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Abstract
Ecological niche modeling techniques were used to create global, monthly predictions of
sea surface dimethylsulfide (DMS) concentrations, and breeding season distribution of
Leach’s Storm-Petrel (Oceanodroma leucorhoa) and Fork-Tailed Storm-Petrel (O.
furcata) in the North Pacific. This work represents the first attempt to model DMS
concentrations on a global scale using ecological niche modeling, and the first models of
Storm-Petrel distribution for the North Pacific. Storm-Petrels have been shown to be
attracted to DMS, and it is therefore likely that a model of sea surface DMS
concentration would help explain and predict Storm-Petrel distribution. We have
successfully created the most accurate models of sea surface DMS concentrations that
we are currently aware of with global correlation (r) values greater than 0.45. We also
created Storm-Petrel models with area under the receiver operating characteristic curve
(AUC) values of greater than 0.90. Using just DMS as a predictor variable we were also
able to create models with AUC values upwards of 0.84. Future conservation efforts on
pelagic seabird species may be dependent on models like the ones éreated here, and it is
therefore important that these methods are improved upon to help seabird management

on all scales (global, national, regional and local).
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General introduction

The at-sea distribution of seabirds is a question important to scientists and
managers. Studies have been performed correlating at-sea distributions of seabirds to
certain environmental factors, but very few examine multivariate models as a predictive
tool for testing hypotheses [Elith et al., 2006; Raymond and Woehler, 2003].
Understanding and quantifying these distributions provides us with the ability to more
accurately monitor and manage species, and to forecast anthropogenic or climate impacts.

Storm-Petrels (Oceanodroma) are a Genus of the family Hydrobatidae, of the
Order Procellariiformes, which are tube-nosed, colonial seabirds. It is theorized that this
group of birds uses their large, tubed noses to find food far out at sea where there are
little to no visual cues for foraging [Nevitt and Haberman, 2003]. Dimethylsulfide (DMS)
is a chemical that is released at the surface of the ocean, and is related to hotspots of
primary productivity. Current models of global DMS exist, but are in contest with one
another with respect to overall accuracy [Bell et al., 2006; Belviso et al., 2004]. In order
to better understand the chemical composition of the oceanographic environment, a new
model of DMS distribution using the best available science is required. The release of
this chemical into the atmosphere from the ocean could act as an olfactory foraging cue
for Storm-Petrels when visual clues are lacking in the open ocean. It is possible that a
distribution model using DMS as a predictor variable will accurately classify Storm-
Petrel distribution in the North Pacific. The proposed models will be developed using a
type of regression tree modeling within a Geographical Information System (GIS)

environment based on empirical data, in which no a priori assumptions are made



concerning which variables influence the target variable, allowing us to try a wide variety
of predictors. The ultimate objective is the development of a model that will allow
accurate predictions of DMS distribution that can be used to investigate the role DMS has
on Storm-Petrel distribution.

Based on previous successful uses of the above modeling techniques [Craig and
Huettmann, 2009; Elith et al., 2006; Huettmann and Diamond, 2001; Ohse et al., 2009;
Yen et al., 2004], we can use algorithms that handle complex environmental interactions,
enabling us to accurately model the spatial distribution of DMS, as well as the
distribution of Storm-Petrels in the North Pacific. This would also allow us to capture the
relationships between Storm-Petrels and DMS. These models can then be used for
further analysis in determining effects of long term (climate change) and short term (oil
spills, disturbance by ship traffic, etc...) factors which may alter the distribution of many
different species.

Storm-Petrels of the North Pacific

Two species of Storm-Petrel breed in the North Pacific: Leach’s Storm-Petrel
(Oceanodroma leucorhoa) and Fork-Tailed Storm-Petrel (Oceanodroma furcata).
During the breeding season in the North Pacific they occupy deep burrows that can
extend down to a meter in depth [Boersma and Silva, 2001; Huntington et al., 1996].
Both species are nocturnal and possess relatively poor eyesight which may have selected
for enhanced development of other senses. These enhanced senses are important for inter
and intra-species interactions. Both species leave their burrows at night to forage at sea

for several days before returning to their colonies [Boersma et al., 1980; Malakoff, 1999,



Wilbur, 1969]. Like other Procellariiforms, Storm-Petrels have large olfactory bulbs,
possibly because a well-developed chemical (olfactory) sense allows these birds to find
these foraging areas as well as to find their breeding islands [Grubb, 1979].

The distribution of Fork-Tailed Storm-Petrels is limited to the Bering Sea, North
Pacific and Sea of Okhotsk with breeding islands on all of the surrounding coasts.
Winter and summer distributions of Fork-Tailed Storm-Petrels are essentially identical
with recorded sightings at the ice edge during the boreal winter months [Boersma and
Silva, 2001; Onley and Scofield, 2007]. Leach’s Storm-Petrel have a more global
distribution spreading from the Aleutian Islands and Sea of Okhotsk, southwards to
central America in the Pacific Ocean, and from Norway to Brazil and Western Africa in
the Atlantic Ocean. There is not much information on their winter distribution, though it
is suggested there may be a southward migration during these months with an increase in
Leach’s Storm-Petrel sightings near Hawaii and Western Africa in the boreal winter
[Huntington et al., 1996; Onley and Scofield, 2007].

