each concrete 

test specimen. A Demountable Mechanical Strain Gauge (DEMEC) was used to measure the 

change in distance between the gage points, which is the creep of concrete.

Once the concrete has gained some initial strength, holes are drilled into the cylinders to 

allow for the gauge-points to be placed. An electric drill is used after the spacing has been 

marked out utilizing a masonry bit per ASTM C426. Aluminum Putty Epoxy from JBWeld was 

also used to ensure the stabilization of the gauge plugs to shrink with the concrete. Once the 

epoxy hardened the gauge-points were placed finger tight and were to not be moved after.

Once the cylinders reached the optimum number of days, they were prepared for the 

creep test. Placement of the cylinders into the loading frame required preparation of the gauge 

points and leveling the top and bottom with a diamond tipped saw. Holes were drilled into the 

specimens at roughly 1” from the top and bottom, and approximately 8” apart from each other to 

allow for the DEMEC strain gauge to accurately measure the creep. After the holes were drilled 

out to proper depth, an air compressor cleaned out the dust while gauge plugs with JBWeld 

epoxy were used to maintain a constant position within the cylinders, which can be seen in 

Figure 3-7. The thermistors are located in the center of the cylinder, as seen in Figure 3-8, with 

the ends protected and secured in place. Gauge points with a half spherical shape are then 

screwed inside the plugs to allow an accurate center to center measurement.
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Figure 3-7: Specimens Epoxied with Gauge Plugs

Figure 3-8: Specimens Pre-Loading Set Up with Thermistors
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The wiring was connected to a CR1000 wiring panel located inside a weather proof case 

along with a storage device for readouts of the load cell and thermistor every 5 seconds. The 

devices before final set up of the outdoor frame can be seen in Figure 4-2. The load cells were 

calibrated before use to ensure accuracy.

3.4 Ambient Temperature and Relative Humidity Data

During each physical measurement of the cylinders, outside temperature and relative 

humidity were recorded. Also, more robust weather data was obtained from the closest, in

service weather station on West Ridge of UAF campus. The station, FAOA2 College 

Observatory, is located at the Elvey building, providing an adequate comparison for obtaining 

records.

As the temperature seasonally changes, the thermal contraction and expansion of the steel 

as well as the concrete must be accounted for. The contraction of the steel rods can induce 

additional stress as it causes the plates to be closer together, therefore creating an additional force 

on the concrete cylinders. The internal concrete force that limits the potential of total creep due 

to the change in temperature at a reference temperature of 22 Celsius is approximately -519με. If 

the change in temperature is adjusted to 0 Celsius, the potential internal concrete force is 

approximately -222με, however, these value are not considered for our calculations and is an 

area for a future study. The calculation for the steel rods and the concrete cylinders is listed in 
Table 3-2.

Table 3-2: Calculations and Equations for Various Measured Constants

Radius of

Concrete
rc = 3 in Change in 

Temperature ∆T = 51.44° C

Radius of 
Steel Bar

1.25
rs = 1.25/2 = 0.625 in

Force
F = 80,000 lbf

Area of Steel
Arod = 152.17 in2

Outer Spring

Constant
lbf

k1 = 9,778 lbf/inin

Area of

Concrete
AConcrete= 96.21in2

Inner Spring

Constant
lbf

k2 = 3,520(lbf/in)
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Chapter 4 Experimental Programs
In the two creep test frames, two concrete cylinders stacked together were loaded with a 

target compression of 80,000 pounds on the 13th day after molding (7/25/2017). The target 

compression is roughly 33% of the compressive strength of the specimens on the 14th day 

following ASTM C512 (ASTM 2015). Once the target compression was reached, the steel plates 

of the frame were tightened in place, leveled, and the hydraulic jack was demounted. Circular 

steel and rubber plates were placed in between the cylinders to equally distribute the load. 

Figures 4-1 and 4-2 show the two concrete creep frames under loading with the jack still in 

position.

Figure 4-1: Specimens Loading Set Up Inside Frame
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Figure 4-2: Specimens Loading Set Up Outside Frame

4.1 Compressive Strength of Concrete

The scheduling for the compressive strength of the specimens were 3, 7, 14, 28, 56, 90, 

189, and 365 days. The cylinders were kept in a lime bath at the Regional lab at ADOT&PF in 

Fairbanks. Three cylinders are broken to failure in each test day following the ASTM standard 

C39 (ASTM 2018). An example of the loading apparatus can be seen in Figure 4-3 for the 3-day 

break of a 4"×8" cylinder.

