
COMPARISON OF BLOOD PARAMETERS ASSOCIATED WITH EXERCISE AND 

THE TOTAL ANTIOXIDANT POWER IN SLED DOGS SUPPLEMENTED WITH

BLUEBERRIES

A

THESIS

Presented to the Faculty 

o f the University o f Alaska Fairbanks 

in Partial Fulfillment o f the Requirements 

for the Degree o f

MASTER OF SCIENCE

By

Kriya L. Dunlap, B.S.

Fairbanks, Alaska 

December 2003

r < &

no
d 8 ( ,

5 L0 0 3

ftJCSmwCF UBRASY 
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A bstract

Oxidative damage from free radicals plays an important role in several diseases 

such as cancer, A lzheim er’s disease, and heart disease. Research indicates that exercise 

may contribute to oxidative stress. Fruits, such as blueberries, are good antioxidants 

because they contain phenolics that preferentially react with free radicals. Maintaining 

antioxidant levels by supplementing the diet with blueberries may prevent exercise- 

induced oxidative damage. Additionally, oxidative damage from exercise can 

temporarily suppress the immune system. The goal o f our study was to compare 

antioxidant levels in sled dogs supplemented with blueberries.

Total antioxidant power (TAP), haptoglobin, isoprostane and other blood 

parameters were measured in plasma samples from racing sled dogs before exercise, 

post-exercise, 24 hours post-exercise, and 48 hours post-exercise. Though isoprostane 

levels did not change throughout the study, creatine kinase levels increased post-exercise 

for all exercise dogs regardless o f blueberry supplementation. Conflicting data makes it 

unclear as to whether blueberry supplementation reduces muscle damage, adding 

confusion to the lack o f sound antioxidant data available for dogs. Regardless, dogs fed 

blueberries had a significantly higher TAP than control post-exercise. This suggests that 

dogs fed blueberries while exercising as compared to dogs fed a control diet while 

exercising, may be better protected against oxidative damage.
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Chapter 1 

INTRODUCTION

While exercise has many benefits (Clyman, 2001; Kell et al., 2001; Elphick et al., 

2003) strenuous exercise produces free radicals, which increases Reactive Oxygen 

Species (ROS) in athletes (Clarkson and Thompson, 2000; Mastaloudis et al., 2001).

Free radicals, including those containing oxygen atoms, have an unpaired electron and 

are very reactive with other molecules (Stadtman ER, 1996; German JB, 1998; Halliwell, 

2002). The production o f free radicals and consequent oxidative damage is associated 

with an increased risk o f hyperlipidaemia, hyperalbunminaemia, ischemic heart disease 

(Dogra et al., 2001; Drew et al., 2001; Block et al., 2002), cancer and other 

cardiovascular diseases related to aging (Joseph et al., 1999; Bickford et al., 2000). 

Mammals have both endogenous and diet related protective molecules, called 

antioxidants, which scavenge excess free radicals. Common antioxidants are ascorbic 

acid, melatonin, glutathione, biliverdin, and vitamin E. If  there is a depletion o f the 

antioxidant defense system or an increase in radical production, lipid peroxidation and 

subsequent cell damage occur (Balakrislunan and Anuradha, 1998; Block et al., 2002; 

Lesgards et al., 2002). Several studies have shown that supplementing the diet with 

antioxidant rich foods can significantly reduce oxidative stress (Baskin et al., 2000; 

Clarkson and Thompson, 2000; Block et al., 2002; Morrow, 2002).
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Exercise induced oxidative damage has been reported in a number o f species, 

including horses (Hargreaves et al., 2002; Kirschvink et a]., 2002), dogs (Baskin et al., 

2000; Piercy et al., 2000), and humans (Balakrishnan and Anuradha, 1998; Mastaloudis 

et al., 2001). In human athletes preparing for a marathon, a 10 to 20-fold increase in 

whole body oxygen consumption and a 100 to 200-fold increase in oxygen uptake by the 

active skeletal muscle was observed. Normal oxygen metabolism in aerobic organisms 

results in an increase in the production o f free radicals because o f an inherent inefficiency 

in electron transport and cytochrome oxidase in the mitochondria. (Mastaloudis et al.,

2001).

4H+ 4H+ 2H+
Intermembrane
space

Inner
mitochondrial
membrane

IV Matrix

NADH V iO ;+ 2H*

H;0

Figure 1.1. The movement o f electrons through the Electron transport chain from 

NADH to O 2 . Electrons are transferred between Complexes I and III by coenzyme Q (Q) 

and between Complexes III and IV by cytochrome c. Complex II is not shown, but it 

transfers electrons from succinate to coenzyme Q.



The ROS generated by exercise is derived from the electron transport chain 

(Figure 1.1) in the mitochondria o f activated phagocytes at the sites o f muscle damage 

(Baskin et al., 2000). The leakage o f electrons from the mitochondrial electron transport 

chain modifies DNA, membrane lipids, and proteins, especially the iron containing 

proteins. ROS also disrupt calcium homeostasis (Floffman et al., 1997; German, 1998; 

Mastaloudis et al., 2001).

Fruits and vegetables are good antioxidant supplements because, not only do they 

contain Vitamin C and E, but also phenols and polyphenols (Figure 1.2). These types o f 

molecules preferentially react with free radicals and are responsible for most o f the fruit’s 

antioxidant capacity (Swanson, 1998; Javanovic, 2000; Prior and Cao, 2000; Fuhrman, 

2002; Kay and Holub, 2002; Lesgards et al., 2002). Variations exist in the ability o f 

certain phenolic antioxidants to scavenge free radicals (Javanovic, 2000; Fuhrman, 2002).

O
HO

\ \
OH

O

Figure 1.2. Structure o f the phenolic acid, Ellagic acid found in 

blueberries.



In a study looking at several neuronal and behavioral parameters, Joseph et al.

(1999) compared rats with age related deficits fed aqueous extracts o f blueberries, 

strawberries and spinach. The antioxidant benefits were exhibited for all the 

supplemented groups, but rodents supplemented with blueberries revealed the most 

dramatic benefits (Joseph et al., 1999). They suggested that the interactions between 

flavanoids (Figure 1.3) and other phytochemicals in blueberries contribute to their 

augmented capacity as an antioxidant. The polyphenols and flavanoids, thought to be the 

most important antioxidant components in blueberries (Fuhrman, 2002; Kay and Holub,

2002), like Vitamin E and C, are not restricted to preserving or repairing membrane 

integrity, but have numerous antioxidant roles. Functioning as reducing agents, as 

hydrogen atom-donating antioxidants, as singlet oxygen quenchers, and even as metal ion 

chelaters (Fuhrman, 2002), flavanoids and polyphenols are capable o f helping repair any 

damaged DNA base or protein amino acid (Javanovic, 2000).

Figure 1.3. Structure o f the flavanoid, Flavanol found in the family Ericaceae.

Racing sled dogs are excellent models for studying health effects related to 

exercise. Much o f their biochemical and endocrine mechanisms are similar to humans

i



(Kararli, 1995; Felsburg, 2002), yet their basal metabolic rate and energy expenditure is

3-8 times greater (H inchcliff et al., 1997). This increased volume o f oxygen entering the 

mitochondrial electron transport chain, compounded with the added stress o f exercise, 

makes racing sled dogs extremely prone to oxidative stress and ideal models for studying 

exercise induced oxidative damage.

Canine athletes rely more heavily on lipid metabolism because o f their elevated 

energy requirements, rather than carbohydrate metabolism as in human athletes (Kronfeld 

et al., 1977; Downey, 1980; Reynolds et al., 1994). Kronfeld et al (1977) found that dogs 

do not share the same deleterious health risks associated with a high fat diet as humans 

do. Nonetheless, a high fat diet increases the propensity o f  fatty acid oxidation. Because 

o f the implications o f  a high fat diet, Kay et al (2002) tested the serum antioxidant levels 

in humans fed a high fat diet with a blueberry supplement and found that, indeed, test 

subjects with the blueberry supplement had higher serum antioxidant status compared to 

a control group.

