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ABSTRACT

Under a threshold management strategy, harvesting occurs at a constant rate but
ceases when a population drops below a threshold. The threshold approach seeks to
enhance long-term yield of a population and to maintain population renewability. 1
evaluated threshold management strategies for selected herring and pollock stocks in
Alaska.

First, I examined stock-recruitment data from 19 major herring stocks worldwide
to provide the basis for evaluating threshold management strategies. Seventy-three
percent of these stocks exhibited statistically significant density-dependence. Most
stocks have compensatory, dome-shaped stock-recruitment curves.

Then. I simulated threshold management strategies for eastern Bering Sea (EBS)
pollock and herring and Prince William Sound (PWS) herring using a single-species
model. I further examined seven alternative threshold estimation methods. Cohornt
analysis, catch-at-age analysis, and catch and population sampling yielded estimates of
population parameters. The objective function was a weighted function of increased
average yield and decreased standard deviation of yield over a planning horizon.
Compared to a non-threshold approach, threshold management strategies increase the
long-term average yields, stabilize population abundances. shorten rebuilding times, and
increase management flexibility.

For a maximum yield criterion and Ricker stock-recruitment models, optimal
fishing mortalities are slightly above fishing mortalities at maximum sustained yield
(MSY), and optimal threshold levels range from 40% to 60% of pristine biomass for
EBS pollock. from 40% to 50% for EBS herring and from 30% to 60% for PWS
herring. With fishing mortality at MSY and the criterion of equal trade-oft between
yield and its variation, optimal thresholds range from 20% to 30% of pristine biomass

for pollock. With the status guo exploitation rate of 20%, optimal thresholds range from

.
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10% to 25% of pristine biomass for EBS herring, and from 5% to 25% for PWS
herring.

Of the threshold estimation methods evaluated, default percentage of pristine
biomass usually performs best. Loss of yield due to errors in threshold estimation is
small, generally under 10%. About 15 to 20 years of data are required to obtain a
reliable estimate of thresholds. With single-species dynamics, the form of the stock-
recruitment curve, exploitation rate and management objective are the most important

factors affecting optimal thresholds.
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Chapter One
INTRODUCTION

Two kinds of overfishing could occur for an exploited fish population: growth
and recruitment overtishing (Cushing 1977). Growth overfishing results from harvesting
fish so young that they do not have a chance to grow 1o optimal sizes. Recruitment
overfishing occurs when the spawning stock is reduced to a low level due to heavy
fishing so that recruitment is seriously affected. Growth overfishing has been recognized
since early this century (Cushing 1977) and is easily detected and avoided. Recruitment
overfishing may be disastrous and cause a population to lose its renewability, but it is
difficult to detect. After several important fisheries, like the Hokkaido-Sakhalin herring
(Clupea pallasi), the Norwegian herring (Clupeu harengus), the Japanese sardine
(Surdinops melanosticta), the Californian sardine (Sardinops sagax) and the Peruvian
anchovy (Engraulis ringens), collapsed during periods when fishing was high (Cushing
1971), recruitment overtfishing has increasingly been an important concern for fisheries
management.

Currently there is much interest in the development of harvest strategies to
ensure that fisheries resources are optimally utilized and that fish populations are not
overfished. As one example, the North Pacific Fishery Management Council, responsible
for management of U.S. groundtish resources in the northeastern Pacific Ocean, adopted
definitions of acceptable biological catch (ABC) and other management terms in 1988
that attempt to provide for both conservation and optimal utilization of the resources.
The ABC was defined as "an acceptable level of harvest which recognizes the status and
dynamics of the stock, environmental conditions, and ecological factors” and "must
equal zero when the stock is at or below its threshold”. The ABC definition contains
the concept of a threshold. a low population level below which there would be concern

about the ability of the population to increase and fishing would be prohibited.
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To promote the wise use and conservation of fish resources, the Secretary of
Commerce of the United States Government promulgated the national standard
definitions of fisheries management terms in 1989. These standards (section 602 of the
Federal Guidelines for Fishery Management Plans) list threshold as a "minimum level
of spawning biomass" and provide the option (but not requirement) of specifying
threshold levels for each managed fish population. Each fishery management plan for
species managed by the United States was required to be amended in 1990 to define
overfishing for each stock on the basis of a maximum fishing mortality and/or a
threshold population level,

A threshold management strategy seeks to prevent recruitment overfishing and
to optimally utilize fisheries resources, The threshold management strategy is defined
in this study such that harvest occurs at a constant exploitation rate but ceases when a
population drops below a threshold. For a given population, the most difficult tasks are
to judge whether a threshold approach can outperform a non-threshold approach in
terms of management objectives, and how to choose an optimal threshold level.

The threshold concept has evolved from the fixed escapement policy used
frequently in Pacific salmon management (Reed 1979; Getz and Haight 1989), with the
difference being that not all surplus fish are harvested under a threshold approach. The
threshold approach prohibits fishing to protect the population and to promote population
rebuilding when the population drops to a very low level. Optimal harvesting policies
have been derived or simulated for age-structured population models with both
deterministic and stochastic recruitment (Rorres and Fair 1975; Reed 1980; Deriso 1985,
1987: Horwood 1987; Getz and Haight 1989), but a threshold level has rarely been
explicitly embedded.

The threshold concept is relatively new to fishery management. Beddington and
Cooke (1983) used 20% of the average unexploited spawning biomass as a threshold
{or targeted spawning biomass level) to study the potential yield of fish stocks with
constant harvest rate and constant catch policies. Ruppert et al. (1984, 1985) introduced

a general harvesting policy that includes a threshold level to explore optimal harvesting
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strategies of the Atantic menhaden (Brevoortia tyrannus) fishery. This general
harvesting policy was used by Hightower and Lenarz (1989) to examine optimal
harvesting policies for the widow rockfish (Sebastes entomelas) fishery. Hilborn (1985)
applied a simple general harvesting policy with a threshold policy as a special case to
compare harvest policies for mixed-stock fisheries. The above studies either used
threshold as a constraint to compare other harvesting policies, or compared the threshold
policy with dther policies in terms of average yield or logarithm of yield. In their study
of alternative harvest strategies for Pacific herring (Clupea pallusiy in the Strait of
Georgia, British Columbia, Hall et al. (1988) compared the threshold policy with
constant harvest rate and constant escapement policies using three criteria: average
catch, catch variance and risk. None of these studies estimated optimal thresholds.
Most work with thresholds has occurred in conservation biology, and especially
in the study of endangered species (Mode and Jacobson 1987a; Soule 1987). The
common goal in conservation biology is to maintain the health and diversity of natural
biological systems---ecosystems, communities, habitats. as well as species. A population
threshold, also called minimum viable population size. is usually determined for a
species, especially endangered species, so that appropriate landscapes and habitats can
be preserved to avoid population from extinction (Shaffer 1983; Lande 1987; Mode and
Jacobson 1987b). Extinction is a probabilistic phenomenon, and time frame and security
levels are important factors to determine a population threshold level (Shaffer 1987;
Mode and Jacobson 1987b; Wissel and Stocker 1991). Shaffer (1981) reviewed the five
methods of determining population thresholds: experiments, biogeographic patterns,
theoretical models, simulation models and genetic considerations, and concluded that
the most promising approaches are biogeographic patterns and computer simulations.
The important distinction between the concepts of population thresholds in
fisheries management and conservation biology stems from the different management
objectives. While a threshold serves as a conservative measure for both commercial fish
and endangered wildlife populations, it is also used as u tool to enhance long-term

yields for exploited fish populations. The concept of economic extinction furnishes a
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bridge between these two disciplines. Economic extinction, defined as long-term
depression of a population below the minimum level necessary to sustain an
economically feasible harvest, may be the first step on the road to biological extinction.
Thresholds for exploited fish populations are generally chosen to meet economic
objectives and to prevent economic extinction, while thresholds for endangered wildlife
populations emphasize the prevention of biological extinction.

