A VerIABLE-BOMNDARY NUNGRICAL TIDAL MODEL,

A VARIABLE-BOUNDARY NUMERICAL TIDAL MODEL

A

THESIS

Presented to the Faculty of the
University of Alaska in Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

86
303
$m 8$

By

John Christian Hartley Mungall, B.Sc., M.S.
College, Alaska
May, 1970

A numerical tidal model using equations developed by Hansen (1952) and Yuen (1967) is automated to the point where a potential user need not undertake extensive reprogramming. The user adds to the program only those cards needed to specify tides at input points as a function of time; the application of the relevant calculations at each grid point being controlled by an integer matrix that corresponds to the inlet boundary.

A sample problem is covered in detail and applications of the model to the M_{2} tide of the Gulf of California, and to a hypothetical mean tide in Cook Inlet are shorm.

ACKNONLEDGENENTS

I would like to express apprecia*ion to my commitiee chairman, Dr. J. B. Matthews, for his encouragement during the course of this work. In addition, I wish to thank the University of Alaska for finaricial support.

This study vas supported by the Office of Naval Research under contract NONR 3010(05)
page
CHAPTER I INTRODUCTION 1
CHAPTER IJ. THE CALCUIATION OF TIDES IN INLETS

1. Introduction
2. Harmonic methods5
3. Characteristic methods 10
4. Finite difference methods 16THE FINITE DIFFERENCE EQUATIONS26
5. The basic equations 26
6. The grid retworl 27
7. U-point calculadion 28
8. V-point salculation 30
9. Z-point calculation 31
10. Interpolation of values at U - and 33
V-points
11. Calculation for a special (narron) 35
case
12. The finite difference equations 38
expressed in FORTRAN IV
13. Stability of the finite difference 41 equations in two space dimensions
CHAPTER IV AUTOMATION OF THE SEQUENCE OF CALCULATTONS 44
14. The basic sequence of calculations 44
15. Automation of the inlet-tide program 46
16. Input of boundary conditions 50
17. Description of boundary-monitoring 51
process
CHAPTER V PROGRAM ARRANGEMENT 54
18. Division of the program into 54 subroutines
19. Overlays 54
CRAPTER VI GRID SELECTION AND DATA ARRANOEMTI 65
20. Grid selection 65
21. Basic data cards 67
22. Boundary data cards 69
23. Depth data cards 70
24. Initial tide-height and 71 boundary-value cards
CHAPTER VII COMPUTER OUTPUTS AND DATA ANALYSIS 74
25. Printer output 74
26. Tape outputs 75
27. Data analysis 76
CHAFTER VIII A SAMPLE PROBLEM 78
CHAPTER IX TWO APPLICATIONS OF THE MODEI. 81
28. Application of the model to the 8.M_{2} tide of the Gulf of Califonnia
29. Application of the model to the 83 tides of Cook Inlet
CHAPTER X CONCLUSIONS AND FUTURE WORK 97
30. Conclusions 97
31. Future work 98
BIBLIOGRAPHY 99
APPENDIX I LISTING OF PROGRAM FOR VARIABIE-BOUNDARY 102
TIDAL MODEL
APPENDIX II LISTING OF DATA COBERESSION SUBROUTINE 125
APPENDIX IEI LISTING OF HEICYT AND EURRENT 128
ANALYSIS PROGRAMS
CHAPTER VI GRID SELECTION AND DATA ARRANGENENT 65
32. Grid selection 65
33. Basic data cards 67
34. Boundary data cards 69
35. Depth data cards 70
36. Initial tide-height and 71 boundary-value cards
CHAPTER VII COMPUTER OUTPUTS AND DATA ANALYSIS 74
37. Printer output 74
38. Tape outputs 75
39. Data analysis 76
CHAPTER VIII A SAMPLE PROBLEM 78
CHAPTER IX TWO APPLICATIONS OF THE MODEL 81
40. Application of the model to the 81M_{2} tide of the Gulf of California
41. Application of the model to the tides of Cook Inlet 88
CHAPTER X CONCLUSIONS AND FUTURE WORK 97
42. Conclusions 97
43. Future work 98
BIBLIOGRAPHY 99
APPENDIX I LISTING OF PROGRAM FOR VARIABLE-BOUNDARY 102TIDAL MODEL
APPENDIX II LISTING OF DATA COMPRESSION SUBROUTINE 125
APPENDIX III LISTING OF HEIGHT AND CIRRENT 128ANALYSIS PROGRAMS
page
APPENDIX IV FORMAT OF OUTPUT TAPE 142
APPENDIX V SELECTIONS FROM THE SAMPLE P?OBLEM 144COMPUTER OUTPUT
page
2.1 Part of characteristic net 12
2.2 Characteristics at a boundary $(x=a)$ 13
2.3 A set of intersecting forward characteristics 15
2.4 Grid points used in the leap frog method 17
2.5 Grid points used in the implicit method 22
2.6 Section of time-space grid 24
3.1 Section of staggered grid 27
3.2 Values required for interpolations 33 at a U-point
3.3 Values required for interpolations 34 at U-points on a boundary
3.4 Narrow channel case 36
3.5 Grid points required for V-point calculation 41
3.6 Grid points required for $2-n c i n t$ calculation 42
4.1 Typical column and row through Z-pcinc, 48 with associated integer matrix input cards
4.2 Order in which grid boundaries are read 50
4.3 Flow chart for boundary-monitoring process 52
5.1 Program flow chart [(1/6) to (6/6)] 55-60
6.1 Example of simple grid 67
6.2 Order of specifying depths at V-points 70
6.3 Order of specifying depths at U-points 71
6.4 Order of specifying initial tide heights 72
page
9.1 Gulf of California, bathymetry 82
9.2 Gulf of California, co-range and co-tidal 85
lines for the M2 tide
9.3 Cook Inlet, Alaska, bathymetry 90
9.4 Cook Inlet, Alaska, co-range and 93

co-tidal lines
page
3.1 Array names 39
3.2 Transposition of some major variables 40
5.1 Phase names 61
5.2 Overlay tree 63
6.1 Example of input data cards 68
6.2 Data arrangement for example 72
8.1 Initial tide heights 79
9.1 Cards added to INPUT subroutine 92
for Cook Inlet program

CHAPTER I

INTRODUCTION

To trace the origins of tidal modeling one has to follow the history of the tides through some two thousand years. In the Occident the earliest references to tides are those of Strabo, Pliny, and Pytheas, in the first century A.D.. Such references are understandably rare as the Mediterranean is a region of small tides. The connection between tidal variations and the movement of the sun and moon being obvious, it is not surprising that some rule-of-thumb methods for tidal prediction were found and passed from father to son as closely guarded family secrete. It was not until the seventeenth century, however, that mathematics was apriied to the study of tides.

Kepler, with his studies on gravitational effects, provided Newton with the basis for his equilibrium tide thecry. This theory explained mathematically such effects as spring anđ neap tides, priming and lagging, and diurnal inequalities. Newton's theory assumed a non-inertial fluid, the particles of which instantly respond to the attractional forces of the sun and moon. Daniel Bernoulli, with his studies on the mathematics of fluids, paved the way for Laplace who formulated and applied the equations of continuity and motion to the world ocean, and demonstrated the need for harmonic tidai analysis.

The harmonic analysis of tidal records was established by Thomson (later Lord Kelvin), and in 1876 he introduced the first tide predicting machine. Further improvements in the practice of harmonic analysis were made by G. Darwin and Doodson. A new approach to tidal analysis and prediction appeared in 1965 when Munk and Cartwright presented a paper on tidal spectroscopy and prediction. This technique, the so-called "response method", allows the inclusion of input functions other than gravitational forces. With the harmonic method well established, analytical studies were made on the dynamics of water movement in canals and oceans. With these studies are associated such names as Airy, Kelvin, Lamb, Poincare; Rayleigh, Taylor, Jeffreys, Proudman, and others. The first actual model (as opposed to analytical solutions) appears to be one on the Red Sea by Blondel (1912), based on the calculus of variations. Efforts were then directed by people such as Sterneck (1914), Defant (1920), Grace (1936), and Proudman (1953), to models involving the numerical solution of the equations of motion and continuity from which the time dependency has been removed. During this period all calculations had to be performed by hand. Considerable advances in the calculation of water movements in rivers and canals were made by the Dutch, who tended more towards solutions of a mathematical nature as opposed to numerical solutions. The post-war advent of the digital computer made feasible the timedependent solution of the hydrodynamic equations. The result of the withdrawing of the time-dependency restriction was to allow
solutions of a non-1inear nature to be obtained. This is particularly desirable when tides in shallow waters are being studied. Furthermore the computer made possible calculations in two dimensions, so that cross-currents and Coriolis force effects could be included.

The first application of a two-dimensional tidal model was to the North Sea (Hansen, 1952). A further application of Hansen's explicit technique was made by Yuen (1967) to the tides of the Bay of Fundy. Both these models were, however, specifically tailored to the area being studied and were not general, i.e. the model could not conveniently be applied to other areas. This situation showed an obvious need for a variable-geometry model that could be adapted to new outlines without extensive reprogramming.

A sophisticated model of variable-geometry nature was devised by Leendertse (1967). It is based on the implicit method, which is considerably more complicated than the explicit method on account of the need for the solution of sets of simultaneous equations at each time step. It is felt that the approach used in this model is too complex for the method to be easily understood (and hence modified if desired) by users not possessing a strong background in the techniques of numerical models. In the past the users of two-dimensional tidal models seem to have been physical oceanographers or possibly civil engineers. A need now exists for a model that is not only capable of handing variable geometries, but that is also conceptually simple, well documented,
and easy to use. On these points it is felt that Leendertse's model falls short of the ideal.

In the chapters that follow, a model is developed that uses Yuen's equations in an automated form. The equations are applied as necessary by a process that monitors an integer matrix based on the positions of the inlet boundaries.