In racing sled dogs fed a diet high in vitamin E, /3-carotene, and lutein, Piercy et al

(2000) reported no protection by these antioxidants against muscle damage, as judged by

creatine kinase levels in the blood. In a previous study they did observe an increase in 

resistance o f  lipoproteins to oxidative damage and a reduction in exercise-induced 

oxidative damage o f  DNA in dogs supplemented with Vitamin E (Baskin et al., 2000). 

Vitamin E (alpha-tocopherol) is known to scavenge peroxyl radicals in human athletes 

and inhibit the production o f superoxide molecules (Mastaloudis et al., 2001).

i
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Repetitive exercise is associated with an increase in plasma isoprostanes 

(Hinchcliff et al., 2000; Mastaloudis et al., 2001), as well as an increase in plasma 

creatine kinase (CK) levels (an indicator o f muscle damage) (Roberts, 1979; Hinchcliff et 

al., 2000; Hargreaves et al., 2002). A sled dog race is a multiple day event at a very high 

intensity and it is expected that these dogs are at an increased risk o f oxidative damage 

(Hinchcliff et al., 2000).

In order to quantify the oxidative damage caused by exercise in racing sled dogs, 

the plasma isoprostane levels may be examined. Isoprostanes are prostaglandin like 

compounds, created by the free radical attack on esterified arachidonic acid (Fig. 1.4.) in 

the cell membrane (Fig. 1.5) (Pratico et al., 2001; Halliwell, 2002; Morrow, 2002). After 

damage, isoprostanes are clcavcd from the lipid by a phospholipase. Then they enter and 

circulate in the plasma, eventually being excreted in urine. The biological activity o f 

isoprostanes, both in vitro and in vivo, suggest that they act as mediators o f the cellular 

effects o f oxidative stress (Morrow et al., 1995; Hoffman et al., 1997; Stein and Leskiw, 

2000; Pratico et a l ,  2001; Dillon et al., 2002; Morrow, 2002). In fact, Morrow et al 

(1995) demonstrated that F2 -isoprostane levels were a better indicator o f lipid 

peroxidation than malondialdehyde, a widely used assay.

 ̂ CO vH

1.1 Isoprostanes

Figure 1.4. Arachidonic acid.
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OH

Isoprostane

Figure 1.5. Free radical (FR) attack o f arachidonic acid in the cell wall results in the 

release o f an isoprostane.

As mentioned previously, sled dogs are maintained on a high fat diet and thus 

have elevated levels o f free fatty acids (Kronfeld et al., 1977; Downey, 1980; Reynolds et 

al., 1994). Isoprostanes can be formed by the autoxidation o f purified polyunsaturated 

fatty acids (Morrow, 2002). It is, therefore, likely that sled dogs will have elevated 

plasma isoprostane levels due to the enhanced opportunity for fatty acid oxidation. 

Antioxidant rich diets have been shown to inhibit the formation o f isoprostanes in animal 

models under oxidative duress (Morrow, 2002). In the current study, plasma Fj— 

isoprostane levels were measured to determine whether a diet supplemented with 

blueberries would attenuate lipid peroxidation during and after exercise in racing sled 

dogs.
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Creatine kinase (CK) is the enzyme responsible for transferring the high-energy 

phosphate bond from creatine phosphate to adenosine diphosphate (ADP) to yield 

adenosine triphosphate (ATP) (Roberts, 1979). When an organelle that contains CK, 

such as the cytosol or inner mitochondrial membrane o f myocytes are disrupted, CK 

leaks from the cell into the circulatory system (Roberts, 1979; Hargreaves et al., 2002). 

Elevated CK levels are associated with shock, myxedema, pulmonary emboli, 

pneumonia, radiotherapy, chronic lung disease, surgery, and exercise (Roberts, 1979).

Piercy et al (2000) used plasma CK levels as an index o f muscle damage in sled 

dogs, resulting from lipid peroxidation after a 58 km run. They did not observe 

protection against muscle damage in sled dogs supplemented with vitamin E as compared 

with control dogs. However, Hargreaves et al (2002) reported a correlation between 

antioxidant status and CK levels in endurance horses. Other investigators have also 

reported elevated CK levels in the blood after exercise (H inchcliff et al., 1993; Fallon et 

al., 2001; Evans et al., 2002). In the current study we used plasma CK levels as a 

biomarker for muscle damage.

1.2 Creatine Kinase
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The advantageous properties o f blueberries, as a supplement, are that they are not 

only limited to oxidative relief. Blueberries may produce other beneficial effects 

involved in the immune system. The phenolic compounds in blueberries have been 

shown to promote membrane fluidity, antagonize arachidonic acid transport, and suppress 

the 5-lipoxygenase pathway, thus reducing inflammatory responses (Joseph et al., 1999).

The stress o f  exercise can cause temporary suppression o f the immune system 

(Shephard et al., 1998; Fallon et al., 2001). The measurement o f certain plasma proteins, 

associated with the acute-phase response (APR), is often used to evaluate immune 

function (Duffy, 1996; Zenteno-Savin et al., 1997). Levels o f APR proteins such as 

haptoglobin and albumin can be affected by psychological, environmental and physical 

stress (Duffy, 1996; Zenteno-Savin et al., 1997; Fallon et al., 2001). A significant stress 

stimulates the liver to increase the synthesis and secretion o f APR proteins (Duffy, 1996).

Typically, in an animal experiencing the APR, Haptoglobin (Hp) levels will be 

elevated and albumin levels will be depressed (Duffy, 1996; Fallon, et al., 2001; Zenteno- 

Savin et al., 1997). Albumin also acts as a protein antioxidant (Dogra et al., 2001). 

Oxidative stress implicated in coronary heart disease may be a result o f 

hypoalbuminaemia (Dogra et al., 2001). Both plasma haptoglobin and albumin levels 

were determined as a surrogate monitor o f the immune system in the present study.

1.3 Haptoglobin, Albumin, and Acute Phase Proteins
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The overall capacity o f  blood constituents to quench free radicals is often 

determined by using biochemical assays, which measure the ability o f a sample to reduce 

a specific oxidant (Piercy et al., 2000; Guohua, 2002; Lesgards et al., 2002). These 

assays do not measure specific antioxidants, but can give insight into the anim al’s overall 

antioxidant defense system. Lesgards et al (2002) used such an assay in determining 

various lifestyle factors on overall antioxidant levels in the blood. They found that 

people who ate a diet high in fruits and vegetables had greater antioxidant protection that 

people who had a diet deficient in fruits and vegetables.

Uric acid is a common biological antioxidant that is frequently measured as an 

indicator o f antioxidant status (Piercy et al., 2000; Mastaloudis et al., 2001; Kirschvink et 

al., 2002). In many o f the antioxidant capacity assays, including ours, it is used as a 

standard in which the samples are compared. Blood levels o f uric acid generally increase 

as a result o f exercise (Piercy et al., 2000; Mastaloudis et al., 2001). Mastaloudis et al 

2001 postulates that this phenomenon is likely due to the increased rate o f ATP 

catabolism.

1.4 Total Antioxidant Power and Uric Acid

AMP ►Adenosine >• Hypoxantine ► Xanthine ► Uric Acid

Figure 1.6. Purine catabolism.