Dimethylsulfide

The Oceans are the primary influence on global climate and the mechanisms
behind this link are poorly understood. DMS is a poorly studied biogenic compound that
is the dominant source of sulfur to the atmosphere from the ocean and may act as a bridge
between biology, oceans and the climate [Andreae et al., 1985; Lovelock et al., 1972].
DMS is also known to play a role as an olfactory cue in seabirds [Nevitt and Bonadonna,
2005] and even possibly in reef fish [DeBose et al., 2008]. Currently it is believed that

seabirds will “smell” DMS to locate foraging areas at sea as DMS is linked to areas of



high productivity where macro plankton such as Euphausids may be located [Nevitt and
Bonadonna, 2005]. DMS distribution has large implications for biological conservation
management and species distribution modeling. We therefore need climatologies of DMS
that will account for all the complexities involved in DMS formation.
Ecological niche modeling

Using GIS to build models has become very popular in ecology, and it has been
shown that spatial variation in species is very important in determining how organisms
use their environment [Cushman, 2010]. Environmental Systems Research Institute’s
(ESRI) ArcGIS is a widely used software package that can handle many of the functions
required to build spatial models. ArcGIS can deal with datasets of a variety of different
formats, and combined with the open access software Hawth’s Tools
(www.spatialecology.com), allows for processing of a large number of datasets. This sort
of functionality means that users can overlay many predictor variables into a set of
georeferenced data points, which can then be converted easily for use in machine learning
software such as TreeNet. ArcGIS also has the added attraction of being easily
programmed using the scripting language Python (www.python.org). Python can draw
upon the statistical power of program R (www.r-project.org), and run programmable
batch files, allowing for all geoprocessing and statistical analyses to be performed in one
script. Such scripts allow for fast processing, and iterative testing of program settings in

order to optimize model output.


http://www.spatialecology.com
http://www.python.org
http://www.r-project.org

Data mining (TreeNet)

Boosted regression trees (also known as Stochastic Gradient Boosting [Friedman,
2002a]) use an error minimization method to call upon an algorithm which creates a
series of regression trees in an iterative fashion. Trees are created by boosting a classifier
algorithm using a weighted subset of the training data. These trees have depths which are
defined by the number of terminal nodes with the number of splits in the tree equaling the
number of terminal nodes minus one [Elith et al., 2008; Friedman, 2001; Friedman,
2002a]. Each split is computed based on the optimization (reduction) of the tree building
criterion (that is, the minimization of the weighted least squares criterion). The error of
each tree is estimated using v-fold cross validation, where the algorithm created by the
tree is applied to the subset of the training data not used to build the tree. A loss function
is then fitted to the data, and a new tree is calculated based on the weighting of the new
subset [Friedman et al., 2000]. This methodology allows us to avoid over fitting, and
boosts prediction power significantly [Breiman, 2001; Elith et al., 2006; Friedman,
2002b]. TreeNet (Salford Systems, San Diego, CA) is a graphical user interface that can
implement this algorithm in either a UNIX or Windows environment. This program
allows users to generate command codes in order to create batch files for running
multiple models. TreeNet is resistant to over-learning, which can be detected by
examining the divergence (or convergence) between the Mean Squared Error of the test
and learning samples. Because of TreeNet’s ability to handle “messy” data and large
number of predictor variables, it has become increasingly popular with ecologists in order

to predict species distributions [Craig and Huettmann, 2009; Elith et al., 2008; Ohse et



al., 2009]. I therefore chose to use a TreeNet which does not require a priori
assumptions about controllers in a system, allowing us to handle the non-linearity of
ecological data [Breiman, 2001, Elith et al., 2008].
Study goals

The development of a global DMS model that will be available for public use will
establish a DMS dataset that will allow DMS to be included in a variety of spatial
analyses, up to and including global circulation models. Such a model may also be used
to help develop species distribution models (e.g. by being linked to prey such as
Euphausids). The development of a distribution model of Fork-Tailed and Leach’s
Storm-Petrel will help in conservation management of both species. It is hypothesized
that DMS will play an important role in determining the distribution of both Storm-Petrel
species. The goals of this thesis are to: (1) create a series of monthly DMS models using
open access datasets, and to make some inferences on controlling factors in DMS
production, and (2) to create models of Fork-Tailed and Leach’s Storm-Petrel distribution