The average value of the compressive strength tests from three cylinders at 28-day break 

will be taken as the compressive strength of the concrete. Figures 4-4 through 4-10 show the 

results of the strength tests for 3, 7, 14, and 28-day tests of the 4"×8" cylinders. The cylinders 

can be seen breaking more equally over the area of the ruptured in their earlier breaks, however, 

as the concrete gets harder, it starts to somewhat shear off rather than break cleanly. This trend 

could verify the values of the breaks obtained and gives incite as to the strength of materials.
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Figure 4-3: 3-Day Break Cylinder Strength Test Loading

Figure 4-4: 3-Day Break Strength Test Results 1 through 3
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Figure 4-5: 7-Day Break Cylinder Strength Test Loading

Figure 4-6: 7- Day Break Strength Test Results 1 through 3
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Figure 4-7: 14-Day Break Strength Test Results 1 through 3

Figure 4-8: 28-Day Break Cylinder Strength Test Loading
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Figure 4-9: 28- Day Break Strength Test Results 1 through 3 in Frame

Figure 4-10: 28-Day Breaks 1 Through 3

Table 4-1 shows the measured concrete strength. A relationship between the average 

compressive strength and time can be seen in Figure 4-11, with the trend line behaving as 

expected increasing up to a maximum after a longer period left to cure. As time increases, the 

average compression strength increases up to the 56 day break. At 90 days the strength of the 

concrete decreases, however, at the 189 and 365 day breaks determined the strength increased to 

its local maximum. The specified 28-day strength was 8,000 psi and the probable 28-day strength 

was 10,000 psi in the concrete mix design report reported by the fabricator. From the strength 

test result, the 28-day strength was 9,119 psi which was less than the probable strength, but it 

was greater than the specified strength.
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Table 4-1: Compressive Strength Test Results

Time 
(Days)

Test #1 
(Psi)

Test #2
(Psi)

Test #3 
(Psi)

Average
(Psi)

3 6,909 6,750 6,788 6,816

7 7,935 8,156 7,957 8,016

14 8,761 8,654 8,545 8,654

28 9,609 9,206 8,543 9,119

56 10,317 9,597 10,569 10,161

90 9,845 9,927 9,467 9,746

189 11,993 11,175 11,625 11,598

365 11,719 12,146 11,873 11,913
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4.2 Elastic Modulus of Concrete

The stress-strain tests of the cylinders were carried out by a Forney compression machine 

in the Structural Materials Lab at UAF, which can be seen in Figure 4-12 following the ASTM 

C469 “Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete” 

(ASTM 2014). The compressometer is used to measure the stress-strain of the cylinder as it is 

loaded utilizing a digital readout. The first loading trial is not recorded, per ASTM C469, and the 

following two readings are then measured and recorded. The following Figures 4-13 through 4

16 show the stress-strain in graphical format for the 14, 29, 189, and 365 day tests.

Figure 4-12: Stress-Strain Test using Forney Compression Machine & Compressometer
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Figure 4-13: 14-day stress-strain test

Figure 4-14: 29-day stress-strain test
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Figure 4-15: 189-day stress-strain test

Figure 4-16: 365-day stress-strain test
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where,

K1= correction factor for source of aggregate (1.0 unless determined by physical test) 

wc = the unit weight of concrete (kcf) 

fc' = the compressive strength of concrete (ksi)

The unit weight of concrete used in the calculation was wc = 151.5 pcf from the concrete 

design mix document. The average concrete strength measured from 4"×8" specimens in Table 

4-1 was also used in the calculation.