The overall purpose o f this study was to observe if supplementing the diet o f 

racing sled dogs with blueberries would attenuate exercise-induced muscle damage. Our 

results reveal conflicting evidence. Many parameters associated with oxidative stress 

were not affected by blueberry supplementation, yet over-all antioxidant status was 

elevated in blueberry supplemented dogs.
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Chapter 2 

MATERIAL AND M ETHODS

2.1 Sled Dogs

The Institute o f Animal Use and Care Committee at the University o f Alaska 

Fairbanks approved this study. The dogs that were used in this study were typical racing 

sled dogs owned by Dave Monson and Susan Butcher o f Trail Breaker Kennel. Thirty- 

six dogs, designated as the study dogs, were separated by the kennel owners into 3 equal 

groups, balanced for age, sex and ability (Table 2.1.). The 3 groups were, control (CON), 

runners (RUN), and blueberry (BLU). Ages for the dogs ranged from 1 to 12 years. A 

total o f Twenty-one females and 15 males entered this study, 3 o f  which were not 

sexually intact (2 females and 1 male). One dog was eliminated from the RUN group 

prior to the termination o f the study due to a foot injury. Housing arrangements consisted 

o f 2-m chains on which the dogs were tethered for the duration o f the study (8 weeks). 

Each dog had access to his or her own house. For the 2 months prior to the onset o f this

4-day study, all 36 dogs were housed at a kennel on the property o f Trail Breaker Kennel 

in Fairbanks, Alaska. Ambient temperatures during the 2 months o f the study ranged 

from 10°C to 25°C. The temperature was 10°C on both days that the dogs exercised 

(August 9th and 10th).



T able 2.1. Study dogs listed alphabetically with their corresponding group, age, 

sex and ability. Ability was rated on a scale o f  1-3: 1 is above average, 2 is average, and

3 is below average

DOG G RO U P AGE SEX ABILITY
Blue CON 1 M 3
Casey CON 4 M 1
Cowlick CON 5 F 1
Duter CON 1 M 1
Harrison CON 1 M 3
Hepsaba CON 1 F 1
Lacey CON 4 F 2
Mas CON 12 p* 1
Muskrat CON 7 M 2
Ra CON 1 F 2
Rocky CON 4 M 3
Sophia CON 1 F 3
AVERAGE 3.5 50%M 1.9
Ajax RUN 1 M 1
Alta RUN 4 M 2
Bella RUN 1 F 3
Belock RUN 1 M 2
Birch RUN 4 M 1
Flag RUN 5 M 2
Nellie RUN 1 F 2
Nenana RUN 5 p* 2
Pheobe RUN 3 F 1
Rosier RUN 1 F 3
Tisbury RUN 1 F 2

2.5 45.5%M 1.9
Brook BLU 1 F 2
C anyon BLU 3 F 3
Diomede BLU 1 F 1
Indi BLU 1 M 1
Kantishna BLU 2 F 2
Leeda BLU 2 F 2
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Mohogany BLU 2 M* 1
Orca BLU 1 F 2
Simon BLU 1 M 1
Spark BLU 2 M 2
Whaler BLU 1 M 2
Y utana BLU 5 F 2

1.8 41,6%M 1.8
* Indicates neutered animals 

2.2. Diet

The three groups were fed Purina Pro Plan Performance; with BLU group having 

a blueberry supplement. To insure that the dogs were acclimated to the diets, they were 

maintained on the diets for 2 months preceding the study. As stated, CON and RUN 

were fed a standard high energy, high protein commercial diet (Table 2.2.). BLU were 

fed the same diet, but 2% (about 20g) o f their diet by weight was supplemented with wild 

organic blueberries from Oregon (Table 2.3.). A measured amount o f food 

(approximately 1 lb day) was fed to each dog. The amount varied slightly throughout the 

study for each dog in order to maintain ideal body condition. Ideal body condition is 

defined as easily palpable ribs and vertebral spinal processes, with a slight depression 

between the wings o f the ileum (Laflamme, 1997; Reynolds et al., 1999). The dogs were 

fed once a day in the morning. During the actual experiment the dogs were fed 12 hours 

prior to exercise to insure that the dogs were in a post-absorptive state.
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Table 2.2. Nutrition facts and ingredients for Purina Pro Plan Performance (control diet).

Crude Protein 30.0%
Crude Fat 20.0%

Crude Fiber 3.0%

Moisture 12.0%

Linoleic Acid 1.8%

Calcium 0.9%

Phosphorus 0.7%

Ingredients: Chicken, com gluten meal, brewers rice, beef tallow preserved with mixed- 
tocopherols (source o f Vitamin E), ground yellow com poultry by-product meal, com 
bran, animal digest, egg product, dicalcium phosphate, potassium chloride, calcium 
carbonate, salt, choline chloride, L-Lysine monohydrochloride, zinc oxide, ferrous 
sulfate, vitamin supplements (E,A, B-12, D-3), riboflavin supplement, niacin, calcium 
pantothenate, manganese sulfate, biotin, thiamine mononitrate, folic acid, copper sulfate, 
pyridoxine hydrochloride, garlic oil, menadione sodium bisulfite complex (source of 
vitamin K activity), calcium iodate, sodium selenite.

Table 2.3. Nutrition facts for Safeway Select’s frozen wild organic blueberries.

Amount per serving (serving size 1 cup or 140 grams)
Carbohydrate 16 g

Fat 0 g
Protein less than 1 g

2.3. Exercise

All dogs were allowed only minimal exercise on their chains for 2 months 

preceding the study. Activity levels varied depending on the individual dog. During 

these 2 months, the experimental diet was administered. At the closure o f this adaptation 

period, the RUN and BLU groups were exercised 7 miles at 15 miles per hour for 2 

consecutive days. This speed and distance was chosen based on previous studies that
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determined that on average, 7 miles at 15 miles per hour is approximately 70% VO2  max 

for most sled dogs (Ordway et al., 1984). The exercise groups were run in 2 teams o f 8 

dogs and 1 team o f 7 dogs, in front o f an All Terrain Vehicle for consistency, with no 

relevance to which group they were in. CON dogs did not exercise.

2.4. Blood Sam pling

All dogs were bled before exercise (T 1), immediately upon their return (T2), 24 

hours post exercise (T3), and 48 hours post exercise (T4). Blood was drawn by 

venipuncture from the jugular into three 5 ml heparinized vacutainer tubes. Plasma was 

obtained by centrifugation at 2500 X g for 10 min, transferred into freezer vials, flash 

frozen in liquid nitrogen and stored at -70°C until they were analyzed.

2.5. Biochemical Analyses

The biochemical analyses, including haptoglobin, isoprostane, and total anti

oxidant power, were done at the University o f Alaska Fairbanks.

A commercial assay from Oxford Biomedical Research laboratory (#TA 01) was 

used to determine plasma total antioxidant power. In this assay, the ability o f all the 

antioxidants in the sample to reduce Cu to Cu was applied as an index o f the sample’s 

antioxidant capacity. The antioxidant concentrations o f the samples were then 

determined by further extrapolation from a standard curve developed from known
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concentrations o f uric acid. The procedure supplied w ith the assay was followed (Oxford 

Biomedical Research, 2001).

Plasma Isoprostane levels were determined by using a competitive inhibition 

assay, purchased from Oxford Biomedical Research laboratory (#EA 84). The 

isoprostane, 15-isoprostane F2t in the samples or standards competes with 15-isoprostane 

Fat conjugated to horseradish peroxidase (provided in the kit) for an antibody, specific for 

this isoprostane that is coated in the wells. When the substrate is added to the conjugate, 

a blue color forms in proportion to the amount o f conjugate bound, and inversely 

proportional to the amount o f sample or standard bound to the microplate. The directions 

supplied with the kit were followed, eliminating the solid-phase extraction step (Oxford 

Biomedical Research, 2002). To compensate for this missing step we ran duplicates of 

all samples, and duplicates o f samples that were spiked with an addition 12.5 ng/ml o f the 

provided standard. The extraction step allows for accurate quantification o f isoprostane 

levels, by reducing any matrix effects due to isoprostanes bound to proteins in the 

sample. Spiking the sample with a known concentration o f standard may not allow for 

specific values to be compared but allows for overall trends in isoprostane levels to be 

compared.