in the North Pacific, and assess a possible link between Storm-Petrels and DMS.
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Chapter 1. Predicting monthly surface seawater dimethylsulfide (DMS)
concentrations on a global scale using a machine learning algorithm (TreeNet)'
Abstract: In order to deal with the complexities of DMS, a machine learning algorithm
(TreeNet) was combined with the framework of ArcGIS to make predictions of DMS
concentrations on a global scale. The core of this method is an automated software code.
Here we present monthly climatologies of DMS concentrations based on 15
environmental predictor variables downloaded from open access data sources, which is
the first time DMS modeling has been based upon such a comprehensive set of input data.
We also present the first use of spatial modeling for determining DMS concentrations at
sea using a machine learning algorithm. Root Mean Squared Deviation (RMSD) and R
squared values were used to determine model performance among a series of random
subsets of data extracted from NOAA’s Pacific Marine Ecological Laboratory (“Kettle™)
DMS database. R squared values, broken down by month, ranged from 0.21 to 0.69.
Comparison with a global mean DMS climatology matched known hotspots. This
research can act as a benchmark for other oceanographic models to further improve our
understanding of global ocean systems and its predictions. The use of transparent, open
access concepts conforms to best practices held highly by national science organizations
such as the International Council for Science, International Polar Year, National Science
Foundation and the European Union. The open access concepts, tools and data layers

shown here may also be used for further hypothesis testing, and objectively quantify

! Humphries, G.R.W, F. Huettmann, C. Deal and D. Atkinson. 2010. Predicting monthly
surface seawater dimethylsulfide (DMS) concentrations on a global scale using a machine
learning algorithm (TreeNet). Prepared for submission to Global Biogeochemical Cycles.
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spatial distribution of ocean compounds, allowing for improved global understanding of
marine ecosystems and global sustainability.
Keywords: Dimethylsulfide, global, machine learning algorithms, TreeNet, GIS, Open
access, model automation
1.1 Introduction

DMS is a marine biogenic compound that is the dominant source of natural sulfur
to the atmosphere [Andreae et al., 1985; Lovelock et al., 1972]. The production of DMS
begins in the cells of marine phytoplankton as Dimethylsulfoniopropionate (DMSP)
which is released into the ocean upon cell senescence/grazing and transferred to the
atmosphere where it forms sulfate aerosols via oxidation [Charlson et al., 1987]. Control
of the transfer of DMS into the atmosphere is a function of wind speed at the surface of
the ocean, turbulence of ocean surface layers, gas diffusivity and seawater temperature
[McGillis, 2000]. Once in the atmosphere, DMS oxidizes via reactions with OH and NO;
radicals to form sulfur dioxide (SO,), sulfate (SO4>) and methanesulfonic acid (MSA),
which leads to the formation of non sea salt sulfates (NSS-SO4™) [Bardouki et al., 2003;
Yinet al., 1990]. NSS-SO4'2 are aerosols that are found in the marine atmosphere, and
are hypothesized to be the primary source of atmospheric sulfur that contribute to cloud
formation [Andreae and Crutzen, 1997; Charlson et al., 1987]. Acting as cloud
condensation nuclei, NS S-S0, enhance cloud formation and increase cloud albedo,
which reduces incoming solar radiation. Cloud albedo can theoretically act as a brake on
positive feedbacks that accelerate warming, such as the “ice-albedo” feedback [Charison

et al., 1987]. Full details of the impact of DMS on the atmospheric radiation budget are
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not yet well understood [Charlson et al., 1987; Watson and Liss, 1998]. The effect of
DMS on the radiation budget could link the atmosphere and its operation to those factors
affecting marine biological productivity and relative abundance of phytoplankton [Bopp
et al., 2003; Leck et al., 1990, Malin and Kirst, 1997]. The formation of cloud condensing
nuclei is also important when examining the earth’s annual rainfall budget because
increases or decreases in these aerosols have been shown to have a strong effect on
precipitation from clouds [Nriagu et al., 1987]. The effect of human activity on global
DMS concentrations could in turn alter trends in precipitation [Nriagu et al., 1987,
Rosenfeld et al., 2008].
1.1.1 Current DMS models

Belviso et al. [2004] assessed a series of proposed DMS climatologies [Anderson
et al.,2001; Aumont et al., 2002; Belviso et al., 2004; Chu et al., 2003; Kettle et al., 1999,
Kettle and Andreae, 2000; Simo and Dachs, 2002] and found that current DMS models
were inaccurate and spatially variable. Aumont et al. [2002] was found to be best for the
Atlantic Ocean, whereas Simo and Dachs [2002] and Chu et al. [2003] were better suited
for the equatorial Pacific. It was found that none of the previously mentioned models
could achieve global r* values greater than 0.06. Most of these models were calculated
using strictly linear or deterministic techniques, and none have yet examined a truly

multivariate or spatial approach that could better apply across the globe.
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1.1.2 Spatial modeling with machine learning algorithms