Threshold management policies have been applied to some fish populations
worldwide, especially pelagic species. A threshold level of 15 to 25% of either pristine
spawning biomass or average observed spawning biomass has been established for
Pacific herring in British Columbia, Canada, and Washington and Alaska, USA
(Trumble and Humphreys 1985). Although a threshold level was not specified, the
North Sea herring fishery was closed in the late 1970’s and the early 1980’s when the
population dropped down to a low level (Jakobsson 1985). Spawning biomasses of
50,000 tonnes and 600,000 tonnes have been used as thresholds for the northern
anchovy (Engraulis morax) off the coast of California and Atlantic mackerel (Scomber
scombrus) in the northeast Atlantic, respectively (J. Collie, personal communications).
Many crab stocks in Alaska have been managed with a threshold level which is used
to enhance the renewability and productivity of the stocks (Schmidt and Pengilly 1990).
For groundfish in western Canada, one of the possible management options is to stop
fishing when a stock falls below a certain level, although currently there are no stocks
so managed (Fargo and Tyler 1989).

Compared with a constant harvest rate approach, the threshold approach has an
advantage in terms of stable population size. The population is less prone to lose its
renewability and more likely to move toward improved long-term }:’iﬁid levels.
Threshold management strategies were shown to be effective for stock conservation and
increasing total yield for chub mackerel (Scomber Japonicus) in Japan under a
fluctuating environment (Matsuda et al. 1992). The threshold approach is especially
beneficial to rebuilding a depressed population. A simulation study of an overexploited

Pacific ocean perch (Sebastes alutus) stock in British Columbia demonstrated that
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rebuilding would be enhanced when fishing mortality was reduced or curtailed
(Archibald et al. 1983).

The disadvantages of the threshold approach are that the potential to prohibit
harvesting in some years may increase short-term harvest variation and adversely affect
the short-term economic well-being of users. All threshold management strategies to
date have been based on a single-species approach. It may be difficult to extend
threshold approaches to multi-species fisheries because of lack of detailed knowledge
on species interactions. When several species are harvested in the same fishery, bycatch
problems may be further complicated by threshold management policies. If the
assessment and management of a fishery primarily depends on commercial catch data,
the required data will not be available when the threshold takes effect.

In contrast to the threshold approach, a non-threshold approach, such as constant
harvest rate, has the advantage of easy implementation. Traditionally, constant harvest
rate is one of the most common management strategies (Getz and Haight 1989) and
several fishing mortality reference levels, such as 'Fy |, F__.. Frepr Fmsy and F, . have
been very well documented and applied to a variety of populations (Alverson and
Pereyra 1969; Gulland and Boerema 1973; Deriso 1987; Hightower and Grossman 1985:
Sissenwine and Shepherd 1987; Clark 1991). Data requirements for estimation of fishing
mortality levels are relatively flexible.

The constant harvest rate approach reduces variance in harvest, at the cost of
increased variance in population levels. It is beneficial to maintain a stable harvest if

alternate fisheries are not available. But some of the commonly-used fishing mortality

' F,, is the fishing mortality at which the slope of the yield per recruit curve as a
function of fishing mortality is equal to 10% of its value at the origin. F_, is the
fishing mortality at which the yield per recruit is maximized. Fip 18 the fishing mortality
at which the spawning biomass per recruit is reduced to the medxan value observed in
a set of stock-recruitment data. Fygy is the fishing mortality that produces the maximum
sustained yield for a population. F is the fishing mortality that maximizes the
minimum yield among all the stock-recruitment relationships considered.
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rates (F ), F_ ... and F = instantaneous natural mortality) are estimated from life history
parameters alone and their effects on spawners and subsequent recruitment are not taken
into account. These mortality rates may potentially deplete a stock if a period of poor
recruitment occurs. Even with a well-estimated fishing mortality rate, it is still
questionable whether this approach can reasonably maximize the returns from exploiting
the resources and provide necessary protection when the population levels are low.
especially when multi-species conservation criteria are also imposed.

Successful application of threshold management policies to fish populations
requires the development of methods to estimate and evaluate threshold levels on fish
population abundance and yield. If the threshold level is set too low, then it will not
provide sufficient protection for depleted populations to recover. If set too high. then
prohibition of harvesting will deprive harvesters of justifiable harvesting opportunities.

Two species, walleye pollock (Theragra chalcogramma) in the eastern Bering
Sea and Pacific herring in Alaska, will be the subject of my numerical study. These two
species provide contrast in population dynamics of groundfish versus pelagic fish.
Pollock populations tend to grow and decline rapidly and have comparatively high
mortalities. The pollock population in the eastern Bering Sea is of immense commercial
importance and is one of the most important components in its ecosystem (NPFMC
1991; Laevastu and Larkins 1981). Pollock is a semi-demersal species and classified as
"groundfish” in commercial fisheries. Cannibalism and predation are two important
biological features of pollock.

Herring is a pelagic species and is one of the most common fish species
throughout the world and well known for its fluctuations in abundance. In Alaska, large-
scale commercial harvest of herring started in 1920’s, and now this species supports one
of the most important fisheries in the state (Funk and Harris 1992). Ad hoc threshold
levels have been established for different stocks of herring in Alaska. This study will
evaluate these ad hoc threshold levels and suggest new optimal threshold levels
consistent with current management objectives. As generic models and computer

software have been developed for these two species, the methodology can be applied



to other species.

In this study I examined herring stock-recruitment data around the world to
illustrate the need for a threshold management strategy because understanding the
recruitment dynamics of fish stocks is crucial to selecting harvest strategies. Then
population parameters of eastern Bering Sea pollock and herring and Prince William
Sound herring were estimated and collected. Threshold management strategies were
evaluated for these three populations based on single-species models. Evaluation criteria
include an objective function, risk of overharvesting and rebuilding time, as well as
robustness to errors in estimation or implementation. The objective function is the trade-
off between increased average yield and decreased variation in yield over a planning
horizon of 20 to 50 years. The risk is defined here as the pmbabﬂity that a population
drops below a defined threshold level. The rebuilding time is total number of years for
a population to take to rebuild from an initial biomass to the biomass producing MSY.
I will address the following questions: 1) What data and techniques are required to
estimate threshold levels? 2) Given a harvesting rate and an objective function, which
threshold approach performs best? 3) What are the important factors affecting optimal
threshold levels? 4) How much can we gain by using a threshold approach, compared
with a non-threshold approach such as a constant harvest rate strategy?

The dissertation is presented in seven chapters. Chapter two discusses the
relation between spawners and recruitment of herring worldwide and herring recruitment
patterns. It was generally believed in the past that herring recruitment is regulated by
environmental factors and that density-dependent effects on herring recruitment are
weak or non-existent. This chapter is intended to test for density-dependent effects on
herring recruitment statistically and to examine at what spatial scale environmental
forces influence herring year-class strengths. Chapter three deals with threshold
management policies for the eastern Bering Sea pollock population. Threshold
management strategies for Alaska herring are evaluated in chapter four. Two of the
largest herring stocks in Alaska. eastern Bering Sea and Prince William Sound stocks,

are examined. Chapter five compares and evaluates seven different threshold estimation
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methods through computer simulations. Chapter six summarizes the results of sensitivity
analyses of optimal thresholds with different population parameters, environmental
noises, harvest levels and management objectives. The results in previous chapters are
integrated to identify key factors influencing optimal threshold levels. The final chapter

summarizes the conclusions for this study and discusses the limitations.