A commercial assay, purchased from Tri-Delta Diagnostics, Inc. (Phase 

Haptoglobin Assay), was used to determine plasma haptoglobin levels. Hemoglobin, like 

other heme-proteins, can catalyze the reduction o f hydrogen peroxide to water. The 

peroxidase activity o f hemoglobin is preserved by combining with haptoglobin. 

Haptoglobin levels in the samples and standards are directly proportional to the



peroxidase activity o f hemoglobin. Chromogen, supplied by the kit, detecting 

hemoglobin peroxidase activity exhibits a color in proportion to the amount o f 

haptoglobin present. The procedure supplied with the kit was followed (Tri-delta 

Diagnostics, 2001).

2.6 Clinical Analysis

Complete chemistry screens were performed at Fairbanks Memorial Hospital.

The values o f interest were albumin, albumin/globulin ratio, bilirubin, blood urea 

nitrogen/creatine ratios, creatine kinase and uric acid levels. All analyses were done on 

the samples at the same time, within one month o f collection. The raw data is contained 

in the appendix.

2.7. Statistical Analysis

All data was analyzed using SAS statistical software and found to be normally 

distributed. Analysis o f variance was used to analyze all the data to evaluate the effects 

o f treatment and exercise on blood parameters. Significant differences between treatment 

groups were analyzed further using the Tukey multiple comparison procedure.

Differences were considered significant at P <0.05.
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Chapter 3 

RESULTS

The blueberry group (BLU) and the runners (RUN) were compared to the control 

(CON) for each day in which blood was collected (T1,T2, T3, T4). In addition to eating 

only the control diet for the duration o f the study, CON animals did not exercise. For the 

isoprostane, total antioxidant power, and haptoglobin an entire blood collection day was 

run using one kit. This approach was used to reduce variability and reagent related 

differences. Therefore, comparisons were made only in relation to the CON group for 

that day, since CON samples should not vary greatly throughout the duration o f the study. 

Since we were unable to control for interassay variability the means for the CON dogs 

did change throughout the study.

Groups o f  dogs were compared using SAS statistical software as described in the 

methods. V arious tests were run on the values to ensure homogeneity o f variance, and 

normality. Analysis o f variance w'as performed on all the data followed by post hoc 

analysis using Tukey’s studentized range. Differences were considered significant at 

P <0.05.



20 

I
3.1. Isoprostanes

Isoprostane levels for BLU and RUN did not significantly differ from CON 

throughout the study. Each group showed an increasing trend compared to pre-exercise 

values. This non-significant trend peaked post-exercise and gradually declined toward 

control values at 48 hours post-exercise.

Isoprostane

exercise post- post
exercise exercise

m Control 
■ Runners 

a  Blueberry

Figure 3.1. Means and standard deviations o f  isoprostane levels for each group over the 

4 collection days.
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Interestingly, the mean values for RUN tended to be lower than CON or BLU

groups.

Table 3.1. Actual values (ng/ml) o f the means and standard deviations o f isoprostane

levels for each group over the 4 collection days.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 4.50 15.61 9.57 6.49
CON stdeva 9.07 18.16 19.51 13.45
RUN avg 0.62 11.63 2.62 1.65
RUN stdeva 1.30 21.79 6.97 4.65
BLU avg 4.95 19.49 10.70 7.58
BLU stdeva 8.67 18.92 17.52 13.52

3.2. Creatine Kinase

Creatine kinase levels for BLU and RUN groups were significantly higher than 

CON group post-exercise. BLU levels remained significantly higher than CON 24 hours 

post-exercise, returning to baseline by 48 hours post-exercise (Table 3.3).
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Figure 3.2. Means and standard deviations o f creatine kinase levels for each group over 

the 4 collection days.

The creatine kinase control dog’s mean values showed less variation during the 48 

hours o f the experiment than the isoprostane mean values. But, both BLU and RUN 

groups showed the biggest change post-exercise, followed by gradual decline to pre

exercise values at 48 hours post-exercise.
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Table 3.2. Actual values (U/L) o f the means and standard deviations o f creatine kinase 

levels for each group over the 4 collection days. Asterisks indicates significant difference

o f at least p^=0.05 using tukey’s studentized range.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 140.91 111 41* ** 115.33* 125.25
CON stdeva 61.42 27.66 36.53 61.36
RUN avg 140.18 286.54’ * 202.00 194,64
RUN stdeva 51.511 96.17 73.27 190.69
BLU avg 147.75 329.58* 244.08* 117.75
BLU stdeva 67.73 245.66 152.23 43.86

Blood Urea Nitrogen/ creatine kinase ratios (BUN/CK) for BLU and RUN did not 

significantly differ from CON throughout the study. A decrease following exercise was 

observed (Fig 3.3) with a return toward pre-exercise levels 48 hours post-exercise. As 

creatine kinase levels increased and decreased as seen in Fig 3.2, the ratios would be 

expected to change.
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BUN/CK Ratios

30 

0
Pre-exercise Post- 24 hours 48 hours

exercise post-exercise post-exercise

DJ Control 
■ Runners 

S Blueberry

Figure 3.3. Means and standard deviations o f BUN/CK ratios for each group over the 4 

collection days.

Since blood urea nitrogen can be an indicator o f the acute phase response as well 

as hydration status, it can be concluded that the stress was not extreme in these athletes.

T able 3.3. Actual values o f the means and standard deviations o f BUN/CR ratios for 

each group over the 4 collection days.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 28.47 16.33 15.05 19.23
CON stdeva 6.13 3.07 3.27 6.48
RUN avg 29.95 19.50 15.16 18.88
RUN stdeva 7.26 5.67 3.36 4.89
BLU avg 29.03 19.48 16.10 18.53
BLU stdeva 6.22 5.67 3.52 4.70
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Haptoglobin levels for BLU were significantly lower than CON post-exercise, 

but had returned to levels comparable with CON by 24 hours post exercise (Table 3.6.). 

No other mean haptoglobin levels deviated from CON for the length o f the study. The 

RUN group’s mean values also tended to be lower post-exercise. The BLU group 

displayed a better recovery by 24 hours post-exercise than the RUN group.

3.3. Haptoglobin, Albumin and Acute Phase Proteins

Haptoglobin

Pre-exercise Post- 24 hours 48 hours 
exercise post- post

exercise exercise

Figure 3.4. Means and standard deviations o f  haptoglobin levels for each group over the 

4 collection days.

In the acute phase response haptoglobin would be expected to increase. The lack 

o f a BUN response and the haptoglobin decrease shows that the exercise used in this 

experiment did not stress the dogs to the level o f an acute phase.
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Table 3.4. Actual values (mg, ml) o f the means and standard deviations o f haptoglobin 

levels for each group over the 4 collection days. Asterisks indicates significant difference 

o f at least p=0.05 using tukey’s studentized range.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 1.61 1.83* 1.51 1.71
CON stdeva 0.84 1.06 0.89 1.10
RUN avg 1.44 1,24 1.38 1.41
RUN stdeva 0.65 0.77 0.60 0.91
BLU avg 1.22 0.99* 1.46 1.58
BLU stdeva 0.45 0.42 0.31 0,48
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Albumin levels for BLU and RUN did not significantly differ from CON 

throughout the study. This also supports the lack o f an acute phase response.

ALBUMIN

Pre-exercise Post- 24 hours 48 hours 
exercise post- post

exercise exercise

Figure 3.5. Means and standard deviations o f  albumin levels for each group over the 4 

collection days.

Table 3.5. Actual values (gm/dl) o f the means and standard deviations o f albumin levels 

for each group over the 4 collection days.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 3.07 3.00 2.90 2.98
CON stdeva 0.37 0.30 0.30 0.28
RUN avg 3.13 2.96 2.93 2.86
RUN stdeva 0.31 0.29 0.35 0.27
BLU avg 3.20 3.05 3.06 3.06
BLU stdeva 0.25 0.18 0.22 0,24
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Albumin/ Globulin ratios for BLU and RUN did not significantly differ from 

CON throughout the study.