Spatial modeling has been used widely in marine ecology to examine the
relationships of environmental variables on the distribution of different species [Elith et
al., 2006; Huettmann and Diamond, 2001]. This type of digital science goes hand in
hand with traditional in situ work via ground-truthing and data collection. Using
presence-only data combined with novel methods of modeling such as boosted regression
trees and Multivariate Adaptive Regression Splines (MARS), it is possible to improve
model accuracy over methods such as linear, generalized additive models or general
linear models [Elith et al., 2006]. TreeNet by Salford Systems draws upon regression
trees to create a series of predictions using stochastic gradient boosting [Craig and
Huettmann, 2009; Friedman, 2002]. This method also uses a type of optimized error
testing called v-fold cross validation in order to prevent over-fitting of the model
[Friedman, 2002]. This means that one can use a large number of predictor variables to
describe the patterns and processes in the system without having to make any a priori
assumptions about potential importance of predictors [Breiman, 2001; Craig and
Huettmann, 2009; Hochachka et al., 2007]. This approach is a fresh and powerful way of
obtaining good DMS predictions that are spatially and temporally explicit, and is a
method that currently sees little use in oceanography.
1.1.3 Open access data

Open, free access to high quality datasets is essential to assure the repeatability

of methodology and also encourages improvement of current analysis techniques,

development of theoretical knowledge, and offers some protection against the faulty use
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of data [Fienberg et al., 1985]. We followed the Open Access policy, promoted by a
variety of different organizations (International Polar Year (IPY), International Council
for Science (ICSU), and National Science Foundation (NSF)) because the policy is
becoming a best professional practice and a requirement for publication and funding
[Ohse et al., 2009].
1.1.4 Study goal

The objective of this study is to develop spatial patterns of monthly DMS
concentration for the globe using recently available, online access data sources as applied
to a novel, non-linear regression tree algorithm found in the software package, TreeNet.
This study employs TreeNet to develop spatial patterns of DMS by relating observational
DMS data to environmental predictor layers. The DMS data were obtained from the open
access, online dataset available at the Pacific Marine Environmental Laboratory (PMEL)
database [Kettle et al., 1999]. Environmental predictor data sets (e.g. solar radiation
dose) were selected for inclusion on the basis of current understanding of DMS
formation/destruction processes. Uniform spatial overlays were developed from all input
data sets (fields) (Table 1). These data fields were used to create monthly climatologies
of DMS on a global scale based on the trained TreeNet algorithm. The output from
TreeNet allowed us to make inferences on the controlling factors of DMS
production/destruction and their interactions with DMS. The analysis tested the

hypotheses that each variable plays a significant role in predicting DMS concentrations.
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1.2 Methods
1.2.1 Training data

DMS measurements were obtained from the PMEL DMS database [Kettle et al.,
1999]. This database consists of approximately 40,500 mixed layer DMS measurements
taken around the globe from 1972 to the present. Random subsets were extracted to form
the training data by which the models were constructed. Data were filtered by month and
projected to World Geodetic System (WGS) 1984.

Many observations in the DMS database were taken at the same location at
different depths (down to a maximum of 20 meters). Only the records for the shallowest
depths were used when multiple records were available at one location. DMS values
greater than 100nM were also filtered out to account for extremely unusual values of
DMS measured during algal blooms [Simo and Dachs, 2002]. Appendix B shows the
filtered number of measurements for each month, as well as the number of data points
used for training the algorithm and assessing the final outputs for each series of model
runs.

Random subsets consisting of 20, 60, 70 and 90% (Models 1, 2, 3 and 4
respectively) of the total available data were removed from the PMEL database, which
left the remaining 80, 40, 30 and 10% of the data for external assessment of the models.
The random subsets were removed using the subset function with no replacement (to
avoid pseudo-replication), a function in the R language. Using the freely available
Hawth’s Tools for ArcGIS 9.x (http://www.spatialecology.com/htools/), spatial overlays

of the datasets were performed by extracting the values of each environmental predictor
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layer to the same shape file containing the data subset. This resulted in the creation of a
comma separated values file with DMS as a response variable, and all the various
environmental layers as predictors. All data, including the DMS measurements, were
continuous variables. Input data did not require statistical transformations because the
non-parametric nature of TreeNet does not require pre-conditioning.

A list of the environmental predictors used to construct the model and their spatial
resolutions are listed in Appendix A.
1.2.2 TreeNet algorithm

The complexity of the ocean DMS cycle means that it is important to use an
approach which does not require a priori assumptions about controllers in the system
(boosted regression trees;[ Breiman, 2001]). A regression algorithm creates a series of
error-minimized regression trees in an iterative fashion to explain the variance in a
dataset. This methodology avoids over fitting of data, boosts prediction power
significantly, and can handle “messy” or missing data (via data imputation) [Craig and
Huettmann, 2009; Elith et al., 2006; Friedman, 2002]. TreeNet by Salford Systems uses
the boosted regression tree algorithm, and allows users to generate command codes in
order to create batch files for running multiple models. TreeNet can also easily allow
users to select different options and settings to perform objective tests on data sets.