Table 4-2: Comparison of Concrete Elastic Modulus (psi)

Day 2nd run 3rd run Average AASHTO (8th) AASHTO (7th)
3 5,188,768 5,069,952
7 5,474,098 5,489,181
14 5,747,155 5,708,130 5,727,643 5,614,096 5,688,318
28 5,927,988 5,903,370 5,915,679 5,712,081 5,687,718
56 5,919,643 6,326,301
90 5,838,807 5,987,411
189 6,007,248 5,998,739 6,002,994 6,183,729 6,634,937
365 6,677,869 6,653,828 6,665,848 6,238,637 6,705,112

In Figure 4-17, the measured and calculated elastic moduli are compared. At 28 days, the 

calculated values are comparable with the measured one, but they become different as the day 

approaches 365 days. The calculated value based on AASHTO 7th ed. is closer to the measured 

value at 365 days.
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In Table 4-2, measured elastic modulus values are summarized and they are compared 

with calculated values based on measured concrete compressive strength. The values in 
“AASHTO (8th)” were calculated from Eq. (4-1) while the values in “AASHTO (7th)” were 

calculated from a traditional equation in Eq. (4-2) (AASHTO 2014, 2017).



4.3 Strain Measurement Results

The indoor and outdoor strain measurements were collected one after the other and at the 

same time of day in the beginning of the experiment to ensure consistency. The measurements 

were more susceptible to movement within the first few weeks of the concrete curing, and thus 

they were gathered more frequently. After approximately one month, the measurements were 

collected twice per day, then after three months, roughly one measurement per week. The 

ambient temperature and relative humidity were recorded at the beginning and end of the 

measurements taken from a standing gauge and averaged to display a graphical output. The on

board internal unit also collected the inner temperature of the specimens, which was used later in 

comparison. The entire measured data were collected and stored in Appendix B.

Figure 4-18 shows various strain values related to creep and shrinkage strains. The total 

strain is the sum of creep strain, initial strain or elastic strain, and shrinkage strain if there is no 

temperature changes. The creep strain consists of basic creep and drying creep strains. The 

shrinkage strain is the sum of autogenous shrinkage strain and drying shrinkage strain.
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Figure 4-17: Comparison of elastic modulus



Figure 4-18: Relationship between various measured and derived strain values (ACI 2005)

Following the definition in Figure 4-18, strains measured from the specimens in the creep 

frames correspond to the total strain, while strains measured from the unloaded specimens are 

shrinkage strains.

4.3.1 Total Strain Measurement

For each specimen, two measurement lines were prepared on the opposite side of 

specimen's cylindrical surface and named as Top (T) and Bottom (B) although they were on the 

side surface. At each measurement line, measurements were repeated three times, and their 

average value was taken.

The loaded control frame set up that was placed indoors consisted of specimens V-3 and 

V-1. Figure 4-19 shows the total strain measured at V-1T (Top measurement line in specimen V

1). The total strain starts at roughly a change of 500με to 1000με for the first 50 measurements 

while V-1B starts at roughly a change of 800με to 1300με in Figure 4-20. The reason why the 

values differ when it is the same specimen is not completely clear, but it could be due to
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orientation of the cylinder and uneven loading along its cross section. Figure 4-21 shows the total 

strain at V-3B ranging from approximately 500με to 900με for the first 50 measurements, but 

displays more of a linear trend rather than exponential as expected. Measurement at V-3T was 

not used due to inconsistent information. The graphical overlays of the indoor loaded specimens 

can be seen in Figure 4-22, showing an overall exponential trend in the beginning of the 

collected measurements, with a linear trend that tapers out until unloading.

Figure 4-19: V-1 Top (Loaded, Indoor)
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Figure 4-20: V-1 Bottom (Loaded, Indoor)



Figure 4-22: Indoor Loaded Strain

Figures 4-23 through 4-26 show the total strain measured from the specimens exposed to 

the natural environment. Measurement at V-4T in Figure 4-23 shows a more gradual exponential 

trend for the first 100 days with a change of roughly 120με, while specimen V-4B in Figure 4-24 

shows a steeper exponential trend with a change of roughly 1650με. The other outdoor specimen 

V-6B in Figure 4-25 shows a similar trend to V-4B with a steep exponential tendency the first 50 

days and tapers out with a change of approximately 1000με. The graphical overlay of the
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Figure 4-21: V-3 Bottom (Loaded, Indoor)



outdoor loaded specimens in Figure 4-26 shows the same exponential trend for the first 100 days 

with values from 750με to 1750με.