The prospective user is warned that certain stability criteria must be adhered to during the computations. These are covered in Chapters II and III.

1. Introduction--.

The prediction of tides of an astronomical origin at points close to deep seas and oceans is now, within specified limits, a routine matter. However the problem becomes more complicated when attention is turned towards shallow semi-enclosed coastal areas (henceforth referred to as inlets).

Statistical methods are now in existence that seem to be adequate for the prediction of tides in inlets, provided that longterm records are available, If it is desired that the effects of storms and changes in local topography (land reclamation, shipping channels and canals, hydroelectric projects, etc.) are to be reliably forecasted then the approach must generally involve the solution of the basic hydrodynamic equations. The simplified equations of continuity and motion are, for one dimension, from Proudman (1953):

$$
\begin{equation*}
\frac{\partial(A u)}{\partial x}+b \frac{\partial h}{\partial t}=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+g \frac{\partial h}{\partial x}+\sum F_{i}=0, \tag{2.2}
\end{equation*}
$$

where: $\mathrm{x}=\mathrm{distance}$
$\mathrm{A}=$ cross-sectional area h=total water depth

b-width
u=velocity
$t=$ time
$\mathrm{F}_{\mathrm{i}}=\mathrm{i}^{\mathrm{th}}$ force .

The equations to be solved are further simplified by assuming homogeneous flow of a long wave nature (shallow water wave), except for the case of the tidal bore. They are complicated by the inclusion of a frictional term that is essentially non-linear. The term $u \frac{\partial u}{\partial}$ is normally neglected as being small in comparison with the other terms.

When shallow water waves are being considered, the wave motion is generally assumed to be such that the vertical accelerations and velocities are negligible, i.e. the orbital motions of particles in the vertical plane are no longer circular or elliptical as with deep water waves. Once it has been assumed that the velocity vector is restricted to lie only in the horizontal plane, the depth mean velocity ean be used. If vertical current profiles for a given region are available then it may be that the mean current can be extrapolated to provide a prediction for the overall current profile.

The effect of friction is included in the equations of motion via the application of the formulae of De Chezy (in Europe) or Manning (in the United States) which were developed for the study of uniform flow in channels. When the inlet is wide compared to its depth (say, in a ratio of $10: 1$) it is customary to use for the frictional force per unit mass

$$
\begin{equation*}
F=\frac{9 u|u|}{C^{2} h} \tag{2.3}
\end{equation*}
$$

where C=De Chezy's coefficient,
which makes the friction opposite in direction to the current. In the m.k.s. system C is approximately equal to 50 meter $\frac{1}{2} \sec ^{-1}$, so
that

$$
\begin{equation*}
F \simeq \frac{0.00 \mathrm{~A} u|u|}{h} \tag{2.4}
\end{equation*}
$$

The above-mentioned equations, (2.1) and (2.2), may be dealt with in three main ways: harmonic methods, characteristic methods, and finite difference methods. For the purposes of background each method will be covered in some detail in the sections that follow.

2. Harmonic methods--

By the use of Fourier series, the tide is divided up into various constituents whose periods result from the relative motions of the earth, sun, and moon. The equations are linearised (Lorentz, 1926) by neglecting the convection term $u \frac{\partial u}{\partial x}$ and by replacing the friction term by

$$
\begin{equation*}
F=\frac{9}{C^{2} h} \frac{8}{3 \pi} u \bar{u} \tag{2.5}
\end{equation*}
$$

where $\overline{\mathrm{u}}=$ maximum amplitude of current, and the solutions for height and current are assumed sinusoidal. The time-dependence of the equations may then be removed, leaving a pair of simultaneous linear partial differential equations. It is however necessary to estimate the maximum amplitude of the current at the start of the calculations. The method becomes considerably more complicated when more than one constituent is considered at a time.

The simplest example of a harmonic type calculation is that of the solution of the tides in an inlet of constant cross section (Sverdrup, Johnson, and Fleming, 1942). If convective and frictional terms are neglected, the equations of motion and continuity become

$$
\begin{equation*}
\frac{\partial u}{\partial t}+9 \frac{\partial z}{\partial x}=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial z}{\partial t}+d \frac{\partial u}{\partial x}=0, \tag{2.7}
\end{equation*}
$$

where $Z=$ height above mean sea level
$\mathrm{d}=$ depth of water below mean sea level.
If the solution is assumed to vary sinusoidally with time,

$$
\begin{equation*}
z=\bar{z} \sin \left(\frac{2 \pi t}{T}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\bar{u} \cos \left(\frac{2 \pi t}{T}\right), \tag{2.9}
\end{equation*}
$$

where $\bar{Z}=$ maximum amplitude of tide
$\mathrm{T}=$ period of tide,
and these quantities are substituted into (2.6) and (2.7), then

$$
\begin{equation*}
-\bar{u} \frac{2 \pi}{T}+g \frac{\partial \bar{z}}{\partial x}=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{z} \frac{2 \pi}{T}+d \frac{\partial \bar{u}}{\partial x}=0 . \tag{2.11}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\bar{z}=B \cos \left(\frac{2 \pi x}{L}\right) \tag{2.12}
\end{equation*}
$$

where $\mathcal{L}=T \sqrt{\mathrm{gd}}$
$\mathrm{B}=$ constant (to be determined).
Thus

$$
\begin{equation*}
Z=B \cos \left(\frac{2 \pi x}{\mathscr{L}}\right) \sin \left(\frac{2 \pi t}{T}\right) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
u=-\frac{B g}{\sqrt{g d}} \sin \left(\frac{2 \pi x}{\mathcal{L}}\right) \cos \left(\frac{2 \pi t}{T}\right) \tag{2.14}
\end{equation*}
$$

If $x=0$ at the closed end of the inlet and the tide is specified at $x=L$ (with the maximum amplitude of the tide being H) then

$$
\begin{equation*}
Z=\frac{H}{\cos \left(\frac{2 \pi L}{\mathscr{L}}\right)} \cos \left(\frac{2 \pi x}{\mathscr{L}}\right) \sin \left(\frac{2 \pi t}{T}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\frac{-H g}{\sqrt{g d} \cos \left(\frac{2 \pi L}{L}\right)} \sin \left(\frac{2 \pi x}{\mathcal{L}}\right) \cos \left(\frac{2 \pi t}{T}\right) \tag{2.16}
\end{equation*}
$$

Equation (2.15) shows clearly that nodes, or points of zero tidal amplitude, can exist whenever $x=\mathcal{L}(2 n+1) / 4, n=0,1,2, \ldots$. Furthermore, infinite tidal amplitudes will result should $\mathrm{L}=\mathcal{L}(2 \mathrm{n}+1) / 4, \mathrm{n}=0,1,2, \ldots$, ie. whenever a node coincides with the mouth of the inlet. Practically, of course, friction will limit the infinite amplitudes; nevertheless, considerable amplification of a tidal constituent can occur should the length of the inlet be near one of its resonant lengths for that particular period.

For a comprehensive presentation of the method, the reader is directed to the book by Dronkers (1964).

3. Characteristic methods--.

The material in this section was taken chiefly from the book by Stoker (1957).

The equations of continuity and motion, (2.i) and (2.2), (neglecting all forces other than hydrostatic) may be rewritten in terms of the variables u and c (where $c=\sqrt{g h}$). Two ordinary differential equations result:

$$
\begin{equation*}
c_{1}: \frac{d x}{d t}=u+c, \text { with } u+2 c=k_{1} \text { for a given curve } \tag{2,17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}: \frac{d x}{d t}=u-c, \text { with } u-2 c=k_{2} \text { for a given curve. } \tag{2.18}
\end{equation*}
$$

These equations represent two sets of curves on the xt plane: the set C_{1} being referred to as 'forward characteristics' and the set C_{2} as 'backward characteristics'. The equations are written for a point moving relative to the bottom. If the axis is shifted to a point $\left(x_{1}, t_{1}\right)$ moving with constant velocity $V\left(x_{1}, t_{1}\right)$, then C_{1} and C_{2} become:

$$
\begin{equation*}
\frac{d x}{d t}= \pm c \tag{2.19}
\end{equation*}
$$

The importance of this is that the process may now be seen to be one of the propagation of disturbances away from the point in question with a velocity, or celerity, c.

The characteristic method is particularly useful when aperiodic conditions exist (storm surges, dam failures, lock closures,
etc.), and for situations where the flow becomes critical or supercritical, i.e. $u \geqslant \sqrt{g h}$. This situation is similar to supersonic flow in gases. In water the phenomenon is associated with hydraulic jumps and tidal bores. It should be mentioned that the characteristic method itself cannot deal with the discontinuity region. However, it is useful for indicating the time and place of occurence of the bore, and the conditions on aither side of the discontinuity. The reason for this is that at the actual discontinuity the above equations break down owing to the existence of energy losses and vertical accelerations. As far as the practicality of calculations is concerned, the characteristic method is too complicated for most- exploratory calculations, but is of greater interest when certain complicated situations are to be analysed. A further use of characteristic theory is to indicate the sufficiency of boundary conditions for a given problem.

The basic approach by which the method of characteristics is used to solve a simple initial value problem, in which the depth is constant, is as follows; If u and $c(c=\sqrt{g(d+z)})$ are known for points A and B, then the slopes of the characteristics through these points are known from

$$
\begin{equation*}
\frac{d x}{d t}=u \pm c \tag{2.20}
\end{equation*}
$$

If the distance $A B$ is small the curved characteristics may be approximated by straight lines. When the forward characteristic through A and the backward characteristic through B are drawn, they will
intersect at Q, as in Figure 2.1.

Figure 2.1. Part of characteristic net.

With the initial conditions known, it is also possible to evaluate the constants k_{1} and k_{2}. Therefore two equations may be solved to give the values of u and c at Q. Similarly, points R and S may be found, and so on for the network, provided that the boundaries are at infinity.