Testing was performed to determine which settings yielded the best results by
altering parameters such as the number of trees and the number of terminal nodes.
Testing focused on the months of January, March and July which represented a low,

medium and high number of data points. The number of terminal nodes was varied
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between 4 and 10 while keeping the number of trees constant at 500. The least squares
error plots (created by cross validation testing) were examined, showing that in all cases,
500 trees were not enough to reach the minimum possible error in predictions. The same
tests were performed with the number of trees set at 1000. We found that 10 terminal
nodes and 1000 trees, using the Huber-M loss function [Huber, 1964] provided minimum
prediction error in all cases.
1.2.3 Scoring and output maps

To create output maps of the models, a regular grid of empty data points was
created over the surface of the ocean in ArcGIS 9.3 on a scale of 1° x 1°, to match the
scale of the predictors that were used. Values for the environmental predictor variables
were then calculated at the empty point locations via a spatial overlay in Hawth’s Tools.
We applied these data to the TreeNet algorithm that was trained in the previous steps
(“scoring”), creating a regular grid of DMS predictions. Using the inverse distance
weighted (IDW) interpolation tool in ArcGIS 9.3, the regular grid of predictions was
smoothed across the surface of the ocean, creating output maps that could then be
assessed using independent point measurements from the subset of data not used in the
training process. In a similar manner a map of global average DMS concentrations was
created. All of the maps were created with metadata in agreement with Federal
Geographic Data Committee (FGDC) standards and are available for public access from

the author.
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1.2.4 Model assessment

Model assessment was performed by way of a “hold out test”, independent from
the testing that is performed in the TreeNet software package. A spatial overlay of each
model output was performed with the random subset of data not used to build the model,
giving columns of predicted vs. observed values. To determine model performance, Root
Mean Squared Deviation (RMSD) and R? values were calculated. RMSD is a metric that
is used to show how well the model predicts the observed values based on a 1:1 slope
drawn from the origin. RMSD is found to be one of the most effective methods for
conducting an aggregate comparison of observed to predicted values on a continuous
scale [Pineiro et al., 2008] over an entire domain of interest.

1.3 Results
1.3.1 Ranking models

Models were ranked using RMSD scores. Subsets of model #4 contained the
lowest single run RMSD for all months (except June and September) ranging from 1.24
in October to 19.999 in May. Subsets of model #3 contained the lowest single run RMSD
values for June and September and were 15.44 and 2.353 respectively (Table 1.1). R
squared values ranged from 0.2146 to 0.6935.

Average RMSD values for each month decreased slightly as we increased the size
of the subset used to build the model (except for June and July) (Table 1.2). The highest
RMSD values were found in May and June. Average RMSD remained relatively robust
between models 1 through 4, which indicated that accuracy does not improve greatly by

adding more measurements to build the model (Figure 1.1).
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1.3.2 Predictor variable importance

The relative contributions of the various predictor variables for models with the
lowest RMSD values, as determined by TreeNet, are listed in Table 1.3. Solar radiation
dose (SRD) provided the highest contribution of any predictor variable with an average
relative importance across months of 71.92. This was followed by phosphates and
salinity (70.10 and 62.15 respectively). Euclidean distances to shore, standard deviation
of sea surface temperature and mixed layer depth had a relatively minor contribution
throughout all models (40.32, 44.25, and 47.45 respectively).

The partial dependence plots of SRD indicated that concentrations of DMS varied
directly with SRD values (i.e. high SRD means high DMS). This data trend was also
apparent with phosphates. The partial dependence plots of salinity did not follow an
obvious pattern though certain months (i.e. February, March, July, October and
November) suggest a range of salinities that were associated with high DMS
concentrations (Figure 1.2)

1.3.3 Maps

Monthly maps predicted low concentrations of DMS in the open ocean gyres in
all months. High concentrations of DMS in January were mostly located in the southern
latitudes, with the highest values around the Antarctic. In February, relative high
concentrations of DMS were found further north to mid-southern latitudes, which then
decreased into March and April. May, June and July months showed an overall global
increase in DMS concentrations, with hot spots of high DMS concentrations (>14 nM) in

the northern latitudes, particularly in the Bering Sea, Labrador Sea, and Greenland Sea.
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August, September and October showed decreases in global DMS concentrations with
patchy hot spots ranging from 4 — 6 nM. In November and December, the model output
predicted global increases in DMS which peaked with concentrations of about 12 — 16
nM (Figure 1.3).

An annual mean climatology of DMS shows areas with high concentrations (>
7nM) of DMS in equatorial upwelling regions, the Bering Sea, Grand Banks, west coast
of Africa, west coast of Peru, Gulf of Alaska, Greenland Sea, the Falkland Islands, and
the Southern Ocean. Open ocean gyres show average annual concentrations of DMS
between 1.43 to approximately 2.5 nM (Figure 1.4).

The latitude time plot of sea surface DMS concentrations as created using the
National Center for Atmospheric Research command language (NCL) (Figure 1.5) shows
averaged concentrations of DMS for each month, by latitude. Average DMS
concentrations are highest in the summer time in the northern and southern latitudes (5 —
7 nM), whereas the mid-range latitudes never increased above 4nM. This seems to show
a lag of DMS production after the spring phytoplankton bloom where DMS
concentrations increase after the peak productivity begins to decline.