Figure 4-23: V-4 Top (Loaded, Outdoor)

Figure 4-24: V-4 Bottom (Loaded, Outdoor)
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Figure 4-25: V-6 Bottom (Loaded, Outdoor)

Figure 4-26: All Outdoor Loaded Cylinders

Figures 4-27 and 4-28 show the average of measured total strains at three measurement 

positions. In addition, a trend line is added to each Figure to show a different pattern between 

indoor and outdoor total strains. Between 0 and 50 days, the total strains from the outdoor frame 

was greater than the ones from the indoor frame. Between 50 and 100 days, two curves from the 

two frames are similar in their patterns and values. After 100 days, the total strain from the 

indoor frame slowly increased reaching 1600 and 1700 με after 250 days. However, the total
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strain from the outdoor frame did not change mush. They varied between 1000 and 1500 με and 

the averaged total strain was 1300με after 250 days.

Figure 4-28: Outdoor Loaded Comparison 
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In Figures 4-29 and 4-30, a logarithmic scale was used to draw the total strain in the 

indoor and outdoor frames. A parabolic curve was used to generate a trend line with a constraint 

of having -0.0005 as a y-intercept which corresponded to the initial strain. When the two trend 

lines were compared, the sign of the second order term was different. It is -0.000114 for the 

indoor frame and it was +0.000016 for the outdoor frame. Thus, the strain increased much 

greater and faster in the indoor frame than the outdoor frame.

Figure 4-29: Indoor Total Strain in log(days)
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Figure 4-30: Total Strain in log(days)

4.3.2 Shrinkage Measurements

Shrinkage strains were measured from two unloaded specimens for each frame. The 

specimens were the same in size as the loaded cylinders and located next to the indoor and 

outdoor frames. The shrinkage strain from indoor specimens is shown in Figure 4-31, showing a 

change of roughly 500με in the first 50 days, then a steadily increasing trend until measurements 

stop to a maximum of 1000με. The outdoor specimens in Figure 4-32 show a similar trend 

within the first 50 days at roughly 500με, however, the data does not steadily decrease like the 

indoor specimens after this point but tapers off until no change can be seen. This long term effect 

of shrinkage may be due to the weather outdoors varying between warm and cold, while the 

indoor specimens did not fluctuate. In order to verify this effect the temperature and relative 

humidity of the ambient air and the inside the specimens must be analyzed.

56



Figure 4-32: Outdoor Unloaded Strain
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Figure 4-31: Indoor Unloaded Strain



4.3.3 Temperature and Relative Humidity Data

Temperature and relative humidity are the factors identified as the main cause of concrete 

creep and shrinkage, as the concrete has not yet fully hardened before being exposed to non-ideal 

environments (ACI 2008). For the indoor specimens, the ambient temperature and relative 

humidity were measured from a digital weather station. They were recorded at the beginning and 

end of the measurements. Also, a thermistor was installed one of the specimens to monitor 

internal temperature. Figure 4-33 shows the ambient temperature and internal temperature 

measured for the entire time period. A relatively uniform temperature was maintained with the 

average ambient temperature at roughly 22.4oC and the average internal temperature at 22.67oC. 

The change of relative humidity is compared with the average total strain in Figure 4-34. It can 

be seen that the air was dry for the time period of the test, and it became very dry between days 

100 - 331. The average relative humidity of this time period was 8.9%.

Figure 4-33: Indoor Measured Temperature
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Figure 4-34: Indoor Relative Humidity and Strain Comparison

Figure 4-35 shows the three types of temperature collection for the outdoor specimens: a 

weather station on the Elvey Building (Meso West) on West Ridge of the UAF Campus, an 

internal sensor, and an onboard weather station to collect ambient air temperature. From the 

Figure it can be seen that the natural swing from higher to lower to higher temperatures reveals a 

full season outdoors with a high of roughly 28 and a low of -30oC. Due to daily temperature 

fluctuation, it can be seen that the three temperature readings varied. Specifically, the difference 

is substantial when the temperature dropped below 0oC in days 100 and 250.