Album in/Globulin Ratio

IE C on tro l 
■  R unners 
e  B luebe rry

Pre- Post- 24 hours 48 hours 
exercise exercise post- post

exercise exercise

Figure 3.6. Means and standard deviations o f albumin/globulin ratios for each group 

over the 4 collection days.

Table 3.6. Actual values o f the means and standard deviations o f albumin/globulin ratios

for each group over the 4 collection days.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 0.91 0.91 0.90 0.95
CON stdeva 0.19 0.14 0.13 0.17
RITN avg 1.01 0.97 0.98 0.95
RLW stdeva 0.14 0.13 0.10 0.09
BLU avg 1.01 0.98 0.96 0.97
BLU stdeva 0.09 0.10 0.12 0.10

1.2
1

0.8
0.6
0.4
0.2
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Total antioxidant power for BLU post exercise was significantly higher than 

CON (Table 3.10). No other significant differences were observed between treatment 

groups at 24 or 48 hours post-exercise. Means 24 hours post-exercise were lower than 

other days. Each day was run on a separate kit, on a separate day to eliminate inter-assay 

variability. There is slight differences between kits and even unrecognizable changes that 

occur between laboratory sessions. Thus, comparisons can not be made between days.

3.4. Total Antioxidant Power and Uric Acid

Total Antiox idant Power

Post
exercise

24 hours 
post

exercise

48 hours 
post

exercise

Cl Control 

■ Runners 

s  Blueberry

Figure 3.7. Means and standard deviations o f total antioxidant power for each group 

over the 4 collection days.
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Table 3.7. Actual values (m M ) o f  the means and standard deviations o f  total antioxidant 

power for each group over the 4 collection days. Asterisks indicates significant 

difference o f  at least p=0.05 using tukey’s studentized range.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CO N  avg 0.20 0.18* 0.12 0.23
C O N  stdeva 0.06 0.05 0.03 0.09
R U N  avg 0.21 0.21 0.12 0.20
R U N  stdeva 0.13 0.06 0.05 0.06
BLU  avg 0.26 0.24* 0 15 0.19
BLU  stdeva 0.03 0.05 0.04 0.06



Uric acid levels for BLU and RUN were significantly higher than CON post 

exercise (Table 3.12). The mean uric acid values for the two exercise groups were not 

different from CON values for any o f the other time periods.

Uric Acid

5
5>
E
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1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0 m r n ^ . IH B P  H1BP=
Pre-exercise Post

exercise
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post
exercise
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post

exercise

m Control 
■ Runners 
S Blueberry

Figure 3.8. M eans and standard deviations o f uric acid levels for each group over the 4 

collection days.

The increase in uric acid post-exercise was dramatic in both the RLTN and BLLI. 

The BLU group displayed a smaller trend in uric acid levels as compared to RUN.
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Table 3.8. Actual values (mg/dl) o f the means and standard deviations o f uric acid levels 

for each group over the 4 collection days. Asterisks indicates significant difference o f at

least p=0.05 using tukey’s studentized range.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 0.20 0.20* ** 0.2 0.2
CON stdeva >E-08 >E-08 >E-08 >E-08
RUN avg 0,20 1.04** 0.2 0.2
RUN stdeva >E-08 0.61 >E-08 >E-08
BLU avg 0.21 0.86* 0.2 0.2
BLU stdeva 0.03 0.52 >E-08 >E-08

Bilirubin levels for BLU and RUN did not significantly differ from CON 

throughout the study.

Total Bilirubin

0.45 
0.4 

0.35 
_  0.3
5  0.25 
? 0.2

0.1 
0.05 

0

Pre-exercise Post- 24 hours 48 hours 
exercise post- post

exercise exercise

Figure 3.9. Means and standard deviations o f bilirubin levels for each group over the 4 

collection days.
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Table 3.9. Actual values (mg/dl) o f the means and standard deviations o f bilirubin levels

for each group over the 4 collection days.

Pre-exercise Post-exercise 24 hours post
exercise

48 hours post
exercise

CON avg 0.17 0.14 0.14 0.20
CON stdeva 0.10 0.12 0.07 0.19
RUN avg 0.15 0.22 0.18 0.20
RUN stdeva 0.07 0.17 0.18 0.22
BLU avg 0.19 0.21 0.13 0.14
BLU stdeva 0.09 0.07 0.05 0.05
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Chapter 4

DISCUSSION AND FUTURE DIRECTION

Supplementing young healthy sled dogs with blueberries failed to attenuate 

muscle damage caused by a period o f exercise at 75% VO 2 maximum. Creatine kinase 

levels, an indicator o f muscle damage (Roberts, 1979; Hargreaves et al., 2002), was 

significantly elevated after exercise in both exercise groups (RUN and BLU) regardless 

o f dietary supplementation w'ith blueberries. In fact, BLU remained significantly higher 

than control (CO N) 24 hours after exercise and though RUN also displayed an increased 

trend, the difference was insignificant. Interesting, mean creatine kinase levels for all 

groups remained inside the reference range (25-467 U/L) for dogs regardless o f exercise. 

Elevated creatine kinase levels in this case indicates that the exercise may have been 

severe enough to elicit some damage, but not enough to push creatine kinase levels 

outside the normal range. In addition, supplementing the diet with blueberries was not 

enough to combat this any stress that was accrued.

Another index o f muscle damage is elevated plasma and urine 15-isoprostane F2 t 

levels (Morrow et al., 1995; Hoffman et al., 1997; Stein and Leskiw, 2000; Pratico et al., 

2001; Dillon et al., 2002; Morrow, 2002). Isoprostanes are released when free radicals 

attack esterified arachidonic acid on the cell membrane allowing them to enter the 

circulatory system (Pratico et al., 2001; Halliwell, 2002; Morrow, 2002). Because o f the 

nature o f isoprostane formation they are a biomarker o f oxidative stress, and more 

specifically lipid peroxidation (Morrow et al., 1995; Hoffman et al., 1997; Stein and
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Leskiw, 2000; Pratico et al., 2001; Dillon et al., 2002; Morrow, 2002). Throughout the 

duration o f the study, no significant variations o f mean 15-isoprostane F2t levels were 

observed, although BLU and CON tended to be higher than RUN at ever> blood 

collection time.

There are two possible explanations for the isoprostane results not paralleling the 

creatine kinase patterns. One technical and one metabolic. The procedure included in the 

Oxford Biomedical assay called for an extraction process when using plasma samples to 

liberate any isoprostanes that may have been bound to proteins in the blood (Oxford 

Biomedical Research, 2002). In our assay we excluded this step and compensated for 

matrix effects by spiking each sample with a known concentration o f 15-isoprostane F2 t 

and compared these with unspiked samples. This modified procedure has been used by 

others. The means o f  spiked samples did not deviate significantly between groups. 

However, the trends observed for each spiked sample did not correlate well with the 

amount o f spike administered to each sample. This indicated that plasma matrix effects 

were significant and differed between dogs. H inchcliff et al (2000) applied a similar 

technique with the same assay. In the past few years, slight changes in the kit prevented 

a comparable approach to elicit positive results. We used the negative results for the 

unspiked data, which, due to high variability, yielded the same non-significant 

conclusion.

The second explanation is based on metabolic differences indicated by these 

biomarkers. If the isoprostane results are accurate, a plausible explanation for the lack o f 

change in isoprostane levels, at the same time as a remarkable increase in creatine kinase
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levels would indicate that the muscle damage produced during exercise was not caused 

by oxidative stress, but from some other stressor. Significantly higher total antioxidant 

power (TAP) for the blueberry supplemented group supports this idea. Both groups that 

exercised, BLU and RUN, experienced significantly higher creatine kinase levels post

exercise, yet only the BLLI group had significantly higher TAP than CON post-exercise. 