It is important to note that conditions at S are influenced by conditions between A and C. The area $S A C$ is known as the zone of determinacy of S. In most cases of interest it is necessary to include the effects of boundaries. Suppose a left-hand boundary exists at $\mathrm{x}=\mathrm{a}$ (see Figure 2.2). A backward characteristic from B is assumed to intersect the t-axis at (a, τ) and hence if both u and c were known at B, then k_{2} is known. Thus at (a, τ) we have

Figure 2.2. Characteristics at a boundary ($x=a$).

To evaluate the slope of the forward characteristic through (a, τ) it is necessary to evaluate

$$
\begin{equation*}
\frac{d x}{d t}=u(a, \tau)+c(a, \tau) \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1}=u(a, \tau)+2 \cdot c(a, \tau) \tag{2.23}
\end{equation*}
$$

Using (2.21), (2.22) and (2.23) may be written in two ways:

$$
\begin{equation*}
\frac{d x}{d t}=3 \cdot c(a, \tau)+k_{2} ; \quad k_{1}=k_{2}+4 \cdot c(a, \tau) \tag{2.24}
\end{equation*}
$$

and .

$$
\begin{equation*}
\frac{d x}{d t}=\frac{3}{2} \cdot u(a, \tau)-\frac{k_{2}}{2} ; \quad k_{1}=2 \cdot u(a, \tau)-k_{2} . \tag{2.25}
\end{equation*}
$$

Thus if either $u(a, \tau)$ or $c(a, \tau)$ (where c is a function of z) are known, the forward characteristic thrcugh (a, $\boldsymbol{\tau}$) may be drawn. We therefore reach the important conclusion that it is only necessary to specify height or current,but not both, at a boundary. It has been tacitly assumed so far that the backward characteristic through B does indeed intersect the t-axis, i.e. that

$$
[u(a, \tau)-c(a, \tau)]<0
$$

or

$$
\begin{equation*}
u(a, \tau)<\sqrt{g h} \tag{2.26}
\end{equation*}
$$

If $u(a, \tau)$ is greater than $\sqrt{\mathrm{gh}}$ there will be no intersection, and hence to draw the forward characteristic through (a, τ), both $\mathbf{u}(\mathbf{a}, \boldsymbol{\tau})$ and $c(a, \boldsymbol{\tau})$ must be specified. Such disturbances can not propagate to the left, and so conditions at $\mathrm{x}=\mathrm{a}$ will not propagate downstream. This flow is said to be supercritical, or in the case of a gas, supersonic.

A major difficulty of the characteristic method is also evident from the above discription. If values of u and c are required at equi-spaced intervals in time and space, it is necessary to carry out a series of interpolations.

One further case of interest is one that can arise when a disturbance is propagated into lower-lying water. If the forward characteristics should intersect, as in Figure 2.3, with the first intersection at I, a situation is encountered wherein two different heights exist at the same point, i.e. a bore or a hydraulic jump
has formed.

Figure 2.3. A set of intersecting forward characteristics.

For this point I, and all others lying within the forward and backward characteristics from a point just before I, calculations are no longer possible using this theory alone. A theory involving shock fronts must be used.
4. Finite difference methods--.

The various quantities iti the equations of motion and continuity are replaced by their forward, centered, off-centered, or backward finite difference equivalents (these in turn being derived from Taylor series expansions). A time-space grid is prepared and the components of the finite difference equations are evaluated at the grid intersections. The solution of the finite difference equations must be stable. Thus the solution must approach the true solution of the original equations (as evaluated at the grid points) as the mesh size approaches zero. Unfortunately this is not always guaranted, so it is necessary to concern oneself with establishing the stability criteria (generally involving the time step τ, the distance increment $\boldsymbol{\ell}$, and the velocity of propagation of the disturbance c) for each proposed finite difference scheme.

Following the procedure of Richtmyer and Morton (1967), difference quotients are introduced in the following manner.

$$
\begin{equation*}
\frac{\partial z}{\partial x}=(1-\theta) \frac{\left(Z_{m+1}^{r}-Z_{m}^{r}\right)}{\ell}+\theta \frac{\left(Z_{m}^{r}-Z_{m-1}^{r}\right)}{l} \tag{2.27}
\end{equation*}
$$

where $Z_{m}^{r}=Z[m \ell, r \tau], m$ and r integer counting indices that correspond to grid lines (see Figure 2.4), and $0 \leqslant \theta \leqslant 1$.

The difference quotient is termed forward, centered, or backward if $\theta=0,1 / 2$, or 1 respectively. Using such methods the equations of motion and continuity may be rewritten in finite difference form in several ways. In the discussion of the two schemes that follow,
considerable use was made of the report by Leendertse (1967).

The Leap Frog method
The first example of a finite difference scheme that will be discussed is the so-called leap frog method. It is an example of a staggered grid. Using the following simplified equations of continuity and motion,

$$
\begin{equation*}
\frac{\partial z}{\partial t}+h \frac{\partial u}{\partial x}=0 \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t}+g \frac{\partial z}{\partial x}=0 \tag{2.29}
\end{equation*}
$$

the finite difference equations are written as

$$
\begin{equation*}
\frac{Z_{m}^{r+1}-Z_{m}^{r-1}}{2 \tau}+h \frac{U_{m+1}^{r}-U_{m-1}^{r}}{2 t}=0 \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U_{m+1}^{r+2}-U_{m+1}^{r}}{2 \tau}+g \frac{Z_{m+2}^{r+1}-Z_{m}^{r+1}}{2 l}=0 \tag{2.31}
\end{equation*}
$$

On the time-space grid, the grid points concerned are shown in Figure 2.4.

Figure 2.4. Grid points used in the leap frog method.

If m and r are taken as being odd, it will be seen that heights are calculated at even-numbered time steps and odd-numbered space steps, while currents are calculated at odd time steps and even space steps. For an inlet whose open end is on column 1, and closed end on column 10, the order in which the calculations are performed is as follows. The normal routine will be to calculate all the Z 's along a particular grid row, to assign Z_{l} equal to the value of the tide height corresponding to that particular time step, and to assign $\mathrm{U}_{10}=0 ; \mathrm{Z}_{1}$ and U_{10} are thus boundary conditions. To initiate the computations (the calculation of $z_{3}^{2}, z_{5}^{2}, \ldots, Z_{9}^{2}$) it is necessary to supply initial conditions for Z along row 0 , and for U along rov 1. For calculations concerned with inlets it is convenient to start the calculations at a time corresponding to high tide at the mouth of the inlet. In this situation the currents will all be zero if a standing wave solution is assumed ((2.15) and (2.16)) and the initial tide heights may be estinated or obtained from a simple calculation of the harmonic type. So far no preparatory check has been made as to whether the scheme will be stable. One way of approaching the investigation of stability is to assume a particular error wave at a given tine step. The wave may then be represented by a Fourier series composed of terms such as

$$
\begin{equation*}
u=u^{*} e^{i \beta t} e^{i \delta x} \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
z=z^{*} e^{i \beta t} e^{i \delta x} \tag{2.33}
\end{equation*}
$$

where $\beta=$ wave frequency
$U^{*}, Z^{*}=$ Fourier series components.
If a linear system such as the above is being examined, only one term of the Fourier series need be investigated. As the solution is only valid at certain grid points, we assume that

$$
\begin{equation*}
U=U^{*} e^{i \beta r \tau} e^{i \sigma m e} \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
z=z^{*} e^{i \beta \tau \tau} e^{i o m l} \tag{2.35}
\end{equation*}
$$

When equations (2.34) and (2.35) are substituted into the finite difference equations (2.30) and (2.31), the following equation results;

$$
\begin{equation*}
\left[e^{i \beta \tau}\right]^{2}-2+4 \frac{\tau^{2}}{l^{2}} g h \cdot \sin ^{2}(\sigma l)+\left[e^{i \beta \tau}\right]^{-2}=0 \tag{2.36}
\end{equation*}
$$

Putting

$$
\begin{equation*}
b=1-2 \frac{\tau^{2}}{l^{2}} g h \cdot \sin ^{2}(d l) \tag{2.37}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left(e^{i \beta \tau}\right)= \pm\left(b \pm \sqrt{b^{2}-1}\right)^{1 / 2}=\lambda_{1,2,3,4} \tag{2.38}
\end{equation*}
$$

The requirement for stability is that $|\lambda| \leqslant 1$. It therefore follows that the stability condition for this scheme is
$-1 \leqslant b \leqslant 1$, or

$$
\begin{equation*}
\left(\frac{\sqrt{g h}}{e / \tau}\right)<1 . \tag{2.39}
\end{equation*}
$$

This stability condition must be adhered to whenever this particular finite difference scheme is used. Note that $\sqrt{\mathrm{gh}}$ is the speed of the long, surface gravity wave, and that ℓ / τ is the maximum velocity that can be resolved by the grid. One might call the term (ℓ / τ) the grid resolution velocity (E. Berg, personal communication). Thus the stability criterion, equation (2.39), takes on a new aspect; the maximum expected velocity of propagation must be less than the grid resolution velocity for stability to be ensured.

If the above conditions for b are met, the four roots of λ
will lie on the unit circle in the complex plane. This means that error waves will not tend to die out with increasing time. One way of ensuring that they do die out is to include a bottom friction term.

With the equation of motion modified to

$$
\begin{equation*}
\frac{\partial u}{\partial t}+g \frac{\partial z}{\partial x}+k u=0 \tag{2.40}
\end{equation*}
$$

and using equations (2.28), (2.34), and (2.35), we get

$$
\begin{equation*}
i \beta z^{*}+i h \sigma U^{*}=0 \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
i g o Z^{*}+(i \beta+k) U^{*}=0 \tag{2.42}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\beta=\sigma\left\{i \frac{k}{2 \sigma} \pm \sqrt{g h-\left(\frac{k}{2 \sigma}\right)^{2}}\right\} \tag{2.43}
\end{equation*}
$$

or

$$
\begin{equation*}
z=z^{*} e^{-\frac{k}{2} t} e^{ \pm i \sigma} \sqrt{g h-\left(\frac{k}{2 \sigma}\right)^{2}} t e^{i \sigma x} \tag{2.44}
\end{equation*}
$$

so that the effect of bottom friction is to decrease the amplitude of the error wave. In general, the effect of friction will be to improve stability as friction represents an energy loss.