Figure 4-36 shows the change of relative humidity. The average total strain was drawn 

together for comparison. Between days 100 and 250, the relative humidity became high, and the 

overall change of the total strain became small. From this comparison, it can be seen that the 

total strain in the outdoor frame became smaller due to high relative humidity during the winter 

season. The outdoor daily maximum and minimum temperature for selected periods are shown in 

Figures 4-37 and 4-38, displaying an overall trend for the seasonal change in an Alaskan 

environment.
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Figure 4-35: Outdoor Measured Temperature

Figure 4-36: Outdoor Relative Humidity and Strain Comparison
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Figure 4-37: Outdoor Temperature Daily Maximum and Minimum

Figure 4-38: Outdoor Relative Humidity Daily Maximum and Minimum
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Chapter 5 Design Implication
In this chapter, the measured total strains were compared with predicted values from 

several shrinkage and creep models. Used models were ACI 209R-92, Bazant-Baweja B3, CEB 
MC90-99, and GL 2000 models in ACI 209.2R-08 (ACI 2008). In addition, the models used in 

the AASHTO LRFD were included for comparison (AASHTO 2017). The model that fit best 

with the measured data was used to predict pre-stress loss.

5.1 Concrete Shrinkage and Creep Models

While shrinkage and creep may vary with local conditions, research has shown that short

term shrinkage and creep measurements improve the predictions regardless of location (Bazant 

1987, Bazant and Baweja 2000, Aguilar 2005). For this reason, the ACI committee recommends 

short-term testing to determine the shrinkage, creep, and elastic modulus of the concrete to 

improve the predictions of the long-term deformations of the concrete.

The collection of shrinkage and creep data from around the world was initially done by 

Bazant and Panula and placed in a databank, which was then extended by the ACI and CEB. The 

issues with the databank include but are not limited to, which data sets should be used, the 

description of the concrete, European cement concretes versus United States, and experiments 

using smaller specimens. Several models, compromising between accuracy and convenience, 

have been proposed for the prediction of creep, drying shrinkage, and total strains under load. 

The idea being that an engineer with little to no specialized knowledge of shrinkage and creep 

can still use these models. The user friendly modeling includes specifications of the concrete to 

make the prediction such as its age at loading, ambient relative humidity, duration of loading, 

specimen size, among others. However, it has been recognized by the committee that the 

stiffness of the aggregate significantly effects the shrinkage and creep of concrete (ACI 2008). 

Some models account for this effect while others use concrete strength as an adjustment. If no 

mechanical characteristics of the concrete are available, rely on mixture proportion information 

alone may not account for the behavior due to aggregate properties.

Various models were selected to be used for comparison, mainly; the ACI 209R-92 (ACI 
1992), the Bazant-Baweja B3 developed by Bazant and Baweja (1995, 2000), the CEB Model 

Code 1990-99 (CEB MC90-99)(Muller and Hillsdorf 1990, CEB 1999), and the GL2000 

developed by Gardner and Lockman (2001). The comparison of the various models using
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experimental data complicates the result by the lack of agreement on selection of the appropriate 

data and on the method used to compare the correlation, Table 5-1 lists the individual model's 

applicable range for different input variables.

Table 5-1: Parameter Ranges of Each Model

5.1.1 ACI 209R-92 Model

The ACI Committee 209R-92 developed a prediction model of creep, shrinkage, and 

temperature effects in concrete structures (ACI 2008). Their method is concerning normal weight 

concrete, roughly below 6000psi, however, the variables methodology still applies to high 

strength concrete which has a compressive strength greater than 6000psi. Some of the advantages 

of this model include its simplicity and it's relatively easy to adjust to match short-term test data. 

The disadvantages include its limitations in accuracy when accommodating member size and it is 

empirical based and does not model shrinkage or creep phenomena. The input values required 

are only age of concrete when drying starts, age of concrete at loading, curing method, relative 

humidity expressed as a decimal, volume-surface ratio, and cement type. The model doesn't 

calculate compliance but calculates the creep coefficient, which may introduce problems with an 

assumed value for elastic modulus. The formula for shrinkage time function and shrinkage strain 
are in Eq. (5-3) and (5-4),
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εshu = Ultimate Shrinkage Strain = 347μ