If  the observed muscle damage w as due to oxidative stress than theoretically the boosted 

circulation o f antioxidants in the blood should have partially offset the muscle damage, if 

blood levels reflect organ availability. However, BLU dogs experienced elevated 

creatine kinase levels for a longer period o f time than the RUN, extending 24 hours post 

exercise. The TAP o f the RUN did appear to exceed CON post exercise. This was likely 

a result o f significantly elevated uric acid levels for both the BLU and the RUN post 

exercise. Normal range for uric acid values in the dog is less than 0.4 mg/dl. Values for 

exercising dogs exceeded this range post-exercise. Bilirubin, also an inherent 

antioxidant, did not change for any group throughout the study, staying within the 

reference range for dogs (0.1-0.7 m g  dl). Poly phenols in blueberries were most likely 

responsible for the additional TAP for the BLU.

With its deep rich color, it is not surprising that blueberries are now heralded as 

one o f the leading antioxidants, both natural and synthetic. Just supplementing 2% o f the 

diet with blueberries is reported to prevent age related maladies associated with oxidative 

stress (Joseph et al., 1999). Joseph et al (1999) reported that the phenolic compounds in 

blueberries might inhibit inflammatory responses through various mechanisms. These 

benefits are probably due to a cocktail o f nutrients in a synergistic web that once
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unwound, may not provide the same integrity in individuals, if  components are fed 

separately. Evidence exists that compounds in blueberries may play a role in boosting 

the immune system. Markers associated with immune function for sled dogs 

supplemented with blueberries failed to significantly differ from control throughout the 

study. Albumin, albumin/globulin ratios, bilirubin, and blood urea nitrogen/ creatine 

kinase ratios remained stable and all within the reference range for dogs. Haptoglobin 

levels for the BLU group were significantly lower than CON post-exercise, though still 

within the reference range for dogs (0.3-3.5). Animals who experience an acute phase 

response are expected to display elevated levels o f haptoglobin (Duffy, 1996). The 

observed drop in haptoglobin may be acting as a marker o f red blood cell stress. 

Hemoglobin is released from lysed red blood cells and binds to haptoglobin, lowing 

haptoglobin levels.

The immune profiles for these dogs suggest that the exercise used in this study 

was not strenuous enough to elicit an acute phase response. Though it is tempting to 

speculate that the reduced haptoglobin for BLU was due to enhanced immune function, it 

is more likely due to hemolysis in the samples. Haptoglobin (Hp) is influential at 

blocking the exchange o f heme between methemoglobin and albumin by binding free 

hemoglobin (Hb) (Zenteno-Savin et al., 1997; Ben-David et al., 2001). Damage to red 

blood cells causes heme to be released, thus negatively effecting haptoglobin levels 

(Montgomery et al., 1980; Marks et al., 1996). Five plasma samples that were collected 

post-exercise appeared to be hemolyzed. Three o f the 5 were collected from blueberry 

dogs; the other groups each having one hemolized sample apiece.
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In our study, supplementing the diet with blueberries appears to increase the 

amount o f antioxidants available to the animal. The elevated level o f antioxidants, 

however, did not combat muscle damage associated with exercise as suggested by 

enhanced creatine kinase levels. In the future, a different method for assessing muscle 

damage caused by oxidative stress should be used in order to mechanistically evaluate the 

potential o f  blueberries in reducing exercise stress to cells. Further, it is necessary to 

have an exercise regime that will challenge the immune system in order to evaluate any 

benefits to the immune system obtained from blueberries supplementation.

Because o f  the many ad vantages o f using sled dogs as research animals, including 

large homogenous sample sizes, there is many directions that can be explored in the 

future. Sled dogs are often exposed to the same environmental hazards as humans in the 

extreme climate o f the circumpolar. This makes sled dogs ideal models for studying the 

effects o f environmental and nutritional toxins/influences on the immune system and 

subsequently the effects o f dietary intervention to compensate for any impairments. In 

many villages, natives still follow a subsistence lifestyle, exposing themselves to both 

climate and to many contaminants that have accumulated in the fish and game that they 

consume. The sled dogs in these villages are also maintained on indigenous food and 

therefore can be used as models for researching the effects that a subsistence diet might 

have on the immune system. One such study was performed in northern New York at 

Cornell University. It was suspected that the inhabitants o f a small town on the St. 

Law'rence River were exposed to dangerously high levels o f PCBs. The study involved 

feeding research dogs varying levels o f  PCBs and testing different parameter to find
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reliable biomarkers for PCB exposure. A kennel o f  sled dogs living on a reservation was 

maintained on fish from the river and were used as the first research subjects in a series 

o f work, studying the level and effects o f PCBs on the local people and animals (Korytko 

et al., 1999).

In the current study, blueberries were used as an antioxidant in combating muscle 

damage, but Joseph et al (1999) found that supplementing the diet o f rats with blueberries 

helped with deleterious cognitive functions associated with age. For eons people have 

anthropomorphized a dogs age with the familiar 7-year analogy for every 1-year o f a dog 

to equal that o f a human. Though the relationship is not entirely linear, age comparisons 

can be made between the two species (Felsburg, 2002). Therefore extrapolations can be 

made from immune profiles o f dogs corresponding to different age brackets. Cognitive 

tests and subsequent dietary interventions could provide valuable nutritional information. 

The ongoing search to find the fountain o f youth so that we cannot only live longer but 

healthier is forever propelling future research.
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Appendix. Plasma Analysis Data.

Table 1. Albumin values (gm/dl).

Dog Group T1 T2 T3 T4
Blue CON 3.1 3 3.1 3.2
Casey CON 3 3 2.8 2.8
Cowlick CON 3.1 3.4 3.1 3.5
Du ter CON 2.5 2.4 2.4 2.7
Harrison CON 2.4 2.4 2.3 2.8
Hepsaba CON 3.2 3.2 3.1 3
Lacey CON 3 3 3 2.8
Mas CON 2.9 3 2.8 2.8
Muskrat CON 3.2 3.1 3.1 2.8
Ra CON- 3.2 3.1 2.8 2.9
Rocky CON 3.4 3.2 3 2.9
Sophia CON 3.8 3.2 3.3 3.5
Ajax RUN 2.9 2.6 2.9 3.1
Alta RUN 2.7 2.7 2.2 2.4
Bella RUN 2.9 2.7 3.1 2.8
Belock RUN 2.8 2.6 2.5 2.6
Birch RUN 3.6 3.4 3.4 3.2
Flag RUN 3.4 2.9 2.8 3.1
Nellie RUN 3.5 3.2 3.2 3.1
Nenana RUN 3.1 3.3 3 2.8
Pheobe RUN 3.3 3.1 3.3 3.1
Rosier RUN 3.3 2.7 2.8 2.6
Tisbury RUN 2.9 3 3 2.7
Brook BLU 3.2 2.9 3.1 3.1
C anyon BLU 2.7 3.1 3 3.2
Diomede BLU 3.2 3.1 2.6 2.8
Indi BLU 3.2 3.2 3.1 2.8
Kantishna BLU 3.2 3 3.1 3.2
Leeda BLU 3.6 3.4 3.3 3.3
Mohogany BLU 3 2.9 3 2,8
Orca BLU 3.5 3.2 3.3 3.5
Simon BLU 3.5 3.1 3.2 3.2
Spark BLU 3.1 3.1 3.1 3.1
Whaler BLU 3 2.7 2.7 2.8
Yutana BLU 3.2 2.9 3.2 2.9



Table 2. Albumin/Globulin ratios.