If the four roots of λ that lie on the unit circle are closely inspected it will be seen that two of then have positive real parts and two negative. The effect of the former is to provide a term $\cos (\beta \mathrm{r} \boldsymbol{\tau})$, which is as one would expect. The two negative ones cause a term of the type $(-1)^{r} \cos (\beta \mathrm{r} \tau)$. This oscillates to positive and negative values with each consecutive time step providing a spurious solution of period $2 \boldsymbol{\tau}$ modulated by a wave of period T, where T is the period of the computed wave.

An Implicit scheme

The second scheme to be considered has its finite difference equations written in the following form;

$$
\begin{equation*}
Z_{m}^{r+1}-Z_{m}^{r}+\frac{h \tau}{2 l}\left(U_{m+1}^{r+1}-U_{m-1}^{r+1}\right)=0 \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{m+1}^{r+1}-U_{m+1}^{r}+\frac{g \tau}{2 l}\left(Z_{m+2}^{r+1}-Z_{m}^{r+1}\right)=0 \tag{2.46}
\end{equation*}
$$

The grid points at which quantities must be evaluated are shown in Figure 2.5 .

Taking again an inlet whose length has been divided up into nine equal intervals of length ℓ, with the entrance lying on column 1 and closed end on column 10, the values that have to be calculated
along each row are

> ZUZUZUZUZU.

Figure 2.5. Grid points used in the implicit method.

If the values of Z and U are known at time step r, one cannot immediately calculate $U_{2}^{\gamma+1}$, even though $Z_{2}^{\gamma+1}$ is available as a boundary condition, for it depends on $z_{3}^{\gamma+1}$. It is however possible to write 8 equations involving the five $U^{\tau+1}$'s and the five Z^{r+1} 's. There are only 8 unknowns as 2 of the 10 values are boundary conditions. It is thus necessary to solve 8 simultaneous equations for 8 unknowns in order to obtain all the values for time ($\mathrm{r}+1$). For this reason the above system of difference equations is known as implicit. The equations to be solved are

$$
\left\{\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \tag{2.47}\\
-a & 1 & a & 0 & 0 & & & & \\
0 & -b & 1 & b & 0 & & & & \\
0 & 0 & -a & 1 & a & & & & \\
\cdot & \cdot & \cdot & \cdot & & & & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & & & & \cdot \\
0 & 0 & 0 & 0 & & & & -b & 1 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
1 \\
Z_{1}^{r+1} \\
U_{2}^{r+1} \\
Z_{3}^{r+1} \\
U_{4}^{r+1} \\
\cdot \\
\cdot \\
Z_{9}^{r+1} \\
U_{10}^{r+1}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
U_{2}^{r} \\
Z_{3}^{r} \\
U_{4}^{r} \\
\cdot \\
\cdot \\
Z_{4}^{r} \\
0
\end{array}\right\}+\left\{\begin{array}{c}
Z_{1}(t) \\
0 \\
0 \\
0 \\
\cdot \\
0 \\
0 \\
U_{10}(t)
\end{array}\right\}
$$

$$
\text { where } \begin{aligned}
a=g \tau / 2 \ell, b=h \tau / 2 \ell \\
Z_{1}(t)=c o n d i t i o n s ~ a t ~ t h e ~ i n l e t ~ e n t r a n c e ~ \\
U_{10}(t)=0 .
\end{aligned}
$$

The above equations may be solved by the use of an algorithm. The equation for $U_{2}^{\gamma+1}$ is written in terms of $Z_{3}^{\text {ri }}$ plus known quantities; $Z_{3}^{\boldsymbol{r + 1}}$ is written in terms of $\mathrm{U}_{4}^{\boldsymbol{r}+1}$ etc. until $\mathrm{Z}_{9}^{\mathbf{r + 1}}$ is written in terms of U_{10}^{r+1}, which is known. The values for $Z_{9}^{\tau+1}, U_{8}^{\tau+1}, \ldots$. U_{2}^{r+1} may then be found in reverse order.

If a stability analysis is performed for this implicit method as was previously done for the leap frog method, it is found that

$$
\begin{equation*}
e^{i \beta \tau}=\frac{1 \pm i \frac{\tau}{\ell} \sqrt{9 h} \cdot \sin (\sigma l)}{1+\frac{\tau^{2}}{\ell^{2}} g h \cdot \sin ^{2}(\delta l)}, \tag{2.48}
\end{equation*}
$$

so that

$$
\begin{equation*}
|\lambda|=e^{-\operatorname{Im}(\beta \tau)}=\left[1+\frac{\tau^{2}}{l^{2}} g h \cdot \sin ^{2}(\sigma l)\right]^{-1 / 2} \tag{2.49}
\end{equation*}
$$

Hence $|\lambda|<1$ for all nontrivial values of τ and ℓ, and the important fact is established that this implicit scheme is unconditionally stable.

Stability criteria based on characteristic theory
It is interesting to consider the problem of stability utileising characteristic theory (Abbott, 1966). This will often allow one to estimate stability criteria from a visual inspection of the grid layout. Considering part of a time-space grid layout for the leap frog method (in which conditions at P are calculated from a
knowlege of those at A and B). the following approach may be used (see Figure 2.6.).

Figure 2.6. Section of time-space grid.

If AX and BY represent the forward and backward characteristics through A and B respectively, then the domain of determinacy of $A B$ is the area bounded $b y A B$ and the lines $A X$ and $B Y$, i.e. any point within this region will be such that the forward and backward characteristics through it will both intersect row \mathbf{r} between the limits A and B. For the leap frog scheme to be stable it is therefore nedessary that point P lies within this zone of determinacy. As the term $u \frac{\partial u}{\partial x}$ has been neglected, the slope of the characteristics is such that

$$
\begin{equation*}
\frac{d x}{d t}= \pm c \tag{2.50}
\end{equation*}
$$

Thus for stability

$$
\begin{equation*}
\frac{\tau}{l}<\frac{1}{c}, \tag{2.51}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\Delta t<\frac{\Delta x}{\sqrt{g^{h}}} \tag{2.52}
\end{equation*}
$$

which is the same condition as that derived earlier (equation (2.39)).

When considering the second (implicit) scheme from the point of view of the method of characteristics, the reason for the unconditional stability may be seen to be due to the fact that it is possible to construct all the characteristics that intersect row $(r+1)$, for the calculation of conditions at time ($r+1$) depends on the simultaneous application of conditions at time r along with boundary conditions at time ($r+1$).

the finite difference equations

1. The basic equations--.

The equations used are the same as those used by Yuan (1967)
and are as follows (with axes as in Figure 3.1):

$$
\begin{align*}
& \frac{\partial U}{\partial t}+\mp\left(U^{2}+V^{2}\right)^{1 / 2} \frac{U}{H}-f V+g \frac{\partial Z}{\partial x}=0 \tag{3.1}\\
& \frac{\partial V}{\partial t}+\mp\left(U^{2}+V^{2}\right)^{1 / 2} \frac{V}{H}+f U+g \frac{\partial Z}{\partial y}=0 \tag{3.2}
\end{align*}
$$

and

where $U=x$-component of depth-mean velocity
$\mathrm{V}=\mathrm{y}$-component of depth-mean velocity
Z=vertical tide measured (positive upwards) from mean sea level
$D=d e p t h$ of water beneath mean sea level
$\mathrm{H}=$ total depth of water ($\mathrm{H}=\mathrm{D}+\mathrm{Z}$)
friction coefficient
$\mathrm{f}=$ Coriolis parameter ($\mathrm{f}=2 \Omega \sin$ (latitude))
$g=a c c e l e r a t i o n ~ d u e ~ t o ~ g r a v i t y ~$
$\Omega=$ angular rotational speed of the earth .
The above equations will be solved by the method of finite differences. A choice exists between the two different approaches, the explicit method and the implicit method. On account of the availability of literature on the subject, it was decided that efforts would be directed to the development of a variable boundary model using the explicit method.

Although covered by Yuen, the derivation of the finite difference form of the equations will be covered in detail during the rest of the chapter. This is done so that a sound base will be available on which to base the program, and also because Yuens work contains some printing errors which are misleading.

2. The grid network--

The grid system used is one first alluded to by Richardson (1922), and is staggered in time and space. It is thus an extension of the leap frog method. A projection of the grid onto the $x-y$ plane can be seen in Figure 3.1.

Figure 3.1. Section of staggered grid.

U and V are calculated at odd time steps, Z at even numbered steps.
3. U-point calculation--.

Equation (3.1) is first written in the form

$$
\begin{equation*}
\frac{\partial U}{\partial t}=-\left[\frac{U \mp\left(U^{2}+V^{2}\right)^{1 / 2}}{H}-f V+g \frac{\partial Z}{\partial x}\right] \tag{3.4}
\end{equation*}
$$

It is replaced by a two-point centered finite difference relation as follows;

$$
\frac{\partial U^{(\tau)}}{\partial t}=\frac{U^{(r+1)}-U^{(r-1)}}{2 \tau}
$$

where the superscript r refers to time step r, and τ is the interval between time steps. In a similar fashion,

$$
\frac{\partial Z(m, n)}{\partial x}=\frac{Z(m+1, n)-Z(m-1, n)}{2 l}
$$

where the subscript (m, r) refers to 'east-west' grid line m, and 'north-south' grid line $n . \quad \ell$ is the interval between grid lines on the $x-y$ plane.