Chapter Two
HERRING STOCK-RECRUITMENT RELATIONSHIPS AND
RECRUITMENT PATTERNS IN THE NORTH ATLANTIC AND
NORTHEAST PACIFIC OCEANS

-SUMMARY

Recruits are the youngest age group in a fishery. Understanding the recruitment
dynamics of marine fish stocks is crucial in selecting harvest strategies. Revealing the
recruitment patterns is the first step to understanding the recruitment dynamics. In this
study, stock-recruitment data of 19 major herring stocks from the north Atlantic and
northeast Pacific Oceans were examined for density-dependent effects on recruitment
and for recruitment patterns over spatial scales. Two parametric and one nonparametric
tests indicate that the survival rates from eggs to recruits from about 73% of stocks are
related to spawning biomass, with high spawning biomass resulting in low survival
rates, Close to half the stocks show that year-class strengths are associated with
spawning biomass. Most stocks have compensatory. dome-shaped stock-recruitment
curves. Positive correlations are generally found among the geographically close
neighbor stocks. The recruitment patterns suggest each environmental process may play

an important role in recruitment dynamics of herring only within a certain spatial scale.

INTRODUCTION
Understanding the recruitment dynamics of a stock is essential for optimal uses of
the resource and maintenance of its renewability. The recruitment rate is one of the
most important determinants of the capacity of a stock to sustain exploitation (Getz et
al. 1987; Quinn et al. 1990). Recruitment dynamics also determine harvest management
strategies applied to the stock. If recruitment is not related to the corresponding

spawning stock, yield per recruit or economic return per recruit is a natural choice for
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the harvest management strategy (Beverton and Holt 1957). Otherwise, other
management strategies should be used (Getz and Haight 1989). Thus, the problem of
recruitment dynamics lies at the heart of fisheries management.

Stock-recruitment relationships describe the density-dependent variation of
recruitment. The commonly used stock-recruitment models were developed by Ricker
(1954) and Beverton and Holt (1957). Both models were derived from assumptions of
density~dcpénc§ent predation and/or food limitation. The Ricker model requires mortality
to be dependent on spawning stock abundance, whereas the Beverton-Holt model has
mortality dependent on pre-recruit densities over a sequence of stages from eggs o
recruits. The Ricker curve is dome-shaped, with maximum recruitment occurring at an
intermediate level of spawning stock. The Beverton-Holt curve is asymptotic. Deriso
(1980) described a general stock-recruitment model which includes the Ricker.
Beverton-Holt, constant recruitment and Schaefer models (Schaefer 1957) as special
cases. Cushing (1971) derived another common stock-recruitment model, relating
density-dependence to fecundity. Fish with low fecundities are expected to have a near-
linear relationship of recruitment with spawners, whereas the Ricker dome-shaped
curves would be characteristic of fish with high fecundities. Shepherd (1982) developed
a general model which can mimic the Ricker and Cushing curves and includes the
Beverton-Holt model as a special case. A Markov probability transition matrix model
1s also commonly used to describe stock-recruitment relationships (Getz and Swartzman
1981 Swartzman et al. 1983; Overholtz et al. 1986).

Stock-recruitment models have been fitted to a variety of data sets on marine
fishes (Cushing 1973; Cushing and Harris 1973; Csirke 1980; Jakobsson 1980: Buck
and Hay 1984; Garrod and Jones 1974; Huang and Walters 1983). The models often
explain only a small proportion of the recruitment variation. The apparent lack of stock-
recruitment relationships in many fish stocks can be attributed to measurement errors
in both stock and recruitment data (Walters and Ludwig 1981). stochasticity of actual
recruitment, or the actual lack of relationship between recruitment and spawning stock

over the observed range of dat.
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The difficulty of using spawning stock to explain variation of recruitment has
led to innumerable correlation studies in which recruitment indices are correlated with
one or more environmental variables (Davydov 1989; Donnelly 1983; Chebanov 1989:
Koslow et al. 1987; Lasker 1978; Shepherd et al. 1984; Wespestad 1991; Quinn and
Niebauer in press; Zebdi and Collie in press). Based on an assumption that recruitment
success is primarily determined by physical factors, these correlation studies aim at
nnderstandirig of recruitment variation and prediction of recruitment. Although some
environmental factors may have a plausible causal mechanism to affect spawning
success and pre-recruit survival, and in some cases regressions are highly significant,
few of these predictions of recruitment have stood the test of time. As pointed out by
Walters and Collie (1988): "It is entirely too easy to find spurious correlations”.

Another approach is to examine the recruitment patterns of different fish stocks
within or between regions to determine whether recruitment is regulated through large-
scale environmental forcing or biological interactions (Koslow 1984). If recruitment is
controlled primarily by large-scale environmental forcing, positive correlation should
be evident among recruitment for the same species over broad spatial scales (Koslow
1984). On the other hand, if recruitment is predominantly regulated through biological
interactions, stock-recruitment relationships should be evident. Koslow (1984) examined
recruitment patterns in northwest Atlantic fish stocks and concluded that large-scale
physical forcing primarily regulates recruitment. Hollowed et al. (1987) expanded
Koslow’s study to northeast Pacific stocks and found that recruitment success is strongly
influenced by environmental conditions. Pepin (1990) studied biological correlations of
recruitment variability in North Sea stocks and suggested that the dominant association
is between fluctuations in recruitment and plankton abundance.

In this paper, I examined stock-recruitment data of 19 herring stocks from the
north Atlantic and northeast Pacific Oceans. First, density-dependent effects and stock-
recruttment relationships were examined, aiming at testing the hypothesis that
recruitment ot herring is independent of its spawning stock size and at examining the

shape of stock-recruitment curves. Then, recruitment patterns were studied to determine



the possible role of large-scale physical forcing in herring recruitment variation.

METHODS

Data

Time series of recruitment and spawning biomass for 19 herring stocks from the
north Atlantic and northeast Pacific Oceans (Clupea harengus and Clupea pallasi) were
collected from various sources (Table 2.1 and Figure 2.1). These time series were
derived either by virtual population analysis (VPA) tuned by auxiliary information or
catch-at-age analysis with auxiliary information. Recruitment is defined as ages 1, 2 or
3, depending on stock, and was identified by brood year termed "year-class". The
estimates of stock and recruitment in the most recent years are highly influenced by
fishing mortality and auxiliary information in the terminal year. To reduce this
uncertainty, I discarded the data after year-class 1986, i.e., at least the data in the most
recent three years were discarded. The abundances at age 0 for Norwegian spring
spawning stock were multiplied by 0.51 (the survival rate from the lightest fishing year-
class 1950 during 1950-1969) to get recruitment at age 3 from 1950 to 1969 because
juvenile herring of this stock suffered high fishing mortality during this period
(Dragesund et al. 1980) and the recruitment data after 1969 are available only at age 3
(Anonymous 1993). In this study, [ accepted the stock definitions in the data sources

because the stock-recruitment data are available only for the defined stocks.