α = Air Content Expressed as Percentage = 1.0

f = Number of Days = 35

The variables f and α, are considered constants for a given member shape and size. The 

creep coefficient time function and the creep coefficients are shown in Eq. (5-5) and (5-6), 

where,

ϕu = Ultimate Shrinkage Strain = 2.35γc 

γc = Unit Weight of Concrete = 146 lb/ft3 

Ψ = Fine Aggregate Percentage = 0.6 

d = Number of Days = 10

5.1.2 Bazant-Baweja B3 Model

The B3 Bazant-Baweja model is the latest variant in a number of shrinkage and creep 

prediction methods developed. This current model derives from a simpler and more theoretically 

justified version than previous models and is based on a mathematical description of over 10 

physical phenomena affecting creep and shrinkage (Bazant 2000). This particular model has 

been found to be useful for those dealing with complex as well as simple structures. The 

compliance function is utilized to reduce the risk of errors due to inaccurate values of the elastic 

modulus. The factors taken into account include age of concrete when drying starts, age of 

concrete at loading, aggregate and cement content, cement type, concrete mean compressive 

strength at 28 days, curing method, relative humidity, shape of specimen, volume-surface ratio, 

and water content in concrete. The mean shrinkage strain and shrinkage time function are 

calculated by Eq. (5-7) and (5-8), 

where,

t = Age of Concrete (days)
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tc = Start of Drying (days)

εsh∞ = Ultimate Shrinkage Strain = -779μ

kh = Ambient Relative Humidity Factor

5(t- tc) = the time curve

(t — tc) = is the time from the end of the initial curing 

τsh = shrinkage half time given in days

The compliance function for basic creep is given by Eq. (5-9),

5.1.3 CEB MC90-99 Model Solution

The CEB MC90-99 model is a revised version that takes into account both normal and 

high-strength concrete. In terms of creep and shrinkage-sensitive structures, this method is more 

widely used over the ACI 209R-92 model. However, the correction term used for relative 

humidity in the creep equation is extremely sensitive to any variation in relative humidity. This 

method requires the age of concrete when drying starts and at loading, concrete mean 

compressive strength at 28 days, relative humidity, volume-surface ratio, and cement type. 

It must be noted that European models were considered when optimizing the model, meaning 

that the model underestimates the shrinkage of North American concretes, and substantially
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underestimates the shrinkage of concretes containing basalt aggregates (ACI 2008). The 

shrinkage strain and shrinkage time function are calculated by Eq. (5-10) and (5-11), 

where,

The creep coefficient and creep coefficient time function are calculated by Eq. (5-12) and (5-13),

where, 

βΗ = Relative Humidity Adjustment Factor = 570.445

φ0 = Notional Shrinkage Coefficient = 2.524

t0 = Age of Loading = 14 Days

5.1.4 GL2000 Model Solution

The GL2000 model was developed by Gardner and Lockman (2001) and is a 

modification made to conform to the ACI 209 model guidelines. The model is convenient to use 

because other than compressive strength, it only requires input data that are available to the 

engineer at time of design. The method requires age of concrete when drying starts and when 

loaded, relative humidity, volume-surface ratio, cement type, and concrete mean compressive 

strength at 28 days. The shrinkage strain and shrinkage time function are calculated by Eq. (5

14) and (5-15),
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where,

εshu = Ultimate Shrinkage Strain = 867μ

β(h) = Ambient Relative Humidity Factor = 0.717

The basic creep coefficient is calculated by Eq. (5-16),

5.1.5 AASHTO LRFD Model Solution

The AASHTO LRFD Model was utilized as a basis for calculation since they are one of 

the more major influences when it comes to design characteristics of pre-stress loss. The 

shrinkage is calculated using Eq. (5-17) while the creep coefficient and compliance derive from 
Eq. (5-18) and (5-19) as follows;

where,

kshape = Volume-Surface Factor 

khc = Humidity Factor for Creep 

khs = Humidity Factor for Shrinkage 

kf = Concrete Strength Factor 

keva = Time Development Factor 

tini = Age at Loading

Ecmto = Measured Mean Elastic Modulus
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5.1.6 Model Graphical Comparison

The five models were used to predict the total strain of the indoor and outdoor frames. 

The total strains were calculated from the loading day (14 day) to 365 day based on the measured 

material properties. All required parameters used in the models were from the concrete mix 

design document and test results in the present study. Table 5-2 shows selected material 

properties used in the models.