It will be seen that in equation (3.4) it is necessary to have available the values of V and H at the U-point. These are estimate by interpolation from surrounding V - and Z-points (see Chapter III, section 6). To calculate U at the point (m, n), equation (3.4) is first represented in finite difference form by

$$
\begin{gather*}
\frac{U_{(m, n)}^{(\tau+1)}-U_{(m, n)}^{(r-1)}}{2 \tau}=-\left[\frac{U_{(m, n)}^{(r-1)} \nsim\left(U_{(m, n)}^{2(\tau-1)}+V_{(m, n)}^{2(r-1)}\right)^{1 / 2}}{f 1_{(m), n)}^{(r)}}\right. \\
\left.-f V_{(m, n)}^{(r-1)}+g \frac{\left(Z_{(m+1, n)}^{(r)}-Z_{(m-1, n))}^{(r)}\right.}{2 l}\right] \tag{3.5}
\end{gather*}
$$

It will be observed that in the representation of the right hand side of equation (3.4), terms U and V should have been evaluated at time step r. As U and V are calculated only at time steps $(r-3),(r-1),(r+1)$, etc., they are approximated by taking the most recent values available, i.e. from time step (r-1). In terms of $\bigcup_{(m, n)}^{(r+1)}$, equation (4.5) can be written;

$$
\begin{align*}
& U_{(m, n)}^{(r+1)}=U_{(m, n)}^{(r-1)}+2:\left\{\frac{\left.-U_{(m, n)}^{(r-1)} \psi^{\left(m \left(U^{2(r-1)}(m, n)\right.\right.}+V^{(r-1)}(m, n)\right)^{1 / 2}}{H_{(m, n)}^{(r)}} .\right. \\
& \left.+f V_{(m, n)}^{(r-1)}-g \frac{\left(z^{(r)}(m+1, n)-z^{(r)}(m-1, n)\right.}{2} \ell\right) \tag{3.6}
\end{align*}
$$

At this stage a stability factor is applied to the two leading $U_{(m, n)}^{(r-1)}$ terms (a weighted average of surrounding points);

$$
\begin{aligned}
U_{(m, n)}^{(r-1)}=\propto U & \bigcup_{(m, n)}^{(r-1)}+\frac{(1-\alpha)}{4}\left\{\bigcup_{(m+1, n+1)}^{(r-1)}+\bigcup_{(m-1, n+1)}^{(r-1)}\right. \\
& \left.+\bigcup_{(m-1, n-1)}^{(r-1)}+\bigcup_{(m+1, n-1)}^{(r-1)}\right\}
\end{aligned}
$$

with $0 \leqslant \alpha \leqslant 1$.
Again, the U terms within the $\}$ are all interpolated values. This stabilisation differs from that used by Yen, in that he used only values of U calculated at U-points and not interpolated U values as in equation (3.7). The alteration has been made so that more complex boundary shapes may be dealt with
without having to adjust the stabilisation process to suit the outline of the inlet, as did Yuen.

The final form of equation (3.4) before programing is thus:

$$
\begin{align*}
& \left.+f V_{(m, n)}^{(m-1)}-g \frac{\left(z_{(m+1, n)}^{(r)}-z^{(r)}(m-1, n)\right.}{2}\right\} \tag{3.8}
\end{align*}
$$

4. V-point calculation--.

Equation (3.2) is first written in the form

$$
\begin{equation*}
\frac{\partial V}{\partial t}=-\left[\frac{V F\left(U^{2}+V^{2}\right)^{1 / 2}}{H}+f U+g \frac{\partial Z}{\partial y}\right] \tag{3.9}
\end{equation*}
$$

In exactly the same fashion as with the finite difference evalration of equation (3.4), replacing $-f V$ by $+f U$ and $g \frac{\partial z}{\partial x}$ by $g \frac{\partial z}{\partial y}$, the final form of equation (3.9) is

$$
\begin{align*}
& V_{(m, n)}^{(r+1)}=\frac{V_{(m, n)}^{(r-1)}}{(m)} \tau\left\{\begin{array}{l}
\left.\frac{-V_{(m, n)}^{(r-1)}}{\sim\left(U^{2}(r n, n)+V^{2(r-1)}(r, n)\right.}\right)^{1 / 2} \\
H_{(m, n)}^{(r)}
\end{array}\right. \\
& \left.-\int U_{(m, n)}^{(r-1)}-g \frac{\left(z^{(r)}(m, n-1)-Z^{(r)}(m, n+1)\right.}{2}\right\} \tag{3.10}
\end{align*}
$$

$$
\begin{align*}
V_{(m, n)}^{(r-1)}= & \alpha V_{(m, n)}^{(r-1)}+\frac{(1-\alpha)}{4}\left\{V_{(m+1, n+1)}^{(r-1)}+V_{(m-1, n+1)}^{(r-1)}\right. \\
& \left.+V_{(m-1, n-1)}^{(r-1)}+V_{(m+1, n-1)}^{(r-1)}\right\} \tag{3.11}
\end{align*}
$$

It will be seen that in equation (3.10) the expression for $\frac{\partial z}{\partial x}$ is evaluated with the x-axis going from right to left. As the grid columns are numbered from left to right (see Figure 3.1.) the form of $\frac{\partial z}{\partial x}$ in equation (3.10) does not agree precisely with that of $\frac{\partial z}{\partial y}$ in equation (3.8).
5. Z-point calculation--.

Equation (3.3) is first written in the form

$$
\begin{equation*}
\frac{\partial z}{\partial t}=-\frac{\partial(H U)}{\partial x}-\frac{\partial(H V)}{\partial y} \tag{3.12}
\end{equation*}
$$

Equation (3.12) is then rewritten in finite difference form;

$$
\begin{gather*}
\frac{Z_{(m, n)}^{(r+2)}-Z_{(m, n)}^{(r)}=-\frac{\left(H_{(m, n-1)}^{(r)} U_{(m, n-1)}^{(r+1)}-H_{(m, n+1)}^{(r)} U_{(m, n+1)}^{(r+1)}\right)}{2 \tau} \ell}{2}+\frac{\left(H_{(m+1, n)}^{(r)} U_{(m+1, n)}^{(r+1)}-H_{(m-1, n)}^{(r)} U_{(m-1, n)}^{(r+1)}\right)}{2} \ell
\end{gather*}
$$

It is seen that H should have been evaluated at time step $(r+1)$.

It is approximated by making use of the value for H calculated at time step (r). The error is considered negligible, of the order of 3 oms. in (say) 20 or more meters.
Equation (3.13), written in terms of $Z_{(m, n)}^{(r+2)}$, becomes

$$
\begin{align*}
Z_{(m, n)}^{(r+2)} & =\overline{Z_{(m, n)}^{(r)}}-2 \tau\left\{\frac{\left(H_{(m, n-1)}^{(r)} U_{(m, n-1)}^{(r+1)}-H_{(m, n+1)}^{(r)} U_{(m, n+1)}^{(r+1)}\right)}{2} l\right. \\
& \left.+\frac{\left(H_{(m+1, n)}^{(r)} U_{(m+1, n)}^{(r+1)}-H_{(m-1, n)}^{(r)} U_{(m-1, n)}^{(r+1)}\right)}{2}\right\} \tag{3.14}
\end{align*}
$$

where

$$
\begin{aligned}
\overline{Z_{(m, n)}^{(r)}}= & \alpha Z_{(m, n)}^{(r)}+\frac{(1-\alpha)}{4}\left\{Z_{(m+1, n)}^{(r)}+Z_{(m-1, n)}^{(r)}\right. \\
& \left.+Z_{(m, n-1)}^{(r)}+Z_{(m, n+1)}^{(r)}\right\}
\end{aligned}
$$

Notice again that the terms in the $\{\quad\}$ are interpolated. We are now left with the interpolations of V and Z at U-points, and of U and Z at V-points.
6. Interpolation of values at U - and V -points--.

In the previous sections it has been mentioned that interpolated values are necessary at U - and V-points. These are approximated by linear interpolations. A more sophisticated approximation could have been used at the expense of calculation time and of generality of the model.
a) At U-points away from boundaries (see Figure 3.2).

Figure 3.2. Values required for interpolations at a U-point.
$\begin{aligned} & V_{(m, n)} \\ & \text { and }\end{aligned}=\frac{1}{4}\left\{V_{(m+1, n+1)}+V_{(m-1, n+1)}+V_{(m-1, n-1)}+V_{(m+1, n-1)}\right\}$,

$$
\begin{equation*}
Z_{(m, n)}=\frac{1}{2}\left(Z_{(m+1, n)}+Z_{(m-1, n)}\right) \tag{3.16}
\end{equation*}
$$

b) At U-points lying on boundaries (see Figure 3.3).

Boundaries through U-points are always horizontal (i.e. pass through grid points of equal m). For the case of solid land lying to the 'north' of the water, $V(m, n)$ is found by obtaining an interpolated value for $V(m-1, n)$ and then performing a second interpolation using $V(m-2, n)$ and $V(m-1, n)$. Thus
$V_{(m, n)}=\left(V_{(m-1, n-1)}+V_{(m-1, n+1)}\right)-V(m-2, n)$

It should be noted that $\mathrm{V}(\mathrm{m}-2, \mathrm{n})$ must have been computed before equation (3.18) can be evaluated.

Figure 3.3. Values required for interpolations at U-points on a boundary.
$Z(m, n)$ is found by using the values for $Z(m-1, n)$ and $Z(m-3, n)$:

$$
\begin{equation*}
Z(m, n)=1.5 Z(m-1, n)-0.5 Z_{(m-3, n)} \tag{3.19}
\end{equation*}
$$

In a similar fashion, when land occurs to the 'south' of the water:

$$
\begin{equation*}
V(m, n)=(V(m+1, n-1)+V(m+1, n+1))-V(m+2, n) \tag{3.20}
\end{equation*}
$$

and

$$
Z(m, n)=1.5 Z(m+1, n)-0.5 Z(m+3, n)
$$

c) At V-points away from boundaries.

$$
\begin{align*}
& U(m, n)=\frac{1}{4}(U(m+1, n+1)+U(m-1, n+1)+U(m-1, n-1)+U(m+1, n-1)) \\
& Z(m, n)=\frac{1}{2}(Z(m, n+1)+Z(m, n-1)) \tag{3.23}
\end{align*}
$$

d) At V-points lying on boundaries.