Dog Group T1 T2 T3 T4
Blue CO N 0.9 0.9 0.9 1
Casey CO N 0.8 0,9 0.8 0.9
Cowlick CON 1.1 1.2 1.1 1.3
Duter CON 0.8 0.8 0.8 0.9
Harrison CO N 0.7 0.7 0.7 0.8
Hepsaba CON 1 1 1 1
Lacey CON 0.7 0.8 0.8 0.8
Mas CO N 0.7 0.8 0.8 0.8
Muskrat CO N 0.9 0.8 0.9 0.8
Ra CO N 1.1 1 1 1.1
Rocky CON 0.9 0.9 0.9 0.8
Sophia CON 1.3 1.1 1,1 1.2
Ajax RUN 0.9 0.9 1 1
Alta R U N 0.8 0.8 0.8 0.8
Bella R U N 1 0.9 1 0.9
Belock R U N 0,8 0.8 0.8 0.8
Birch RUN 1.2 1.1 1.1 1.1
Flag R U N 1.1 1 1 1
Nellie RUIN 1.2 1.1 1,1 1
Nenana R U N 1 1.2 1 1
Pheobe R U N 1 1 1 1
Rosier R U N 1,1 0.9 1 0.9
Tisbury R U N 1 1 1 1
Brook BLU 0.9 0.9 1 1
Canyon BLU 1 1 1 1
Diom ede B LU 1 1 0.8 0.9
Indi B LU 1.1 1 1 1
Kantishna BLU 1 0.9 0.9 0.9
Leeda B L U 1 0.9 0.9 0.9
Mohogany BLU 0.9 0.9 0.8 0.8
Orca BLU 1 2 1.1 1.2 1.2
Simon B LU 1,1 1.2 1.1 1
Spark B L U 1 1 1 1
Whaler B LU 1 0.9 0.9 1
Yutana B LU 0.9 0.9 0.9 0.9



Table 3. Total bilirubin (mg/dl).

Dog Group T1 T2 T3 T4
Blue CON 0.2 0.1 0.1 0.6
Casey CON 0.1 0.1 0.1 0.1
Cowlick CON 0.1 0.5 0.2 0.5
Duter CO N 0.1 0.1 0.1 0.1
Harrison CON 0.1 0.1 0.1 0.1
Hepsaba CON 0.1 0.1 0.1 0.1
Lacey CON 0.2 0.1 0.3 0.1
Mas CON 0.1 0.1 0.1 0.1
Muskrat CON 0.2 0.1 0.2 0.1
Ra CON 0.1 0.1 0.1 0.1
Rocky CON 0.3 0.2 0.2 0.1
Sophia CON 0.4 0.1 0.1 0.4
Ajax R U N 0.1 0 1 0.1 0.4
Alta RUN 0.2 0.1 0.1 0.1
Bella R U N 0.1 0.2 0.7 0.1
Belock RUN 0.3 0.2 0.1 0.1
Birch R UN 0.2 0.3 0.3 0.1
Flag RUN 0.1 0.2 0.1 0.8
N ellie R U N 0.1 0.1 0.1 0.1
Nenana R U N 0.1 0.7 0.1 0.2
Pheobe RUN 0.2 0.2 0.2 0.1
Rosier R U N 0,1 0.1 0.1 0.1
Tisbury R U N 0.1 0.2 0.1 0.1
Brook B LU 0.4 0.3 0.2 0.2
C anyon BLU 0.2 0.1 0.1 0.1
D iom ede BLU 0.2 0.3 0.1 0.1
Indi BLU 0.2 0.2 0.1 0.2
Kantishna B L U 0.1 0.2 0.1 0.2
Leeda B L U 0.2 0.3 0.2 0.2
M ohogany BL U 0.1 0.2 0.2 0.1
Orca B LU 0.3 0.2 0.1 0.2
Simon BLU 0.2 0.2 0.1 0.1
Spark BLU 0.2 0.2 0.1 0.1
Whaler B L U 0.1 0.1 0.1 0.1
Yutana B L U 0.1 0.2 0.1 0.1



Table 4. Blood urea nitrogen' creatine kinase ratios.

Dog G roup T1 T2 T3 T4
Blue CON 27 16.3 15 18.8
Casey CON 25.6 16,3 15 17.5
C owlick CON 27 21.3 16.7 21.1
D uter CO N 21.3 16.3 20 36.7
Harrison CON 25 12.9 12.5 22.5
Hepsaba CON 24.5 11.1 11,1 12.2
Lacey CON 38.8 20 17.1 17.1
Mas CON 23.3 16.3 12.2 18.8
Muskrat CON 25 14.3 11.4 12.9
Ra CON 35 17.5 17.8 21.3
Rocky CON 29.1 13.6 11.8 13
Sophia CON 40 20 20 18.8
Ajax RUN 42.2 23.8 16.3 25
Alta R U N 20 12.7 15.6 16.7
Bella R U N 36.7 24.3 18.6 20
Belock R U N 37.5 27.8 15.7 21.4
Birch R U N 22 16 13.8 14.4
Flag RU N 20 13.3 12.9 17.1
Nellie R U N 28.9 16.7 11.4 15.7
Nenana R U N 31.1 19 15 21.3
Pheobe RU N 32.2 15.6 13.3 15
Rosier R U N 31.1 28.6 22.9 28.6
Tisbury R U N 27.8 16.7 11.3 12.5
Brook BLU 40 23.8 18.6 21.4
Canyon BLU 13.8 15 18.8 28.9
Diom ede B LU 29 17.8 11 14.4
Indi B LU 32 24.5 17.8 17.8
Kantishna BLU 29 13.3 12.5 23.8
Leeda BLU 31.1 20 17.1 21.4
M ohogany B L U 33 18,8 14.4 18.8
Orca B LU 27.8 18.8 12.9 14.3
Simon B LU 30 24 17.5 18.8
Spark B LU 26.4 15,5 14.4 15
Whaler B L U 24 19 14.4 14
Yutana B LU 32.2 23.3 23.8 13.8



Table 5. Creatine kinase values (U/L).

Dog Group T1 T2 T3 T4
Blue CON 128 108 157 109
Casey CON 90 48 77 82
Cowlick CON 244 115 114 95
Outer CON 154 140 105 125
Harrison CON 282 125 82 148
Hepsaba CON 136 119 108 59
Lacey CON 84 83 105 248
Mas CON 124 109 91 78
Muskrat CON 90 101 98 89
Ra CON 115 135 129 244
Rocky CON 138 101 210 98
Sophia CON 106 153 108 128
Ajax RUN 185 283 298 250
Alta RUN 123 241 94 160
Bella R U N 139 305 229 185
Belock R U N 132 504 263 108
Birch RUN 183 375 324 750
Flag RUN 85 187 191 117
Nellie RUN 95 312 190 122
Nenana RUN 66 133 157 97
Pheobe RUN 240 270 98 73
Rosier R U N 176 276 193 168
Tisbury RUN 118 266 185 111
Brook BLU 135 182 140 83
Canyon BLU 243 589 419 196
D iom ede BLU 251 306 133 71
Indi BLU 92 283 143 87
Kantishna BLU 136 158 125 89
Leeda BLU 94 154 317 97
M ohogany BLU 173 715 354 185
Orca BLU 112 224 178 148
Simon BLU 137 823 604 144
Spark B LU 52 136 91 109
Whaler BLU 135 182 140 83
Yutana BLU 243 589 419 196