Table 5-2: Selected Parameters in the Models

Parameter Value Remark
unit weight of concrete γc =152 Pcf concrete mix document

Concrete compressive 
strength

f'c = 8000psi specified 28day strength
fc_14d = 8654Psi measured 14day strength

fc 28d = 9119 Psi measured 28day strength

Elastic modulus
Ec 14d = 5727643 Psi measured 14day modulus
Ec 28d = 5915679Psi measured 28day modulus

Relative humidity
RH=0.4 Indoor frame

RH=0.686 Outdoor frame
Volume-surface ratio 1.3 in. 6"×12" cylinder

Stress applied
fstart = 2829Psi initial load (80kips)
fend = 2476Psi final load (70kips)

Figure 5-1 shows the total strains calculated from the models with measured total strains 

for the indoor frame. A relative humidity of RH=0.4 and an applied stress of fstart = 2829psi are 

used in the models. The ACI model has values exceeding the others until day 50, showing that it 

is more sensitive in short term shrinkage measurements indoors. It is also noted that in the 

shrinkage comparison the values until day 28 are zero for all except the GL2000, this is because 

the difference in the age of concrete at loading being 7 days versus 28 days. For shrinkage 

strains, after the initial changes settle out, the models seem to have a similar trend line over long 

terms, except the GL2000 with a slightly steeper trend. The measured total strains match well 
with the CEB MC90-99 model. Also the AASHTO LRFD model has the smallest slope so that 

long-term prediction from this model is substantially smaller than others.
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Figure 5-1: Total Strain Comparison (Indoor, 80kip)

In Figure 5-2, total strains from the models are compared with the measured strains. A 

relative humidity of RH=0.686 and an applied stress of fstart = 2829psi are used in the models. 

The Bazant-Baweja B3 model can be seen as underestimated while the GL2000 models show a 

closer trend as time goes on. The two that are most related are the ACI 209-92 and GL2000 

model, which are seen as a more conservative estimation short term. Specifically, the measured 

total strains match well with the ACI 209-92 model in a wide range.

Figure 5-2: Total Strain Comparison (Outdoor, 80kip)
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Figures 5-3 and 5-4 represent the range of 70k to 80k that each model predicts, to show 

the range of measured values during testing.

Figure 5-3: Total Strain Comparison (Indoor, 80 kip+70 kip)

Figure 5-4: Total Strain Comparison (Outdoor, 80 kip+70 kip)
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In Figures 5-5 and 5-6, total strains are estimated for the entire 75-year design life 

expectancy of a DBT bridge girder. The relative humidity values are 0.4 and 0.686, respectively, 

and the applied stress is fstart = 2829psi for both. Excluding the AASHTO LRFD model 

prediction, it is revealed that the indoor comparison ranges from approximately 2,000 to 3,100 

micro strain, while the outdoor comparison ranges from approximately 1,600 to 2,300 micro 

strain. It should be noted that the CEB MC90-99 model was the best fit with the measured data 

for 365 days, and it was the ACI 209-92 model for the outdoor frame case.
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Figure 5-5: Indoor 75-year Prediction Model Comparison



Figure 5-6: Outdoor 75-year Prediction Model Comparison

5.2 Pre-Stress Loss Due to Concrete Creep

In this section, the pre-stress loss due to concrete creep is calculated and compared. 

Specifically, pre-stress loss from the following three methods are compared.

• 2004 AASHTO LRFD Refined method

• 2017 AASHTO LRFD Refined Estimation
• 2017 AASHTO LRFD Refined Estimation with a modification of creep 

coefficient from the ACI 209-92 model.

From the comparison with measured total strains, the ACI 209-92 model was the best 

match in the outdoor frame case. Therefore, the concrete creep coefficients from the ACI 209-92 

model were replaced with the ones in the 2017 AASHTO LRFD method.

The overall pre-stress loss estimation must utilize the specific structures properties in 

terms of geometry and not use the general values. Thus, the section properties of the Tulsona 

Creek DBT Girder based on the approved submittal can be found in Figure 5-7 for a real life 

comparison of the pre-stress loss expected. In addition, Table 5-3 shows major input parameters 

used in concrete creep prediction.
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Figure 5-7: Section Properties of Tulsona Creek DBT Girder

Table 5-3: Selected Parameters in Tulsona DBT Girder

Parameter Value Remark
unit weight of concrete γc =153 Pcf concrete mix document

Concrete compressive 
strength

f'c = 7500 psi specified 28day strength
f'cf = 6250 Psi at force transfer

Elastic modulus Eci =5143000psi at force transfer
Relative humidity RH=0.7 AASHTO LRFD

Volume-surface ratio 3.72 in. DBT girder
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Table 5-4 shows the pre-stress loss due to concrete creep estimated from the three 

methods. The value from the 2004 AASHTO method is significantly larger than the others. The 

2017 AASHTO method with ACI 209-92 creep coefficients estimates a larger loss when the 

bridge is in service, which matches well with the measured total strains in the present study.