For the case of solid land lying to the 'west':

$$
\begin{align*}
& U_{(m, n)}=\left(U_{(m+1, n+1)}+U_{(m-1, n+1)}\right)-U_{(m, n+2)} . \tag{3.24}\\
& Z_{(m, n)}=1.5 Z_{(m, n+1)}-0.5 Z_{(m, n+3)}
\end{align*}
$$

For the case of solid land lying to the 'east':

$$
\begin{equation*}
U_{(m, n)}=\left(U_{(m+1, n-1)}+U_{(m-1, n-1)}\right)-U_{(m, n-2)}, \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(m, n)=1.5 Z(m, n-1)-0.5 Z(m, n-3) \tag{3.27}
\end{equation*}
$$

7. Calculation for a special (narrow) case--.

Provision is made for making calculations in the case when part or all of an inlet is represented by a width of 2ℓ. In this case there are two possibilities. The narrow axis lies 'northsouth' or 'east-west'.

Figure 3.4. Narrow channel case.
a) 'North-south' narrow axis direction.

A situation exists here such that the problem is locally reduced to a one-dimensional situation. No cross currents exist, so that all the V^{\prime} 's are zero and no surface slope due to Coriolis force will occur (see Figure 3.4.a). The interpolations are then

$$
\begin{equation*}
U(m, n-1)=U(m, n+1)=\frac{U(m+1, n)+U(m-1, n)}{2} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(m, n-1)=Z(m, n+1)=Z(m, n) \tag{3.29}
\end{equation*}
$$

b) 'East-west' narrow axis direction.

The same type of situation exists here (see Figure 3.4.b). The interpolations become

$$
\begin{equation*}
V_{(m+1, n)}=V_{(m-1, n)}=\frac{V_{(m, n-1)}+V(m, n+1)}{2} \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(m+1, n)=Z(m-1, n)=Z(m, n) \tag{3.31}
\end{equation*}
$$

At this point all the types of calculations necessary for the estimation of tides in an inlet are in finite difference form, if only to a certain degree of sophistication. Boundary conditions have still to be added.

Velocities normal to the boundaries are put equal to zero whenever the transition water to land occurs. Thus $\mathrm{U}=\mathrm{O}$ along 'east-west' solid boundaries ($\mathrm{m}=$ constant), and $\mathrm{V}=0$ along 'northsouth' solid boundaries ($n=$ constant). There remains the problem of open boundaries. These occur whenever the boundaries of the model coincide with open water. In Chapter II it was shown by the method of characteristics that either height or current needs to be given as a boundary condition provided that the flow velocity is less than critical. As little is usually know about currents, it
is normal to specify heights as a function of time for the various Z-points lying on open boundaries. However, in order to evaluate the bottom friction term near the open boundary, one has to know the currents along the input line. To do this, a minor assumption is made that $\frac{\partial U}{\partial x}=0$ on 'east-west' open boundaries and $\frac{\partial V}{\partial y}=0$ on 'north-south' open boundaries.
8. The finite difference equations expressed in FORTRAN IV--.

In this section mention is made only of the variable names used in the program. Details of the instructions themselves may be seen in the actual program (Appendix I).

As it was desirable to program for the greatest possible grid size compatible with a 16 K single precision word memory (as then available at the University of Alaska Computer Center), an inspection was made of the matrices necessary for the performance of the calculations. The matrices first considered necessary were those for U, V, Z, H, D, and for use in a later phase of the program, an integer matrix. An inspection of the grid configuration suggested that U and V , and D and H might easily be interleaved. For this purpose, interleaving was performed in the following fashion:

$$
\begin{array}{r}
V(m, n) \text { is stored in } U(m, n+1) \\
\text { and } D(m, n) \text { is stored in } H(m, n+1)
\end{array}
$$

Table 3.1 shows the original variables along with their corresponding array names.

Original Name	Array Name
$U(m, n)$	$U 1(M, N)$
$V(m, n)$	$U l(M, N+1)$
$Z(m, n)$	$Z 1(M, N)$
$H(m, n)$	$H(M, N)$
$D(m, n)$	$H(M, N+1)$
Integer Matrix	$I U(M, N)$

Table 3.1. Array names.

The integer array, IU, was limited to two bytes instead of the customary four as no number larger than a ' 3 ' needed storing (two bytes can contain a positive integer of up to 127).

In such a manner the array storage requirements were reduced in the approximate ratio $12: 7$. Taking into account the computer core limitations, the maximum grid size that could be handled was 65×29.

Taking the three equations for the prediction of U, V, and Z (i.e. equations (3.8), (3.10), and (3.14)), the instructions were simplified by using the following:

$$
\begin{array}{r}
\text { Equation (3.8) } \\
\text { USTAB }=\bigcup_{(m, n)}^{(r-1)}
\end{array}
$$

(see equation (3.7)).

$$
\begin{equation*}
\text { zXATU }=\frac{\partial Z}{\partial x}=\frac{Z_{(m+1, n)}^{(r)}-Z_{(m-1, n)}^{(r)}}{2 l} \tag{3.34}
\end{equation*}
$$

$$
\begin{align*}
& \text { Equation (3.10) } \\
& \operatorname{VSTAB}=V_{(m, n)}^{(r-1)}
\end{align*} \quad \text { (see equation (3.11)). }
$$

ZYATU $=\frac{\partial Z}{\partial y}=\frac{Z_{(m, n-1)}^{(r)}-Z_{(m, n+1)}^{(r)}}{2 l}$

> Equation (3.14)
> $\mathrm{zi(M,N)}=Z_{(m, n)}^{(r)}$
(see equation (3.15)).
Hux $=\frac{H_{(m, n-1)}^{(r)} \cup_{(m, n-1)}^{(r+1)}-H_{(m, n+1)}^{(r)} \cup_{(m, n+1)}^{(r+1)}}{2}$
$H V Y=\frac{\dot{H}_{(m+1, n)}^{(r)} U_{(m+1, n)}^{(r+1)}-H_{(m-1, n)}^{(r)} U_{(m-1, n)}^{(r+1)}}{2}$
The transposition of some of the more important variables may be seen in Table 3.2.

Original Symbol	Variable Name
7	R
f	F
9	GEE
α	Y

Table 3.2. Transposition of some major variables.

The stability factor $\mathcal{\alpha}$ was put equal to 0.99 following the
practice of Yuen.
9. Stability of the finite difference equations

in two space dimensions--.

It is tempting to use the same approach as was used for considering stability criteria for the one space dimension explicit scheme of Chapter II. A section of the grid network as used for the calculation of V is seen in Figure 3.5.

Figure 3.5. Grid points required for V-point calculation.

For stability V_{2} must lie within the domain of determinacy of points $U_{a}, U_{b}, U_{c}, U_{d}, Z_{1}$, and Z_{2}. The U-points therefore are more likely to cause instability (on account of the steepness of the slope $\left.\mathrm{U}_{\mathrm{i}} \mathrm{V}_{2}\right)$.

The value of this slope is easily seen to be $\frac{2 \tau}{\ell \sqrt{2}}$.
For stability this value must be less than the slope of the characteristic cone through U_{i}, viz $1 / c$.
i.e. $\quad \frac{\tau \sqrt{2}}{\ell}<\frac{1}{c}$
or $\tau<\frac{l}{\sqrt{2 g h}}$.
If a similar diagram is drawn for a Z -point calculation (see
Figure 3.6) it is seen that the stability requirement comes to

Figure 3.6. Grid points required for Z-point calculation.

The same stability requirements result for the U-points as for the V-points on account of the similar grid configuration. The most stringent requirement, as far as time is concerned, is thus that in equation (3.40).

CHAPTER IV
autodation of the sequeice of calculations

1. The basic sequence of calculations-- .

With the basic forms of calculation in FORTRAN form, the next and most crucial step ahead is their sequential control. Instructions must be developed that apply the basic types of calculation to each appropriate grid point as determined by the rature of the boundary.

First of all it is instructive to consider what might be called the conventional approach to the arrangement of the order in which the finite difference calculations are performed. Having chosen a suitable grid boundary, one might then arrange for the assignment of depths, initial tide heights, and zero velocities. The next step is the interpolation of tide heights and currents. Then follows the calculation of currents and heights, the input of new boundary values, and the repetition of the calculations. One way in which this might be done (for the case of a rectangular grid) is as follows:

Interpolation

a) Starting at the 'southwest' corner, one line from the botton ($m=2$), write an instruction for calculating U, Z, and H at $V-$ points lying within the boundaries. Repeat this for all evennumbered rows.
b) Starting with the second line fron the botton (m. $=3$), write a similar type of instruction for calculating V, Z, and H at $U-$ points. Repeat this for all odd numbered rows except for the top and bottom rows.
c) Apply equations (3.20) and (3.21) to U-points on the bottom row, and (3.18) and (3.19) to U-points on the top row.
d) Apply equations (3.24) and (3.25) to V-points on the left boundary, and (3.26) and (3.27) to V-points on the right boundary.

Current and height calculations
e) Apply U, V, and Z calculations at $U-, V-$, and Z-points respectively, row by row.

Boundary conditions and time increment
f) At this point it is convenient to apply the boundary conditions; along water - land boundaries U and V are put equal to zero as necessary. Along the line(s) where the inlet meets the open sea it is necessary to specify tide heights. These tide heights will replace those calculated in the 2 -point calculations of step (e). The false values for Z that were calculated do not in any way effect the rest of the calculation. As mentioned in section 7 , Chapter III $\frac{\partial V}{\partial Y}=0$ and $\frac{\partial U}{\partial S}=0$ are applied along open boundaries as necessary.
g) The time step is now checked to see if the end of the tidal cycle has been reached. If not, the time is increased by 2τ, and the program returns to step (a).
h) The process is tien repeated for the desired number of tidal cycles, values of U, V, and 2 being printed whenever desirable.