1.4 Discussion

This study has developed for the first time, a spatial model of DMS on a global
scale using machine learning algorithms. Our goals were to create a series of
environmental layers that could be used openly and freely by the general public, to make
inferences on important controlling processes in DMS production based on output from

TreeNet, and to quantify how well the model results match observations.
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1.4.1 Towards a Spatial Ecology of DMS

Within the GIS framework, there are many considerations that must be made
when performing a spatial analysis. One of the first and most important issues is that of
scale [Huettmann and Diamond, 2006]. The choice of scale is based on several factors
including computational power available, input data available and the complexity of the
system one wishes to examine. DMS is a globally relevant compound, playing roles in
cloud formation [Ayers and Cainey, 2007; Charlson et al., 1987; Johnson and Bell, 2008]
and animal attraction [Cunningham et al., 2008; DeBose et al., 2008, Nevitt and
Bonadonna, 2005]. This fact, combined with open access to global climatologies of
predictor variables, and the access to fast and publicly available computing methods, led
to the decision to model DMS distribution at a global scale. Another important issue to
discuss is the choice of grain size (resolution). Resolution is important in determining the
outcome of many spatial models in some ways, due to the possibility of autocorrelation.
That is, if resolution is too coarse, pseudo-replication of data can occur in the process of
the overlays, leading to results with no relevant ecological meaning. If the resolution is
too fine, it is likely that point measurement errors (due to projection or GPS error) will
cause an association with false environmental variables [Guisan et al., 2007]. The ideal
situation is for environmental layers of infinitely fine resolution and point data with
perfect GPS locations, but this is a situation unlikely when dealing with real data. It is
also important to note that climatologies of infinitely fine resolution in space and time are
not yet available, and the common resolution used in ocean climatologies tends to be

approximately 1° by 1°, and therefore limits the predictions of the DMS model.
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1.4.2 Predictor variables

Though this model does not allow per se for mechanistic descriptions of how
DMS is controlled in the ocean surface, it does allow us to test and examine (via partial
dependence plots) possible inferences of the “oceanographic niche” (the specific
oceanographic conditions in which DMS is produced). In deterministic models, it is
often that variables are chosen a priori with a focus on the most parsimonious model,
whereas with machine learning algorithms (such as TreeNet), the opposite approach is
taken, where an algorithm is used to determine the relationships between predictors and
response variables [Craig and Huettmann, 2009; Elith et al., 2008]. The mechanisms of
DMS formation are still uncertain [Steinke et al., 2006; Vallina and Simo, 2007], and in
fact, as suggested by these results, are not necessarily consistent (i.e. they change from
month to month). Therefore it is advantageous to use methods that do not require prior
assumptions to make predictions on DMS concentrations.

The results show that SRD, phosphates and salinity play important roles in
determining concentrations of DMS. SRD was found to be positively correlated to DMS
concentrations because high ultra-violet radiation inhibits DMS consumption and induces
oxidative stress (DMS release) in phytoplankton [Vallina and Simo, 2007]. The partial
dependence plots of SRD show that in general when SRD values are low, DMS
concentrations are also low, thereby supporting the hypothesized link between SRD and
DMS. Phosphates have been found to be linked to Synechococcus blooms, where good
correlation existed between DMSP concentrations and number of cells [Wilson et al.,

1998]. Our results support this as well as our partial dependence plots for phosphate that
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show that low DMS concentrations and low phosphate concentrations are correlated.
Low salinity shock was suggested to affect DMS concentrations by increasing algal DMS
contribution, and decreasing bacterial DMSP consumption [Niki et al., 2007]. Our partial
dependence plots for salinity seem to suggest a range of salinity in which DMS
concentrations are highest. One notable feature is that neither average chlorophyll a or
mixed layer depth were considered important predictor variables overall, contrary to a
model suggested by Simo and Dachs [2002]. The SeaWIFS satellite can detect color
changes in the surface of the ocean, which allows for an approximation of chlorophyll a
concentrations. This satellite cannot distinguish chlorophyll a concentrations when
turbidity in the ocean also produces color. This could possibly explain why chlorophyll a
is not a strong predictor of DMS concentrations. SeaWIFS also has a limited range of
coverage at any one time of the year. Though we dealt with this via TreeNet’s ability to
handle missing data via imputation, it is possible that the model has not accurately
captured the relationship of chlorophyll a to DMS.
1.4.3 Model optimization

Performance of the output model is strongly affected by the settings used.
Therefore for optimal model performance it is advantageous to run through all the
different settings until the best model is determined. A full battery of tests on model
settings were not performed in this case due to the high accuracy achieved. It would be of
use in the future, with high performance computing capabilities, to fully automate

batteries of tests in an effort to determine “the best” model settings.
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Running models with different subsets of the data allowed us to determine the
stability of the model by examining how model performance (RMSD) changed. This also
highlights the minimum requirements for DMS observations at sea, feeding directly into
possible future science or monitoring missions. It is also important to examine how
RMSD changes when using random subsets of the different models to examine variability
that may occur due to outliers in the evaluation data where in some cases evaluation data
may contain more outliers than others. Figure 2 showed that average RMSD did not
change substantially between different model runs. This was an exercise in the ability of
TreeNet to remain robust even when the amount of data used to build a model was varied.
This also spoke to the relative robustness of the natural relationships that define DMS
production (i.e. the “oceanographic niche” of DMS).