Stock-recruitment Relationships

Four approaches were used to test the two null hypotheses: 1) per capita
recruitment is independent of spawning stock size and 2) total recruitment is
independent of spawning stock size. First, Cushing (1971) proposed a simple stock-
recruitment model:
(1) R=aSh
where R is recruitment, S is spawning biomass, « is a constant and b is an index of

density dependence. When b is negative and as S approaches zero, R approaches




Table 2.1. Summary of data sources for 19 herring stocks.

et
[ee}

Stock Notation  Year-Class  Data Source

I North Sea NSea 48-90 Anonymous (1992)

2 ICES District Via North ViaN 70-89 Anonymous (1993)

3 Icelandic summer spawners  IceSum 48-89  Anonymous (1993)

4 Icelandic spring spawners IceSpr 48-72  Jakobsson (1980)

5 Norwegian spring spawners  Norwe 50-69  Dragesund et al.(1980)
70-89  Anonymous (1993)

6 Gulf of Maine Maine 66-90  NEFC (1992)

7 Newfoundland WBNDB WBNDB 64-82  Wheeler et al. (1985)

8 Newfoundland CBTB BBTB 64-82 Wheeler et al. (1985)

9 Newfoundland CBSS CBSS 64-82 Wheeler et al. (1985)

10 Eastern Bering Sea EBS 56-89  Zheng et al.(in press a)

Il Prince William Sound, AK  PWS 69-89  Funk & Zheng (1992a)

12 Sitka Sound, AK Sitka 68-89  D. Carlile, ADF&G

13 Seymour Canal, AK Seymour 73-89  D. Carlile, ADF&G

14 Kah Shakes, AK KahS 73-89  D. Carlile, ADF&G

15 Prince Rupert, BC BCPR 48-89  Schweigert et al.(1993)

16 Queen Charlotte Is., BC BCQCI 48-89 Schweigert et al.(1993)

17 Central Coast, BC BCCC 48-89  Schweigert et al.(1993)

18 West Vancouver Is..BC BCWV] 48-89 Schweigert et al.(1993)

19 Strait of Georgia, BC BCSG 48-89  Schweigert et al.(1993)

Abbreviations:

WBNDB: White Bay-Notre Dame Bay
CBTB: Bonavista Bay-Trinity Bay
CBSS: Conception Bay-Southern Shore
AK: Alaska, USA

BC: British Columbia, Canada.
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infinity. so the Cushing model is unrealistic for some data ranges. But the model is
handy for testing recruitment density-dependence. Linearizing equation (2.1) results in:
(2.2 In{R) = In(a) + b In(S).

Thus. testing the null hypotheses is equivalent to testing b values. Parameters a and b
were estimated by an ordinary linear regression. Log transformation of recruitment
reduces the influences of outliers of stock-recruitment data on parameter estimation and
gives an equal weight to each data p@iﬁt« Parameter b measures the degree of density
dependence of stock-recruitment data (Cushing 1971). It b is not significantly different
from 1, then the per capita recruitment (or the survival rate from egg to recruit) is
independent of egg density (null hypothesis (1)) because spawning biomass is
approximately proportional to fecundity for herring (Ware 1985). If b is not significantly
different from 0, then total recruitment (or year-class strength) is independent of
spawning btomass (null hypothesis (2)).

Secondly, I used Ricker’s stock-recruitment model to test density-dependence of
recruitment. The Ricker model is
(23) R=oaSexp(-BS+v)
and is linearized as
(24) In(R/S) =In(ax) - B S + v,
where

Vi = 0p O Vi 0 Vs
and r stands for time (year), o and f are parameters, and v, is a noise term. In contrast
to the common assumption of normality of v, (Walters 1986), 1 assumed v, as being
autocorrelated over time as some recruitment data indicated. ©, 1s normally and
independently distributed with mean of 0; o; and o, are autocorrelation coefficients. An
autocorrelation regression (procedure AUTOGRE, SAS Institute Inc. 1988) with a
maximum likelihood method was used to estimate parameters o, P, o, and o,. The
advantage of autocorrelation regression 1s to reduce the influence of the noise term on

the parameter estimates in the autocorrelation process. If 3 is significantly different from



31

0. we can reject the null hypothesis (1). In addition, autocorrelation coefficients o and
o, were tested for significance for each data set.

Thirdly, 2 nonparametric classification technique (Rothschild and Mullen 1985)
was used to classify the stock-recruitment data. A chi-square test (for data sets with 30
or more data points) and Fisher’s exact test (for data sets with less than 30 data points)
were applied to test the null hypothesis (2). A 2*3 classification utilized the median
recruitment, 1/3 quantile and 2/3 quantile of spawning biomass to divide stock-
recruitment data into 6 categories. Quantile is the same as percentile except that quantile
refers to a fraction of a data set while percentile refers to a percent of a data set. A
value of | was assigned to a datum when recruitment was equal to or above the median:
otherwise 0 was assigned.

Finally, a LOWESS (locally weighted regression scatter plot smoothing)
procedure (Becker et al. 1988) was used to robustly smooth the logarithm of recruitment
data aguinst spawning biomass to reveal stock-recruitment relationships. Log
transformed recruitment data reduced the influence of extreme year-classes and residuals
derived from the smoothed curve approximated a normal distribution. I used 0.5 as the
fraction parameter f in the LOWESS procedure (Becker et al. 1988) to achieve a
relatively good fit for all data. The null hypotheses were not tested statistically, but

examined visually.

Recruitment Patterns

Three forms of recruitment data transformations were used to examine
recruitment patterns for herring: 1) log-transformed recruitment (Log(R)), 2) first order
differences of log-transformed recruitment (Dlog(R), i.g., for a given year ¢. Dlog(R))
= log(R,, ) - log(R) , and 3) residuals from the LOWESS curves (Lowess-Res). Log
transformation of recruitment minimizes the influences of extreme year-classes.
normalizes the data, and emphasizes long-term, low frequency variations (Koslow 1984:
Hennemuth et al. 1980). First-order diftferences of log-transformed recruitment filter out

low frequency variations and first-order autocorrelation of recruitment, and concentrate
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on short-term, high frequency variations (Pepin 1990: Thompson and Page [989).
Residuals from fitted stock-recruitment curves reflect recruitment variation independent
of spawning stock size.

All time series of recruitment data in each of these three forms were tested for
normality by the Lilliefors test (Conover 1980, p357). The null hypothesis of normality
was rejected for only 3 out of 57 data sets at a significance level of 0.05. Thus,
Pearson’s product-moment correlation coefficients were used to test whether recruitment
data sets between any two stocks are significantly correlated.

Hierarchical cluster analyses were conducted on 15 stocks for year-classes 1973-
1986 for each of these three data forms. The other 4 stocks were excluded because their
data did not completely overlap this time period. The distance for clustering was
obtained through | minus the correlation matrix and average distance was used for
clustering, |

Year-class strengths were summarized in terms of ratio of maximum to minimum
recruits, coefficient of variation, and frequency of stronger than average year-classes.
These statistics provide direct comparisons of year-class variations and skewness of

recruitment distributions from different stocks.

RESULTS

Stock-recruitment Relationships

Two approaches were used to study the relationships of herring stock-
recruitment: the two null hypotheses were tested statistically and then stock-recruitment
data were smoothed to reveal the relationships. Table 2.2 summarizes the test statistics.
The recruitment for three stocks (Prince William Sound, Sitka, and Kah Shakes) was
too variable to reject the null hypothesis of 5 = 0 or b = 1. For the remaining 16
stocks. only two stocks (the Ieelandic spring spawners and Norwegian spring spawners)
have b values not significantly different from 1 at 0.05 level (Table 2.2). The b values
for all other stocks were significantly less than I, Le.. per capita recruitment decreases

as the spawning stock increases and thus the stock-recruitment relationships are
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Table 2.2. Summary of test statistics of density independence for herring recruitment
from 19 stocks.