Table 5-4: Comparison of Pre-Stress Loss Due to Concrete Creep in Tulsona DBT Girder

Method 0 - Bridge Completion - 75 years Total
2004 AASHTO NA NA 33.9 ksi

2017 AASHTO 10.1 ksi 5.7 ksi 15.8 ksi
2017 AASHTO + 
ACI Creep Coeff. 10.7 ksi 9.1 ksi 19.8 ksi
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Chapter 6 Summary and Conclusions

6.1 Summary

Proper estimations of the behavior of concrete pre-stress loss in cold temperatures 

directly effects many areas of the country, and the current resources are incomplete to ensure 

accuracy. Therefore, concrete cylinders were made at AggPro in Anchorage, where girder 

fabrication is done, and brought to Fairbanks. The cylinders were stored in a lime bath at 

ADOT&PF Regional Lab and tested for strength and elastic modulus at various days to get a 

baseline behavior of the concrete. After 14 days, the cylinders were prepped with gauge plugs, 

two pairs on each specimen, and a thermistor and ready for analysis. Thus, two 6”x12” concrete 

cylinders, loaded to roughly 80,000 pounds with a hydraulic jack, were left in the outdoor 

Alaskan environment for one year to be compared to an indoor control set up to measure the 

differences in creep and shrinkage for future concrete construction applications in the extreme 

climate. A load cell monitored stress while a weather station, thermometer, and thermistor 

measured ambient and internal temperature of the concrete specimens. After unloading, all 

specimen measurements were graphed for concrete creep and shrinkage to identify the total pre
stress loss. Model comparisons from ACI 209R-92, CEM MC 90-99, GL 2000, and Bazant- 

Baweja B3 were all compared for a best fit analysis for 1 year and 75 years. Section properties 

were then obtained for a full scale DBT girder in Tulsona Creek that whose values were inputted 

into the models for a real-life situation.

6.2 Conclusion

Since Alaska bridge construction consists mostly in the summer season and that evidence 

shows that the majority of the concrete creep takes place within the first 6 months of placement, 

the winter season should have somewhat minimal effects on the short term creep. However, as 

the wildly fluctuating winter's cold and summer heat may have more of an effect for the long 

term creep. The prediction models are not able to accurately predict this long term creep as the 

relative humidity and temperature are constantly shifting in real life, but are set as one correction 

factor for evaluation.

It was observed that the natural environment including the ambient air temperature and 

relative humidity is a big factor in the extent of creep and shrinkage. This is displayed in the 
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differences of ambient versus internal temperature of the outdoor apparatus. It can be seen from 

Figure 4-35 that after roughly 80-100 days when the ambient temperature reaches zero degrees, 

the creep almost stops. This is evidence that the ambient temperature is directly related to the 

amount of shrinkage and creep within the concrete specimens. Thus, for areas that are more 

represented by the parameters of the indoor specimen, the ACI 209R-92 or the CEB MC 90-99 

models may be the best selection based on the 1 year prediction from Figure 5-3. Whereas areas 

that are more prone to big variations in temperature and relative humidity may want to refer to 

the predictions representing the ambient environment for predicting pre-stress loss.

6.3 Implications and Future Studies

The future work regarding concrete shrinkage and creep should be handled with more 

control over the ambient temperatures to get more quantifiable results of their differences similar 

to the model predictions. This could be accomplished by placing an apparatus in a cold room 

where the temperature and relative humidity are maintained throughout the experiment. An 

additional suggestion would be to load the concrete specimens in the frame earlier than 28 days, 

a week should be enough time to allow the concrete to harden sufficiently but also allow more 

movement after loading. This method would display variances of the age when concrete is 

loaded compared to the creep that it contains short term and long term. The number of specimens 

that were utilized for this experiment were few and a more accurate representation of the values 

could be obtained with more frames and in varying locations.
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