It will be seen that the above method is straightforward as long as the grid boundary is strictly rectangular. If, however, the boundaries are irregular, the number of instructions will be greatly increased, and the amount of time to be spent in programming will be correspondingly large.

If a series of inlets are to be studied, perhaps with each involving two or more different grid spacings, it is obvious that any modifications to the program that result in reducing programing will be of considerable value. After programing several inlets in the manner above, as a result of the experience so gained, an approach was found that reduced the programing of any inlet to the few instructions necessary to specify the tide height at input points as a function of time.

2. Automation of the inlet-tide prograin--

An inspection of the grid layout and of the various calculation types reveals a simple means by which the program may be automated. The new program is centered round the scanning of an integer-matrix which contains information as to the location of the solid and open boundaries.

Referritit to ficure 4.l, an example of a grid notwort of irregular boundary configuration is shom with two perpendicular lines (crossiag at a 2 -point) emphasized. Starting with the row (in $=2$), it will be seen that the following types of standard calculation way be inferred from the boundary limits:

* $\quad \mathrm{V}=0$ at $(\mathrm{m}=2, \mathrm{n}=1)$ and at $(2,9)$
* Conventional interpolation of U and Z at V-points $(2,3)$ through $(2,7)$
* Special boundary-case interpolation of U and Z at V -points $(2,1)$ and $(2,9)$
* $\quad V$ calculations at V-points $(2,3)$ through $(2,7)$
* \quad Z calculations at Z -points $(2,2)$ through $(2,8)$

Similarly, along the column ($n=6$), the following calculationtypes may be inferred:
*
$U(9,6)=0$

* Conventional interpolation of V and Z at U -points $(3,6)$ through $(7,6)$
*

Special boundary-case interpolation of V and Z at U -points $(1,6)$ and $(9,6)$
*
U calculations at U-points $(3,6)$ through $(7,6)$
*
$U(1,6)=U(3,6)$ (appiication of $\frac{\partial U}{\partial X}=0$ on open boundary)

Figure 4.1. Typical column and row through Z-point, with associated integer matrix input cards (see text for explanation).

It will be noted that Z calculations are not needed along this column, as all Z-points can be covered then traversing the rows. This approach will be seen to include all possible boundary cases as long as the interpolations used are those previously referred to. At this point, it is possible to inspect the rows and columns visually, and thus specify the various calculation types. The next step is to perform this function autonatically.

Boundary limits are specified in the form of integer numbers (see figure 4.1). Starting (for example, along a row containing V points) from the left, the integer 1 is punched in odd-numbered columns of the card whenever a solid boundary is encountered. It is assumed that land extends to the left of the first integer. The next 1 indicates that solid land has once again been reached. This process of alternating land and water may be continued until the maximum allowable grid network size has been reached. In this program the limits are 29 in the horizontal direction.

An even number of l's must be specified in order for the calculations to be bounded. In the case that no solid boundary exists, the 1 must still be used, as it serves as a limit for the grid-point calculations in that particular row. A 3 is placed 2 spaces to the inlet side of the boundary. This indicates to the program that the velocity V at the point 1 (to which the 3 applies) will be changed from zero to that at the matrix point containing the 3 , i.e. we have applied $\frac{\partial V}{\partial Y}=0$.

In order for the 3^{\prime} not to cause confusion in the prograni, it is necessary that, in the particular row to which the ' 3 ' applies, there be a 1 two spaces away on the punched card on one side only of the ' 3 '.

When the last (even-numbered) boundary has been reached, a
2 is placed two places to the right of the last 1 . This indicates to the program that no further values of the integer matrix need be scanned along this row. The integers are punched on cards, one card corresponding to one row.
'East - west' boundaries are specified in precisely the same fashion as for 'north - south' bouncaries. In this case, the grid is scanned from 'south' to 'north' along grid columns containing U and Z - points, the limit being 65 grid points.

3. Input of boundary conditions--.

The boundary values are read into the computer first along columns of constant n, starting from the 'west', then along rows of constant m, starting from the 'south' (see Figure 4.2).

Figure 4.2. Order in which grid boundaries are read.

The half-word integer matrix iU previously referred to is thus built up column by colunn, rov by row. The dimensions of this matrix exceed 65×29 by 3 and 2 , making a 68×31 matrix: The 2 in each direction is to include the integer ${ }^{2} 2$ ' at the end of each column and row; the extra 1 is to cause the array storage area to begin and end on a full-word boundary in the computer core.

This integer matrix is monitored during all parts of the program. Input of depths and initial tide heights, current and height calculations, interpolations, printout, and later in the analysis of the raw U, V, and Z output data.

This pattern followed is in all cases similar, and will be outlined in some detail.

4. Description of boundary-monitoring process--.

The procedure will be illustrated for the case of one of the rows during U calculations at U-points (see Figure 4.3).

At the start of the calculation of each row, a flag, IFL, is put equal to zero. This signifies that solid land lies to the left, i.e. that the first boundary met will indicate a transition from land to water. The first odd numbered column $(\mathrm{n}=1)$ is then inspected for a $0,1,2$, or 3:

If a 3 is found, the colurn number is increased by 2 and the process repeated

If a 2 is found, this indicates that no more columns need be scanned, so the sequence jumps to the next row

Figure 4.3. Flow chart for boundary-monitoring process.

If the integer is less than 2 , the integer is checked for a 1 or a 0

If a 0 is found, the colunn numer is increased by 2 and the process repeated

If a 1 is found, the flag is checked to see whether a left or right boundary has been arrived at

If the flag is 0 , the boundary is a left-hand one. In this case the left-hand limit InL is set equal to (column number +2). The flag value is changed to 1 , and the process repeated.

If the flag is 1 , the boundary is a right-hand one. In this casc, the right hand limit INR is set equal to (column number - 2). At this point, as may be seen from Figure 4.3, the limits of the U at U-point calculations for this section of the row nave been ascertained. The calculations are then performed. The flag is then changed back to 0 , and the process repeated. When all of the rows have been checked, the next phase of the program is entered (not shown in the flow chart).

The above process is modified by the use of extra 'IF' statements to deal with the various situations of special-case interpolations, unusually narrow conditions, etc.

1. Division of the program into subroutines--.

To simplify programming, and to divide the program up so that it would fit into the available core space, the full program was split up into several subroutines. Two of them are used once only, the remainder are called whenever necessary. The main program is responsible for calling the various subroutines when required. A flow chart of the main program, and of the subroutines may be seen the the pages that follow.

The flow chart (Figure 5.1) shows just sufficient information to enable the reader to follow the program through the steps of initialisation and then through the instructions that monitor the time steps and the tide cycles. Within the latter, on the second page of the flow chart, are the statements that control the times at which tide heights and currents are printed out. To trace the various branches in the full printout of the program (see Appendix I), the number of each instruction lying at the end of a branch line is written to the left of the corresponding instruction.
2. Overlays--.

The total program lengti including the FORTRAN program, array storage, and supervisor exceeded the available core space.

Figure 5.1. Program flow chart (1/6).

Figure 5.1. Program flow chart (2/6).

Figure 5.1. Program flow chart (3/6).

Figure 5.1. Program flow chart (4/6).

Figure 5.1. Program flow chart (5/6).

Figure 5.1. Program flow chart (6/6).

In order to run the program, it was necessary to split the program into several 'phases'. The process involves the storage of all the phases, witi the exception of the main calling program (the 'root' phase), on disc. The root phase calls the particular phase required off the disc into core, where it is placed starting at a particular location.

For convenience, each of the phases consists of one of the main subroutines:

SUBRCUTIITE	Phase Incie
INIT	Phasiniel
Printid	Phasince 4
WRITE	PHASNIEL 2
UVZ	Phasvite3

Table 5.1. Phase Names.

The subroutines WRITER and INPUT were not split up thus, as they are continually being called by the root phase.

Once the phase corresponding to a particular subroutine has been placed in the core, it is called one as would a conventional subroutine. The additional instructions necessary are as follows:

* The main program is preceded by a card:

1234
Phise phasiried, ROOT

* The next piase is preceded by:

1234
phase phasmen,*
where the asterisk signifies that the program is to be placed into the first available location following the root phase.

* Each successive phase is preceded by a card of the type 1234 PHASE PHASNIE2, PHASNAE1

The second name, after the ',' signifies that this phase is to be loaded into the core starting at the same location as PHASNAE1.

* To call any particular phase, the necessary instruction is, for example;

1234567
CALL OPSYS ('LOAD','PHASNAE3')

* At any later point, the subroutine associated with PHASNME3 may be called as usual.

It is obvious that a suoroutine may only be called when it has been previously loaded into the core.

The layout of the phases is conveniently shown by a diagram (see Figure (5.2). The numbers to the left of the main tree are the corresponding core locations in hexadecimal arithmetic, for one given length of the INPUT suoroutine.

Figure 5.2. Overlay tree.

With this overlay system, with the longest phase (INIT) in core, the program extends to F551. A few additional bytes are reserved for buffer storage when various input/output devices are encountered during the program. No information as to their extent is printed out. If insuffient core space is available, an error message will
be printed out, and the job terminated. In this particular computer, sufficient space was evidently available.

For more information on the overlay system, the reader is referred to the relevant IBM manual (IBM, 1963).

1. Grid selection--.

When a particular inlet is selected for tidal studies using the numerical model described above, the first thing to do is to ascertain the stability requirements. The accepted criterion for the stability of the staggered-grid model is

$$
\begin{equation*}
\ell>\tau \sqrt{2 g \operatorname{Dmax}} \tag{6.1}
\end{equation*}
$$

The variable boundary model requires that the quantity (number of intervals)/(tidal period) be a multiple of 12 (this is to satisfy a part of the program that is responsible for printing out heights and current information 12 times during the last tidal cycle). The number of intervals normally used has been 360 or 720 (i.e. respectively 180 and 360 different times at which Z 's are calculated at Z-points). The former gives a resolution of (ideally) 2° for the phase of the tide.