Stock Cushing Model Ricker Model Nonpar.

b p(=0) p(=1) -B*S pa pn @ p,; @ Py P

NSea 0.52 .000 .000 -0.76 .000 .000 0.20 .222 0.34 .044 .007
ViaN 0.15 .425 .000 -0.75 .005 .00l 0.00 .996 0.19 .537 .589
IceSum  0.52 .001 .001 -0.57 .119 .027 0.46 .011 0.02 910 .003
IceSpr 1.20 .000 .097 -0.43 433 .630 0.72 .013 0.17 .553 .00l
Norwe 0.88 .000 .266 -0.15 .409 310 0.14 .464 0.02 .897 .000
Maine 0.10 .446 .000 -0.82 .002 .000 0.19 463 0.07 .770 .536
WBNDB -1.81 .024 .002 -2.06 .117 .002 0.38 .242 0.25 499 .004
BBTB -1.79 .006 .000 -3.60 .000 .000 0.51 .103 -0.49 .157 .004
9 CBSS -0.91 .094 .003 -1.72 .065 .009 0.73 .053 -0.23 .513 .30l
10 EBS -0.52 .089 .000 -1.89 .000 .000 0.42 .052 -0.16 492 .047
Il PWS 0.50 .534 540 -0.70 .369 .635 0.02 .442 -0.57 .076 .037
12 Sitka 0.49 338 316 -0.53 .296 .600 0.59 .057 -0.71 .028 .145
13 Seymour -0.72 .087 .001 -1.83 .002 .000 0.17 .649 -0.41 .402 .056
14 KahS -0.69 375 .048 -1.77 .055 .074 -0.12 .803 -0.27 .605 .455
15 BCPR 0.09 .688 .000 -0.85 .018 .000 0.49 .011 -0.07 .707 .097
16 BCQCI  0.14 .444 000 -0.97 .001 .000 0.31 .088 -0.05 .787 .717
17 BCCC 0.08 .654 .000 -1.13 .000 .000 0.08 .683 -0.06 .754 .264
18 BCWVI  0.10 .581 .000 -0.86 .008 .002 0.41 .032 0.07 .713 .264
19 BCSG 0.34 .046 .000 -1.02 .000 .000 0.55 .005 -0.06 .759 .013

o N B W —

Abbreviations:

b: value of parameter b in equation (2.1)

p(=0): p value for null hypothesis of b =0

p(=1): p value for null hypothesis of b = 1

B*S: value of parameter B in equation (2.3) times mean spawning biomass
pa: p value for null hypothesis of B = 0 with autocorrelation regression
pn: p value for null hypothesis of B = 0 with ordinary regression

o,: autocorrelation coetficient with a time lag of one year

Pui: P value for null hypothesis of a; = 0

o,: autocorrelation coefficient with a time lag of two yeuars

Pui: P value for null hypothesis of o, = 0

p: p value for chi-square test of density independence.
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compensatory. Thus hypothesis (1) was rejected for 14 out of 16 stocks. The b values
for two of the Newfoundland stocks were significantly less than zero at 0.05 level
(Table 2.2), suggesting an overcompensatory stock-recruitment relationship.

Testing b = 0 is equivalent to testing the null hypothesis (2). The null hypothesis
{(2) was rejected for 6 out of the 9 Atlantic stocks and for 1 out of the 10 Pacific stocks
with a significance level of 0.05. Overall, more than 50% of stocks failed to reject the
null hypﬁthésis. With a significance level of 0.1, the null hypothesis was rejected for
10 out of 19 stocks.

The nonparametric classification tests the null hypothesis (2) by a different
statistical method. Results generally resemble the test of b = 0. For 9 and 11 out of 19
stocks, the null hypothesis was rejected at significance levels of 0.05 and 0.1.
respectively. The results also suggest that herring recruitment in the northeast Pacific
is less dependeﬁt on spawning biomass than recruitment to the north Atlantic stocks
(Table 2.2).

An alternative index of density dependence is the product of -B from the Ricker
curve and mean spawning biomass (Cushing and Harris 1973; Winters and Wheeler
1987). The indices for all 19 stocks varied from -0.15 to -3.6 and were all negative
(Table 2.2), indicating the compensatory stock-recruitment curves. Fourteen out of the
19 stocks rejected the null hypothesis (1) of B = 0 with an ordinary Ricker model at a
significance level of 0.05 (Table 2.2). When autocorrelations with time lags of | and
2 years were included in the Ricker model, only 11 out of the 19 stocks rejected the
null hypothesis (1). The autocorrelation coefficients with a time lag of 1 year were
generally positive and ranged from -0.12 to 0.73, with most of them less than 0.4. Only
5 out of the 19 stocks had autocorrelation coefficient o, significantly different from 0
at 0.05 probability level. Autocorrelation coefficient o, was not significantly different
from 0 in 17 out of the 19 stocks. Although not shown here, no stocks had significant
autocorrelation coefficients with a time lag of more than 2 years.

The LOWESS procedure was used to smooth the stock-recruitment data, The

stock-recruitment relationships are population-dependent. For the Pacific stocks. strong
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dome-shaped stock-recruitment curves occurred with the Seymour Canal and the Strait
of Georgia stocks, and weak dome-shaped curves occurred with the eastern Bering Sea,
the central coast of British Columbia and Prince Rupert stocks (Figure 2.2). The year-
class strengths appeared independent of spawning biomass for the Queen Charlotte
Island and the west coast of Vancouver Island stocks. No meaningful stock-recruitment
relationships were found for the Prince William Sound. Sitka Sound, and Kah Shakes
stocks.

Stock-recruitment relationships were better defined for the Atlantic stocks than
the Pacific stocks. A curve with a shape between a Beverton-Holt curve and a Ricker
curve was revealed for the North Sea, Icelandic spring spawning and Norwegian spring
spawning stocks, with weak recruits associated with low spawning biomass (Figure 2.3).
A dome-shaped curve was apparent for the stock in ICES district Via north. Lower and
much more variable recruitments were associated with low spawning biomasses than
with high spawning biomasses for the Icelandic summer spawning stock. Strong dome-
shaped curves were evident for the three Newfoundland stocks, with weak recruitments
associated with high spawning biomasses. No apparent stock-recruitment relationship

was found for the Gulf of Maine stock.

Recruitment Patterns

Recruitment data were transformed in three ways (Log(R), Dlog(R), and Lowess-
Res) and compared in Figure 2.4. Dlog(R) represented high frequency components in
the recruitment data and were more variable than Log(R) and Lowess-Res data. Lowess-
Res data were similar to Log(R) data for stocks in which spawning biomass explained
little variation of recruitment.

Table 2.3 summarizes the p-value matrices for testing correlation between the
recruitment data for different stocks. The p value gives the probability of obtaining a
value of the test statistic at least as unfavorable to null hypothesis as the observed value.
Correlations were much stronger among stocks in the same region than stocks in

different regions. For Log(R) data, extremely strong positive correlations existed among
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Table 2.3. P values for the null hypothesis that the correlation coefficient equals 0 for 19 herring stocks. Negative sign
indicates a negative correlation coefficient. See notation for stock number in Tuble 2.1. (NA denotes the time series
data are not overlapped so that no correlation can be tested).