The average RMSD within months seemed to remain relatively stable between all
model runs, but it varied from month to month in general ranging from 1.39 in October to
28.01 in May. This sort of variation in RMSD was most likely due to the impact of
unusually high measurements. The month of May contained a large number of high
concentrations on the order of ~ 80 — 100 nM. When running a TreeNet model, iterative
trees are boosted, that is, error is minimized between each tree by applying a loss function
which down-weights outliers. This weighting causes the model to predict at a scale that
eliminates such outliers. When performing a spatial overlay for the final model
assessment, unusually high concentrations of DMS from the held out subset are still

included, and are therefore overlaid on areas that were down-weighted by TreeNet.



26

The best single runs were found to be in model 4 in 10 of 12 cases, which, when
compared to the stability of the mean RMSD values, indicates more variability in model
4. This variability is most likely due to the smaller subset of data (10%) used to evaluate
this model. With such a small subset of data being taken randomly at every run, it is
likely that the variability between each subset is high, leading to variability in the
assessments. The best model runs most probably occur in this model because 90% of the
data are being used to train TreeNet.

It is also of interest to examine r” values for best model runs to compare to other
models that have been evaluated in the past. The r* values for our models range from
0.21 to 0.69. Currently, all climatologies of DMS concentration relative to the Kettle
database have r* values less than 0.06. These comparisons were made to annual, global
climatologies which can be difficult to assess when using discrete samples taken from
monthly measurements. Comparing discrete measurements to annual climatologies may
not accurately capture model performance as there is much seasonal variability in DMS
that is not captured by such an analysis. To better examine overall accuracy, it is
beneficial to examine monthly model performance to capture the seasonal variability in
the data.

1.4.4 Seasonal variability

Monthly models were output in this case to examine monthly changes in DMS

concentrations, and to examine if strong relationships between certain environmental

predictor variables and DMS existed and remained through all months. This could allow
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for a more thorough examination of mechanisms that control DMS concentrations on a
global scale.

January shows high concentrations of DMS in the southern hemisphere with the
highest concentrations existing along the Antarctic coast. Antarctic sea ice contains large
and variable concentrations of DMSP. It is thought that the release of DMSP from the sea
ice in the summer months (in this case, the austral summer), account for elevated
concentrations in the ocean [Curran et al., 1998; DiTullio et al., 1998; Trevena and
Jones, 2006]. It is interesting to note that though sea ice was not an environmental layer
included in this model, high DMS concentrations were picked up in the Antarctic, where
sea ice algae that contain high intracellular DMSP concentrations are found [DiTullio et
al., 1998]. The model for February has high DMS concentrations further north than in
January, associated with the movement of solar activity (i.e. SRD), thought to be one
controlling factor in DMS production [Vallina and Simo, 2007]. March and April months
have overall lower DMS concentrations than any of the surrounding months, which may
be associated with the summer paradox that was described in the Sargasso Sea, where
higher concentrations of DMS are noted in the summertime, after the spring
phytoplankton bloom [Toole et al., 2003]. This could indicate that during the bloom
seasons (Spring, Fall), DMS production is slowed on a global scale, perhaps through
some chemical or physical forcing based on photolysis rates or perhaps due to
sequestration of DMSP in phytoplankton in the spring. It is possible that due to a lag in
the dynamics of phytoplankton and the organisms that prey upon them, DMS

concentrations do not begin to peak until after the blooms, when DMSP has been released
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into the oceans and then converted into DMS. This explanation seems to be supported
by elevated concentrations of DMS in May, June and July in the output. May, June and
July are also characterized by high concentrations of DMS in northern high-latitudes
which persist through August. September, October and November once again show low
DMS concentrations again possibly corresponding to the spring/fall bloom, followed by
increases in DMS concentrations in December.

The latitude time series plot (Figure 1.5) shows monthly, global (by latitude)
averages of DMS concentrations. This plot matches the northern hemisphere of other
similar figures that have been created to illustrate seasonal variability in DMS [Anderson
et al., 2001; Belviso et al., 2004; Kettle and Andreae, 2000; Simo and Dachs, 2002]. In all
cases, there is an increase in DMS concentrations in the northern hemisphere during the
boreal summer months relative to spring (>10 nM). Our model shows an increase in
DMS during the austral summer months relative to the austral spring, which is only
mirrored by the DMS database [Kettle and Andreae, 2000]. This indicates that our model
matches the database better than other DMS climatologies.