Table 6. Haptoglobin values (mg/ml),

Dog G rou p T1 T2 T3 T4
Blue CON 2.2 1.18 0.76 0.68
Casey CON 1.48 2.76 2.18 2.8
Cowlick CON 0.45 0.42 0.19 0.36
Duter CON 2.74 2.69 2.28 2.8
H am  son CON 2.4 2.89 2.28 2.9
Hepsaba CON 1.62 1,69 1 4 1.3
Lacey CON 0.52 2.87 2.47 2.82
Mas CON 1.27 2.49 2.27 1.9
Muskrat CON 0.56 1.67 1.52 1,6
Ra CON 1.1 0.21 0.19 0.34
Rocky CON 2.24 2.71 2.08 2.76
Sophia CON 2.69 0.33 0.44 0.25
Ajax R U N 0.89 0.45 0.99 0.6
Alta RUN 1.71 1.45 1.58 1.83
Bella R U N 1.67 0.47 1.04 0.64
Belock RUN 1.66 2.62 2.16 2.7
Birch R U N 1.74 1.29 1.31 1.57
Flag R U N 1.38 0.77 1.09 0.79
Nellie R U N 0.6 1.58 1.88 2.26
Nenana R U N 1.51 0.62 0.81 0.41
Pheobe R U N 0.49 2.1 1.85 1.88
Rosier R U N 1.28 1.95 2.14 2.62
Tisbury R U N 2.87 0.31 0.28 0.25
Brook BLU 0.67 0.92 1.43 1.09
Canyon BLU 1.01 1.02 1.41 1.41
D iom ede B LU 1.64 0.75 1.46 1.57
Indi B L U 1.29 1.93 1.61 1.68
Kantishna BLU 1.59 0.93 2.08 2.53
Leeda BLU 0,77 1.15 1.3 1.08
M ohogany B LU 0.65 1.37 2.02 2.36
Ore a B LU 1.69 0.45 1.02 1.37
Simon BLU 0.9 0.8 1.35 1.89
Spark BLU 1.56 0.9 1.36 1.51
Whaler B LU 0.98 1.32 1.31 1.51
Y utana BLU 1,94 0.38 1.21 0.98



Table 7. Isoprostane values (ng/ml).

Dog G rou p T1 T2 T3 T4
Blue CON 0.005 0.068 0.003 >E-05
Casey CON 0.004 0.124 0.001 0.003
Cowlick CON 9.369 24.07 13.35 20.51
Duter CON 0.003 0.340 0.001 0.002
Harrison CON 0.014 0.227 0.001 0.566
Hepsaba CON 2.242 38.34 2.069 0.933
Lacey CON 0.021 23.05 0.053 0.003
Mas CON 0.179 27.39 0.342 0.228
Muskrat CON 31.80 55.55 69.12 44.91
Ra CON 0,955 2.134 13.90 0.398
Rocky CON 4.856 7.013 6.060 3.817
Sophia CON 4,584 9.006 9.958 6.585
Ajax RUN >E-08 8,121 0.001 0.001
Alta RUN 4.327 75.77 23.41 15.61
Bella RUN 0.001 10.34 0.002 0.001
Belock RUN 0.002 14.35 >E-04 >E-04
Birch RUN 0.003 0.188 0.001 0.001
Flag RUN 1.260 7.913 3.484 1.610
Nellie RUN 0.004 0.380 0.010 0.027
Nenana RUN 0.001 0.344 0.000 >E-05
Pheobe RUN 0.251 4.039 0.667 0.403
Rosier RUN 0.002 0.112 0.002 0.001
Tisbury RUN 0.989 6.434 1.312 0.599
Brook BLU 5,907 49.23 11.34 5.745
Canyon BLU 0.078 15.12 0.125 0.862
Diomede BLU 0.004 16.61 0.001 0.001
Indi BLU 0.250 45.56 0.245 0.128
Kantishna BLU 12.21 28,11 26.02 3.041
Leeda BLU 0.004 0,103 0.001 0.001
Mohogany BLU 0.204 4.758 1.773 1.198
Orca BLU 0.025 0.377 0.001 0.001
Simon BLU 8.253 19.07 31.64 11.23
Spark BLU 0.001 0.066 0.006 0,001
Whaler BLU 29.34 47.57 54.14 43.40
Yutana BLU 3.133 7.322 3.109 25.45



Table 8. Total antioxidant power (mM).

D° s G rou p T1 T2 T3 T4
Blue CON 0.169 0.185 0,119 0.300
Casey CON 0.145 0.177 0.100 0.184
Cowlick CON 0.180 0.173 0.096 0.310
Duter CON 0.267 0.139 0.089 0.170
Harrison CON 0.323 0.154 0.104 0.2051
Hepsaba CON 0.183 0.177 0.116 0.181
Lacey CON 0.145 0.269 0.173 0.437
Mas CON 0,256 0.188 0.146 0.216
Muskrat CON 0.222 0.116 0.112 0.121
Ra CON 0.232 0.146 0.093 0.139
Rocky CON 0.180 0.273 0.158 0.226
Sophia CON 0.138 0.177 0.142 0.118
Ajax RUN 0.243 0.238 0.119 0.300
Alta RUN 0.250 0.246 0.058 0.233
Bella RUN 0.187 0.100 0.109 0.128
Belock RUN -0.022 0.188 0.150 0.153
Birch RUN 0.187 0.281 0.242 0.265
Flag RUN 0.389 0.185 0.081 0.226
Nellie RUN 0.162 0.208 0.104 0.258
Nenana RUN 0.445 0.319 0,108 0.149
Pheobe RUN 0.096 0.177 0.150 0.146
Rosier RLHSf 0.169 0.188 0.131 0.174
Tisbury r u n 0.166 0.146 0.104 0.125
Brook BLU 0.263 0.307 0.181 0.163
C anyon BLU 0.263 0.185 0.119 0.160
Diomede BLU 0.291 0.277 0.093 0.146
Indi BLU 0.222 0.261 0.150 0.170
Kantishna BLU 0.256 0.192 0.196 0.272
Leeda BLU 0.253 0.292 0.173 0.205
Mohogany BLU 0.277 0.181 0.158 0.174
Orca BLU 0.236 0.284 0.154 0.279
Simon BLU 0.291 0.315 0.204 0.233
Spark BLU 0.305 0.188 0.188 0.268
Whaler BLU 0.243 0.212 0.089 0.079
Yutana BLU 0.236 0.208 0.116 0.128



Table 9. Uric acid values (mg/dl).

Dog G roup T1 T2 T3 T4
Blue C O N 0.2 0.2 0.2 0.2
Casey CON 0.2 0.2 0.2 0.2
Cowlick CON 0.2 0.2 0.2 0.2
Duter CON 0.2 0.2 0.2 0.2
Harrison CON 0.2 0.2 0.2 0.2
Hepsaba CON 0.2 0.2 0.2 0.2
Lacey CON 0.2 0.2 0.2 0.2
Mas CO N 0.2 0.2 0.2 0.2
Muskrat CON 0.2 0.2 0.2 0.2
Ra CON 0.2 0.2 0.2 0.2
Rocky CON 0.2 0.2 0.2 0.2
Sophia CON 0.2 0.2 0.2 0.2
Ajax RUN 0.2 1.2 0.2 0.2
Alta R UN 0.2 0.5 0.2 0.2
Bella RUN 0.2 0.2 0.2 0.2
Belock RU N 0.2 1 0.2 0.2
Birch RUN 0.2 1.5 0.2 0.2
Flag R U N 0.2 1 0.2 0.2
Nellie R U N 0.2 1.1 0.2 0.2
Nenana R U N 0.2 2.5 0.2 0.2
Pheobe RUN 0.2 0.7 0.2 0.2
Rosier RUN 0.2 1 0.2 0.2
Tisbury R U N 0.2 0.7 0.2 0.2
Brook BLU 0.2 1.2 0.2 0.2
Canyon BLU 0.3 0.2 0.2 0.2
Diomede BLU 0.2 0.5 0.2 0.2
Indi BLU 0.2 1 0.2 0.2
Kantishna B LU 0.2 0.5 0.2 0.2
Leeda BLU 0.2 1.1 0.2 0.2
Mohogany B LU 0.2 0.5 0.2 0.2
Orca B LU 0.2 0.7 0.2 0.2
Simon BLU 0.2 2.1 0.2 0.2
Spark BLU 0.2 0.5 0.2 0.2
Whaler B LU 0.2 0.7 0.2 0.2
Y utana B LU 0.2 1.3 0.2 0.2
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