4. Log Transformed Recruitment data

Stock 2 3 4’ 5.6 7 8 9 10 11 12 13 14 15 16 17 18 19

I 'NSea .00 .73 .10 .01 .09 .00 .00 .01 -09 84 -80 .46 -45 .12 -83 .33 -78 -97
2 ViaN -84 NA 40 05 .52 .18 .57 -22 52 84 35 89 02 38 .19 .90 -.51
3 IceSum 0037 -87 -01 -00 -02 .58 -66 .54 -75 -48 .54 -97 43 5] 01
4 lceSpr 00 NA NA NA NA 06 NA NA NA NA 31 50 .16 .84 .00
5 Norwe 03 .01 04 04 16 92 .52 -95 -50 -.83 -25 23 99 3p
6 Maine A3 .21 .55 18 24 22 97 -80 .56 -82 .87 -47 -22
7 WBNDB 00 .00 -11 -88 -52 NA NA -86 -25 -37 -50 -0l
8§ BBTB 00 -39 -92 -45 NA NA .89 -26 -40 -47 -0l
9 CBSS ~37 -31 -16 NA NA 99 -22 -23 .53 -2
10 EBS 5235 13 .03 68 97 93 .94 54
Il PWS L0026 05 23 -67 89 -17 -24
12 Sitka 30 .06 .50 -30 -84 -10 -.66
13 Seymour 05 28 85 -71 -35 -.03
14 KahS 03 .13 .33 -35 -35
I5 BCPR 00000 .03 .00
16 BCQCI L0 .00 .00
17 BCCC 000 .00
18 BCWVI 00
19 BCSG 00




Table 2.3 (continue)

b. First Difference of Log Transformed Recruitment data

I NSea 02 -53 .18 .82 .72 -22 -45 -38 -34
2 ViaN -39 NA 19 .04 -82 71 -61 -96
3 IceSum =30 .03 71 .59 -31 -97 -64
4 TceSpr -63 NA NA NA NA -65
5 Norwe A4 16 .53 39 .78
6 Maine 49 46 -65 -95
7 WBNDB 00 .00 .69
8 BBTB 00 45
9 CBSS 94
10 EBS

11 PWS

12 Sitka

13 Seymou

14 KahS

15 BCPR

16 BCQCI

17 BCCC

18 BCWVI

19 BCSG



53 -80 .57 -42 -96 .63 .93 -69 -67
J7 .97 80 55 .25 14 13 17 72
- 18 -32 .73 99 -25 -34 -52 .85 -93
NA NA NA NA 46 -40 92 -81 .54
-63 80 -38 -44 -01 -07 -84 37 42
28 16 -90 82 83 76 .52 -B2 -99
73 33 NA NA -77 -84 -42 -64 -60
65 42 NA NA -60 -47 -28 -28 -28
-49 -62 NA NA -44 -32 -07 -33 -33
85 74 .02 .02 .30 .22 -63 -61 -8l
00 84 42 35 -81 -91 -15 -25

-98 35 43 -90 .78 -61 .97

06 .10 .22 -93 -64 -.15

000 .01 .21 -91 97

D001 17 13

00 .04 .01

00 .00



Table 2.3 (continue)
¢. Residuals from LOWESS Fit Stock-Recruitment Data

Stock 2 3 4 5 6 7 8 9 10

I NSea .00 -63 .67 -90 .68 -17 -50 -43 -.55
2 VN 05 NA 25 .19 -24 .65 -13 .81
3 IceSum 34 .62 -91 -82 -25 -55 -.64
4 lceSpr -03 NA NA NA NA 55
S5 Norwe 31 68 04 25 .39
6 Maine d0 700 .67 <06
7 WBNDB -.82 .02 -.13
8 BBTB 19 .06
9 CBSS -.44
10 EBS

11 PWS

12 Sitka

13 Seymour

14 KahS

15 BCPR

16 BCQCI

17 BCCC

18 BCWV1

19 BCSG




-96 -39 27 -61 28 78 .57 -8 -44
-98 -70 .61 27 .03 44 07 .64 -.11
-30 -70 -80 -54 91 .61 .66 .10 .03
NA NA NA NA 30 -62 -97 -36 .79
=90 .49 -30 -46 -69 -25 30 31 .41
-61 -40 -50 66 28 39 21 46 -47
69 -99 NA NA -67 .33 94 .50 -94
53 .33 NA NA 71 -17 -16 -22 46
-60 -.66 NA NA -99 -71 -38 .56 .49
A8 12 1t 28 78 -37 -47 -33 66
00 .89 .09 80 -77 92 -.19 -28

-86 .28 -30 -37 -88 -28 .80

24 88 74 -19 -14 -01

27 11 42 -67 -63

00 .00 .01 .0t

000 .00 .00

00 .00
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all 5 stocks in British Columbia, among 3 stocks in Newtfoundland, between the Prince
William Sound and Sitka Sound stocks, between the North Sea and ICES district Via
north stocks, and between the Icelandic summer spawning and Norwegian spring
spawning stocks (Table 2.3a). Among significant inter-regional comparisons, stocks of
North Sea and Norwegian spring spawners were positively correlated to three
Newfoundland stocks which were in turn negatively associated the Icelandic summer
spawning stock and the Strait of Georgia stock in British Columbia. The Kah Shakes
stock in Southeast Alaska was positively and significantly correlated with all stocks
from the eastern Bering Sea to Prince Rupert in the northern part of British Columbia.
However, the Seymour stock in Southeast Alaska did not associate with any of these
stocks other than the Kah Shakes stock.

After filtering out the low frequency signals by differencing, correlations among
the Dlog(R) data were less significant than the Log(R) data. For the Dlog(R) data, the
correlations were generally positive among stocks within the same region and negative
among stocks in different regions (Table 2.3b). But the correlations among stocks in
different regions were very weak, with most of p values larger than 0.2. With a
significance level of 0.05, significant correlations accurred between the North Sea and
ICES district Via north stocks, between the Icelandic summer spawning and Norwegian
spring spawning stocks, between Norwegian spring spawners and the Gulf of Maine
stocks, and among the three stocks in Newfoundland. Of the Pacific stocks, the eastern
Bering Sea stock did not associate with its neighbor stock of Prince William Sound, but
with the Seymour and Kah Shakes stocks in Southeast Alaska. The Prince William
Sound and Sitka Sound stocks were strongly correlated with each other, but not with
other stocks. The stocks in the central and southern British Columbia were strongly
associated with each other, but the Prince Rupert stock was correlated only with its
neighbor Queen Charlotte Island and central coast stocks in British Columbia and the
Kah Shakes stock in the Southeast Alaska.

After removing the influences of spawning biomass. the correlations among

stocks with the same region decreased (Table 2.3¢). For the LOWESS-Res data, the
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strong positive correlations still held between the North Sea and ICES district Via north
stocks, between the White Bay-Notre Dame Bay and Conception Bay-Southern Shore
stocks in Newfoundland, between the Prince William Sound and Sitka Sound stocks.
and among the stocks in British Columbia.

Three large clusters were found with the Log(R) data: an Atlantic group
(Icelandic summer spawners, Norwegian spring spawners, the Gulf of Maine, North Sea
and ICES district Via north), a central and southern British Columbia group (West
Vancouver Island, Strait of Georgia, Queen Charlotte Island and central coast of British
Columbia), and a northern Pacific group (eastern Bering Sea, Seymour Canal, Prince
William Sound, Sitka Sound, Kah Shakes and Prince Rupert) (Figure 2.5). These three
groups did not relate to each other. Within each group. many stocks were not associated
with each other with a 0.05 significance level. Five small and strongly associated
clusters were evident among the 15 stocks: Prince William Sound and Sitka Sound, Kah
Shakes and Prince Rupert, West Vancouver Island and Strait of Georgia, Queen
Charlotte Island and central coast of British Columbia, and North Sea and ICES district
Via north.

For the high frequency data of Dlog(R), the distances between the large clusters
were somewhat longer than the Log(R) data (Figure 2.6). The small and closely
associated clusters also included Prince William Sound and Sitka Sound, and North Sea
and ICES district Via north. But another three small clusters emerged different from the
Log(R) data. Three stocks from neighborhood geographic areas (Queen Charlotte Island.
Prince Rupert and Kah Shakes) formed a strong cluster. Three stocks from the central
and southem British Columbia (central coast. west Vancouver Island and Strait of
Georgia) were linked as another cluster. the eastern Bering Sea stock was associated
with the Seymour Canal stock to form a cluster.