Two aspects of the latitude time series plot that are not reflected in other models
are high concentrations of DMS in both hemispheres during their respective winter
months. The mechanisms behind such peaks in DMS concentration require further
investigation. It is possible that these patterns are due to blooms during the autumn
months, where DMS production lags until the following season when phytoplankton

begin to senesce.
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Concentrations of DMS in both polar regions are high (> 7nM) when examining
the global annual climatology (Figure 4). Sea ice algae contain high concentrations of
DMSP [DiTullio et al., 1998] and even though sea ice was not included as a predictor
variable, our model still reflects higher concentrations of DMS in polar regions.

1.4.5 Considerations

One of the major limitations of this study concerns the spatial distribution of the
data from the “Kettle” database. In any type of data sampling, it is best to draw a random
training sample from a parent distribution that is spatially uniform across the entire area
of interest, but as DMS measurements in the Kettle database are from ships of
opportunity, this analysis suffers from an irregular spatial distribution of measurements.
Boreal summer months (May, June, and July) are heavily sampled in the northern seas
(North Sea, Bering Sea, etc...) due to increased accessibility and better weather
conditions. A similar pattern is found in the Austral summer (December, Jan, Feb),
where the southern seas (Ross Sea, Weddell Sea, etc...) are highly sampled. Sample
distribution drives the predictions of the model because the model is being trained based
on parameters that are found only in those sampling areas that favor particular times of
year. In other words, if the systems that control DMS are different from one region to
another, we are over-generalizing due to the spatial bias in the data. The model also
suffers from any errors that might be associated with the predictor variables, and any
errors associated with DMS concentration measurements.

Due to the difficulty and cost of getting DMS measurements at sea and processing

samples, and lack of awareness and coordination, it is unlikely that a perfect sampling
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distribution will ever be achieved in the near future, and any studies or models will suffer
from this bias. Consequently, the models over-generalize when predictions are made at
global scales. Using a minimum number of sample points based on studies like ours, it
may be possible to increase the effectiveness of expensive at-sea cruises. Faster and more
accurate methods of measuring DMS concentration in water are being developed.
Currently, a low-cost chemical ionization mass spectrometer has been produced for use in
continuous measurements of DMS in seawater [Saltzman et al., 2009]. Using such
technologies placed aboard a plethora of different ships will increase sampling
distributions, and in time, DMS predictions generated by models such as this will
continue to improve.

It is also of importance to note that only 15 environmental predictor variables
were used in this model to determine spatial distribution of DMS. It is likely that not all
the factors involved in DMS formation were captured. Two main avenues for model
improvement are: inclusion of more predictor variables and development of a three-
dimensional modeling approach to more explicitly account for the depth aspect. Other
model refinements could come via improvements in predictor variables (e.g. via satellite
improvement). It would be of further benefit to perform a battery of tests by altering
settings and removing certain predictor variables iteratively to determine the best settings
for a model of this type.

1.5 Conclusions
DMS in many ways acts as a bridge between biology, oceanography and

climatology. DMS, as released from phytoplankton, may act as a foraging cue for many
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seabirds [Bonadonna et al., 2006; Cunningham et al., 2008; Nevitt and Bonadonna,
2005], may attract reef fishes [DeBose et al., 2008], and in fact, can trigger search
behavior in copepods [Steinke et al., 2006]. DMS may also play a role in cloud
formation, and therefore a role in global climate control [Charlson et al., 1987]. The
effect of DMS on the atmosphere may have implications in current climate scenarios
where DMS has not been previously included.

These models have all been created using an open-access framework, allowing for
full transparency, a concept currently adopted by organizations such as IPY, ICSU and
NSF. Though TreeNet and ArcGIS do not offer freeware versions, there are various other
alternatives that may be used to perform similar, adequate models. TreeNet versions are
available for free trials, and ArcGIS follows OpenGIS Consortium formats. In addition,
GRASS GIS is a free GIS program that can be run through program R, and packages such
as gbm and randomForests in R offer algorithms that can deal with datasets as complex as
the set used in our study.

The models created here seem to perform better than any current DMS
climatology, and can form the basis for new environmental layers that can be considered
in other oceanographic or climatic studies (e.g. global climate models). The creation of
metadata and free access of these models allows for full transparency of science, and ease
of import into GIS software and modeling programs. Such methodologies and concepts
will help to build collaborations across a variety of fields, and give us a better

understanding of global systems and how they interlink.
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Figure 1.1: Plots of solar radiation dose, phosphates and salinity for all months. The x

axis represents the unit value for each variable, and the y axis represents the partial

dependence of each variable on sea surface DMS concentrations
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Figure 1.2: Average Root Mean Squared Deviation (RMSD) of all months for Models 1

through 4 (subsets of 20, 60, 70 and 90% respectively)



















































































































