Compared with the Log(R) and Dlog(R) data. the major difference with the
residuals from LOWESS fits of stock-recruitment data was that the Atlantic stocks were
not grouped together other than the Icelandic summer spawning and Norwegian spring

spawning stocks (Figure 2.7). Other mujor differences were that the Kah Shakes stock
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Figure 2.5. Cluster diagram of log-transformed herring recruitment data from 15 stocks
in the north Atlantic and northeast Pacific Oceans. Group-average linking was used. See
stock notations in Table 2.1.
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Figure 2.6. Cluster diagram of first-difference of log-transtormed herring recruitment |
data from 15 stocks in the north Atlantic and northeast Pacific Oceans. Group-average
linking was used. Sea notations in Table 2.1.
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Figure 2.7. Cluster diagram of residuals from LOWESS fitted curves of herring stock-
recruitment data from 15 stocks in the north Atlantic and northeast Pacific Oceans.
Group-average linking was used. Sea notations in Table 2.1.
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did not relate to its neighbor the Prince Rupert stock at all, and that the eastern Béring
Sea stock was more closely associated with the Prince William Sound and Sitka Sound
stocks. The clusters were more loosely grouped together with the residual data than the
Log(R) and Dlog(R) data because the correlations among the stocks were weaker for
the residual data than the other two data forms.

Herring recruitment was very variable, with the ratio of maximum to minimum
recruitment up to 700 (Table 2.4). With stocks having more than 30 years of data, the
strongest year-class was at least 29 times larger than the weakest one. Some stocks, like
Icelandic spring spawners, still have not recovered after collapsing about three decades
ago. The recruitment distributions of many stocks (3 Newfoundland stocks, Prince
William Sound, Sitka Sound, Kah Shakes, Queen Charlotte Island, and central coast of
British Columbia stocks) were highly skewed to the strong year-classes and the
populations were basically supported by a few stronger-than-average year-classes (Table
2.4). Some stocks, especially the Atlantic stocks, could take up to 17 years to get a
stronger-than-average year-class. The variations of year-classes 1970-1986 were
generally similar to year-classes 1948-1986 with one exception. The Norwegian spring
spawning stock had only one stronger-than-average vear-class during 1970-1986.
Overall, the recruitment of less variable stocks (North Sea, ICES district Via north,
Icelandic summer spawners, Seymour Canal and Strait of Georgia) depended more

strongly on spawning biomass than did other more variable stocks (Tables 2.2 and 2.4).

DISCUSSION :
Herring, classified by Cushing (1982) as an "environmental type” species, is one
of the marine fish species with the most variable recruitment. For such a fish species,
is recruitment related to its spawning stock? The answer 15 definitely yes, at least at low
spawning stock levels. It is intuitive that recruits are survivors from the eggs which are
spawned by the spawning stock. No eggs will result in no recruits in a closed
population. The critical questions are how important are the density-dependent effects

on recruitment and whether we can detect them statistically. The results in this study
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Table 2.4. Summary of herring recruitment from 19 stocks in the north Atlantic and
northeast Pacific Oceans.

Year-classes 1948-1986 Year-classes 1970-1986

Stock Ratio C.V. N Yr N/yrMaxyr Ratio C.V. N Yr N/yr Maxyr
I NSea 512 071 18 39 22 17 359 091 6 17 28 >12
2 ViaN 7.1 055 8 17 21 6 7.1 055 8 17 21 6
3 IceSum 417 074 18 39 22 ¥ 154 074 6 17 28 »5
4 JeeSpr 121070 090 9 22 24 >30 NA NA NA NA NA NA
5 Norwe 6208 1.57 13 37 2.8 17 1685 273 1| 17 17.0 >14
6 Maine 185 066 8 21 26 6 185 070 6 17 28 6
7 WBNDB 1696 141 5 16 32 >10 296 123 4 10 25 5
8 BBTB 5203 215 3 16 53 >10 317 126 3 10 33 7
9 CBSS 7353 237 4 16 40 >10 360 109 4 10 25 5
10 EBS 1357 098 10 31 3.1 >7 1357 L18 4 17 43 >7
11 PWS 669 126 S5 18 36 6 669 123 5 17 34 6
12 Sitka 4290 145 4 19 48 >9 4290 136 4 17 43 >7
13 Seymour 6.2 053 6 14 23 >5 6.2 033 6 14 23 >5
14 KahS 202 100 4 14 35 >5 202 1.00 4 14 35 >5
15 BCPR 572 075 14 39 28 9 102 076 5 17 34 >8
16 BCQCI 131.7 125 10 39 39 8 434 119 6 17 28 5
17 BCCC 03 09 12 39 33 9 187 1.08 4 17 43 8
18§ BCWVI 137.2 0.68 15 39 26 10 152 077 6 17 28 10
19 BCSG 289 058 16 39 24 10 47 045 8 17 2.1 6
Average 178.2 1.09 3.2 57.5 099 3.6
Abbreviations:

Ratio: ratio between the strongest to weakest year-classes

C.V.: coetficient of variation of recruitment

N: number of stronger-than-average year-classes

Yr: total number of years with recruitment data

N/yr: average number of years between stronger-than-average year-classes (equal to
number of stronger-than-average year-classes divided by total number of yeurs)

Maxyr: maximum number of years between stronger-than-average year-classes (i.e.,
maximum interval between two stronger-than-average year-classes).
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indicate that recruitment from the majority of the 19 herring stocks in the Atlantic and
Pacific Oceans is compensatory density-dependent. The survival rates from eggs to
recruits decrease as the spawning biomass increases. The relationships between year-
class strength and spawning biomass are difficult to detect. These relationships cannot
be detected for slightly more than half of the stocks at a 0.05 significance level. Three
different statistical tests (2 parametric and | non-parametric tests) reach similar
conclusions.

As expected, a majority of the stocks have a dome-shaped stock-recruitment
curve, with strong recruitment associated with intermediate spawning biomass. Dome-
shaped stock-recruitment curves have been reported for several herring stocks worldwide
(Cushing 1973), for the herring stock in the Strait of Georgia (Stocker et al. 19%5), and
for several Newfoundland herring stocks (Winters and Wheeler 1987). The dome-shaped
curve may partially result from density-dependent mortality of herring eggs. Herring are
demersal spawners with limited spawning grounds due to limited suitable bottom
substrate for spawn deposition (Haegele and Schweigert 1985). A large spawning
biomass deposits a high density of eggs that result in high egg mortality due to
suffocation (Haegele and Schweigert 1985). On the other hand, high egg mortality may
result from the low egg density because predation of herring eggs by birds is relatively
constant over time (Haegele and Schweigert 1985). Maximum larval production was
observed to occur at medium egg densities (Taylor 1971). A detailed discussion on the
biological basis of the dome-shaped stock-recruitment curve for herring can be found
in Winters and Wheeler (1987).

Stock-recruitment relationships for some herring stocks were neither statistically
nor visually apparent. Measurement errors in the estimation of spawning stock and
recruitment and stochasticity of actual recruitment due to environmental variation can
mask these stock-recruitment relationships (Walters and Ludwig 1981). Current survey
methods of herring abundances include aerial, spawn deposition, hydroacoustic and
larval trawl surveys (Jukobsson 1985; Trumble and Humphreys 1985), which are prone

to different levels of measurement errors. Koslow (1992) demonstrated that a stock-




50

recruitment relationship could not be defined for a fish stock with high fecundiry. High
fecundity could increase variation of recruitment, which results in difficulty in detecting
the stock-recruitment relationship. But high fecundity does not necessarily mask the
stock-recruitment relationship for herring stocks, because many herring stocks in this
study have similar fecundity and natural mortality. but some of them have well-defined
stock-recruitment relationships and others do not.

For a given spawning biomass, stock-recruitment relationships can describe only
mean recruitment, which is likely modified by environmental conditions and mult-
species interactions. Thus, stock-recruitment relationships are valuable in studying long-
term harvest strategies (Walters 1986), but not accurate for short-term forecasts.
Spawning stocks and environmental factors are usually combined to examine
recruitment dynamics. Wespestad (1991) showed that herring recruitment in the eastern
Bering Sea was related to spawning biomass, sea surface temperature and wind-driven
transport. Stocker et al. (1985) indicated that spawning stock. sea surface temperature
and summer river discharge were important factors in determining year-class strengths
of the Strait of Georgia herring. Winters and Wheeler (1987) concluded that much of
the recruitment variation of seven herring stocks in Newfoundland could be explained
by spawning stock, sea surface temperature and salinity. Although many correlation
studies such as the above indicate that recruitment was highly significantly associated
with environmental factors, it is an open question whether such correlations are real or
spurious. Schweigert and Noakes (1991) showed that stock-recruitment models
combined with environmental factors did not improve the recruitment forecast precision
of British Columbia herring stocks from the stock-recruitment models without
environmental factors., Thus, recruitment-environmental relationships are probably not
useful for predicting recruitment. However, recruitment-environmental relationships are
useful for factoring out some of the recruitment variation to better reveal the underlying
stock-recruitment relationship. For example, the stock-recruitment relationship was not
apparent for the Sitka Sound herring stock until the effect of seu surface temperature

was removed (Zebdi and Collie in press). The relationships between herring recruitment
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and environmental factors may be far more complex than simple correlation studies
reveal.

Herring recruitment variation may also be partially caused by species
interactions. Walters et al. (1986) demonstrated that the herring recruitment in the
Hecate Strait, British Columbia, is strongly influenced by cod predation, Ware and
McFarlane (1986) showed that the herring year-class strengths off the west coast of
Vancouver Island are weakly correlated with the biomass of adult Pacific hake.
However, the effects of species interactions on herring recruitment from elsewhere have
seldom been demonstrated.

Recruitment data transformations (e.g., Log (R)) that emphasize low-frequency
variation have stronger correlations between different stocks than the transformations
(e.g., Dlog(R)) that emphasize high-frequency variation. After removing the influence
of spawning stocks, the data sets have the weakest correlations among these three data
sets. These results are consistent with the conclusions by Hollowed et al. (1987) in
which correlations among low-frequency data were much stronger than among the high-
frequency data. The strong correlations among low-frequency data might be caused by
the synchrony of recruitment, autocorrelation of recruitment or by both. Positive
autocorrelation with a time lag of one year occurred for some stocks. Taking the first-
differences of log-transformed recruitment can increase the reliability of the statistical
test (Thompson and Page 1989). Overall, the three data forms shared some common
results: significant. positive correlations existed among neighboring stocks for some
areas. Since this synchrony could not be explained by spawning biomass, the
environmental forcing may be an important factor on herring recruitment within a
certain geographic area.

In the north Atlantic Ocean, three oceanic stocks. Icelandic summer spawners,
Icelandic spring spawners and Norwegian spring spawners, are not closely related,
although they share u common environment during certain periods of life cycles
(Jakobsson 1980). Strong recruitment occurred for the Icelundic summer spawners

regularly, whereas Norwegian spring spawners took 17 vears to produce a strong year-
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class after the collapse in the late 1960’s. Icelandic spring spawners have not recovered
after their collapse about three decades ago. It is apparent that local environments and
spawning stocks are important regulators of these stocks. The North Sea and ICES
district Via north stocks are neighboring shelf stocks. The recruits of these two stocks
are highly correlated. although the recruitment of ICES district Via north stock is much
more variable interannually. Common environmental forces might have influenced these
two close stocks, but more than half of recruitment variations for both stocks could be
explained by spawning biomass alone. Recruitment dynamics of herring stocks in
Newfoundland were comprehensively examined by Winters and Wheeler (1987). Three
geographically close stocks in Newfoundland are subjected to the influences of the
Labrador Current and highly associated each other (Winters and Wheeler 19%87). In
addition to environmental conditions, spawning biomass is also an important factor. The
environmental forces influencing Newfoundland stocks apparently do not extend to the
Gulf of Maine because there is no association between the Gulf of Maine stock and
Newfoundland stocks.

For first-differenced data sets in the northeast Pacific Ocean. the Prince William
Sound and Sitka Sound stocks are strongly clustered and their populations have
primarily been supported by strong recruitment every 4 years since 1976. Zebdi and
Collie (in press) showed that sea surface temperature significantly influences the year-
class strengths for the Sitka Sound stock, but the most crucial issue, the cause of the
strong 4-year cycle, has not been found. Since the spawning stocks of these two stocks
consist of 5 to 10 age groups and are located separately along the Gulf of Alaska. the
most likely mechanism causing the 4-year cycle is the environmental force operating
in the Gulf of Alaska. Three stocks in central and southern British Columbia are highly
correlated. Between these two groups of herring stocks are located three stocks: Kah
Shakes. Prince Rupert and Queen Charlotte Island. These three stocks are not only
closely associated each other, but also have some patterns similar to their northern and
southern neighboring groups. These three groups of herring stocks are approximately

located in three oceanic domains proposed by Ware and McFarlane (1989): the northern
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group in the Coastal Downwelling domain, the middle group in the Transition Zone and
the boundary between the Transition Zone and the Coastal Downwelling domain. and
the southern group in the Coastal Upwelling domain and the boundary between
Transition Zone and the Coastal Upwelling domain. The different recruitment patterns
in these three groups may have been caused by the different environmental forces in
three oceanic domains (Ware and McFarlane 1989). These environmental forces and
species interactions (Walters et al. 1986; Ware and McFarlane 1986) may be the
important factors that result in weak density-dependent effects on the recruitment of
many herring stocks almig the Gulf of Alaska. The eastern Bering Sea stock is not
related to the northern group, but is related to the Seymour Canal stock located on the
inside waters geographically close to the Sitka Sound stock. Why the eastern Bering Sea
and Seymour Canal stocks are associated is not clear. but about half of recruitment
variation of the easter Bering Sea stock and the most of recruitment variations of the
Seymour Canal stock could be explained by spawning biomass. The recruitment for
Seymour Canal stock may be more influenced by the local environmental conditions
than the oceanic domain because it is located in the inside waters.

The results regarding the spatial patterns in the northeast Pacific in this study are
somewhat different from the conclusions of Zebdi and Collie (in press) and Ware and
McFarlane (1989). Ware and McFarlane (1989) clustered three major groups of herring
in British Columbia from the recruitment data, and Zebdi and Collie (in press) separated
them as two groups corresponding to the Coastal Downwelling and the combined
Transition Zones and Coast Upwelling by using log-transformed recruitment data. Zebdi
and Collie (in press) also found a correspondence between these recruitment patterns
and sea surface temperature patterns. Besides the different treatment of recruitment data.
there are noticeable differences between this study and the past studies (Schweigert et
al. 1993): 1) the stock definitions for British Columbia herring have been changed; 2)
catch-age analyses for British Columbia herring have been modified to estimate
instantaneous natural mortality: and 3) different time series of recruitment data were

used. If the whole time series of log-transformed recruitment data are applied. all






































































































































































































































































































































































































































