Using this type of calculation, a compromise may be found between a grid spacing that appears to represent the inlet satisfactorily, time intervals, and resolution.

A convenient method for fitting the grid to the inlet shape is as follows:

Draw a 65×29 grid on a sheet of paper and photograph it so as to obtain a slide.

Project an image of the grid onto a wall, and adjust the projector to give approximately the correct interval between grid lines.

Tape the map to the wall so that a reasonable alignment exists between the major axis of the inlet and the grid.

Final adjustments may then be made so as to achieve the best fit possible, consistent with stability and cost limitations.

The above method, although it has inaccuracies in it arising from optical distortion, heating up of the projector etc., gives a good first approximation. For small maps, some more convenient methods may be found.

The left-most edge of the inlet must be on column $n=1$, the bottom of the inlet must be on row $m=1$.

Having decided on a suitable grid configuration, the grid should then be transferred to the map. The use of any form of tracing paper (other than transparent mylar) as an overlay makes the work to follow more awkward. All the grid lines should be drawn in, and $U-, V-$, and Z-points suitably labelled.
2. Basic data cards--.

The next step is to prepare the data cards. Considering for example the grid in Figure 6.1.

Figure 6.1 Example of simple grid.

The first data cards are those that specify the maximum dimensions of the grid, number of tidal cycles to be calculated, etc. These 8 cards are placed immediately behind the first // EXEC card. The order and format of the cards are as follows:

Card	Variable Name	Format	Example	Units
1	IIDA	I2	05	
2	MSU.1	I2	09	
3	NSUM	I2	05	
4	DL	F12.4	50000.0	meters
5	T	F12.4	12.42	hours
6	R	F12.4	.003	
7	ALAT	F12.4	5.0	degrees*

* North positive

Table 6.1. Example of input data cards.

The above cards specify the following:

1. 5 complete tidal cycles are to be calculated, starting at 01 , ending at 05
2. Number (m) of top row (from example)
3. Number (n) of right column (from example)
4. Grid spacing in meters $=50 \mathrm{Km}$.
5. Period of tide in hours (M_{2} tide)
6. Friction coefficient, generally 0.003
7. Latitude in degrees ($5^{\circ} \mathrm{N}$)
8. Intervals per tidal period.

3. Boundary data cards--.

Then follows a series of cards specifying boundaries along columns, i.e. points where $U=0$ or $\frac{\partial U}{\partial X}=0$.

In this case we have two cards:

Column

$$
123456789101112 \quad 80
$$

Card
$11030000010200 \quad 00$
$2103000001020 \ldots 00$

The second series of cards specifies boundaries along rows, i.e. points where $V=0$ or $\frac{\partial V}{\partial Y}=0$;

There are 4 cards:

Column

$$
123456789101112
$$

80

Card

110001020000000
00
21000102 . . .
00
31000102 . . . 00
41000102
00

With the integer matrix in the core, the depths at V - and U-points may now be read in and automatically allocated.
4. Depth data cards--.

In this case, depths are read in at V points, starting in our example with the depth at $(m=2, n=1)$. This depth is punched on a single card, in the format F12.4 (i.e. in decimal), the units being FATHOMS. (ifeters were not used as most American and English charts are in fathom units). No depth should be less than the maximum expected tide amplitude - one might say that no depth should be less than 4 fathoms. The next card contains the depth at $(2,3)$, following with those at $(2,5),(4,1),(4,3),(4.5), \ldots(8,3),(8,5)$, one depth to each card. The order is thus as in Figure 6.2.

Figure 6.2. Order of specifying depths at V-points.

The next group of cards contain depths at U-points, the procedure being the same as for the V-points. The order of the cards is, for our example: $(2,1),(2,3),(2,5),(2,7),(2,9),(4,1), \ldots \ldots,(4,7),(4,9)$. See Figure 6.3.

Figure 6.3. Order of specifying depths at U-points.
5. Initial tide-height and boundary-value cards--

With the depth cards all prepared, we then proceed to the initial tide heights at Z -points. These are prepared from the best available distribution of tide amplitudes and phases over the inlet. the tide is considered to be at its maximum height across the input. Heights along the other V and Z rows are estimated by taking (amplitude) x cos (phase lag), where the phase lag is the delay of arrival time of maximum tide height compared with the input.

Heights are estimated in METERS, and are punched in F12.4 format (decimal), one to a card. The order in which they are taken is from left to right: $(2,2),(2,4),(4,2),(4,4), \ldots \ldots,(8,2),(8,4)$.

See Figure 6.4.

Figure 6.4. Order of specifying initial heights.

We now have the following blocks of data cards:

Type	No. of cards
Grid dimensions, tide information, etc.	8
Boundary positions	6
Depths	22
Initial tide heights	8

Table 6.2. Data arrangement for example.

This fully completes the data cards. The only task remaining is to specify the input conditions. These cards are added to the program in the INPUT subroutine, directly after 'CONON TIDE'.

As an example, one might use:
$\mathrm{ZI}(2,2)=0.743 * \operatorname{COS}(6.28318 *((\mathrm{FIT} / \mathrm{PER})-0.0))$
ZI $(2,4)=$-Same-

Here FIT/PER is the point of the tidal cycle that has been reached, expressed as a fraction of 1.0 . The last term (in this case -0.0) is the phase delay of the maximum tide compared to that at the input. It will range between -0.0 and -1.0 (a delay of 90° would be -0.25). The number 0.743 indicates a tide amplitude of 74.3 cms (or a range of 148.6 cms).

It is suggested that, as far as sinusoidal tides are concerned, this instruction-type be adheared to, thus only the 0.743 and the - 0.0 should be changed.

CHAPTER VII

COMPUTER OUTPUTS AND DATA ANALYSIS

1. Printer output--

The first page of the computer output (after the // EXEC statement) contains information on the grid interval, tidal period, friction coefficient, latitude, coriolis parameter ($2 \Omega \sin \phi$), and the units used in the pages that follow.

The next 1-4 pages contain information as to the distribution of depth (in meters). If the maximum grid width (NSUM) is less than 18, 1 or 2 pages will be printed depending on the value of the grid length (MSUSI). If NSUM is greater than 18, one or two additional pages will be printed covering columns 19 to 29 . These may be detached and joined to the first one or two pages.

The next pages, in a similar arrangement, will be the (interpolated) values of the initial tide heights. The next two sets of pages will be the initial values for U and V. They will all be zero. As the $H, 21$, and $U 1$ matrices were all set to zero at the start of the program, it follows that all untouched elements of the arrays will be printed as zeros. This was done for two reasons (although it may prove confusing at first): to avoid writing complicated format statements, and to serve as a check on the functioning of the program, i.e. if non-zero values show up in unexpected places some error in the boundary-1ocation specification may have occurred.

After this, values of tide height and currents are printed in a similar fasinion at the end of each tidal cycle, with the exception of the last.

During the last cycle values are printed out at fractions (1/12) of the tidal period. Thus values will be printed at $1 / 12,2 / 12,3 / 12$,, 11/12 of the period. This provides values of the intermediate tide and current distributions.

2. Tape outputs--.

Two tapes are used during the main program:

* A short tape is placed on unit 8 (a tape $I / 0$ device), and has sufficient information read onto it at the end of every tidal cycle so that in the event of an unscheduled termination only a small amount of reprogramning is necessary to restart the program at the beginning of the next cycle. This is useful when, for some reason or other, the program is terminated before the CALL EXIT is reached (such as during a power failure). The tape is discarded in the event of a successful run.
* A long tape is place on $1 / 0$ unit 9. At the start of the program basic information, such as dimensions, tidal period, boundary positions, etc, are written onto the tape, for details please see Appendix IV. During the last cycle, values of current and height are written onto the tape every time that tide heights are calculated. For convenience, the entire $U 1$ and $Z 1$ matrices are written onto the tape. In order to achieve maximum compression of data, a special
program is used that writes the entire matrix as one continuous record (FORTRAN IV normally limits the maximum record length to 64 singleprecision words, then leaves an inter-record gap of $6 / 10$ inch.) The tape is then rewound at the end of the last cycle, and is thus ready for detailed analysis. The program was written by Mr. Don Walker of the University of Alaska Computer Center

3. Data analysis--.

This consists of the analysis of the current and height data on the second tape. Two programs have been joined together to form one standard package:

Program 1: Height and Phase analysis.
This program scans the tide heights at each 2 -point. It stores the maximum and minimum tide heights that occur during the last cycle along with the associated phases. These values are then printed out. The output format differs from that used during the main program; asterisks are printed out in land areas, and the spacing between rows has been increased so as to partially offset the distortion of the inlet shape that occurs in the printing. The result is pleasing to the eye.

[^0]mean phase $=\frac{\text { phase of max. height }+ \text { phase of min. height }}{2}-90^{\circ}$,
(7.1)
provided high tide arrives before low tide during the last cycle. If not, the phase of minimum height first has 360 added to it before equation (7.1) is computed.

Program 2: Current Analysis.
For each current matrix, currents are interpolated at Z-points. These currents are combined to form a vector, and the length and angle (clockwise fron the North) are calculated. The current values are checked for maximum and minimum values. The times (in hours) and angles are stored along with the associated maximum or minimum values. At the end of the cycle the values are printed out. From this output it is possible to estimate the dimensions and directions of the current ellipse axes and their sense of rotation. At present, during plotting, it is necessary to assume that the maximum currents are the same at ebb and flood, and that their directions are 180° apart. Similarly with minimum currents at slack water. It should be a simple matter to extend the program to calculate the 2 maximums, and the 2 minimums with their associated angles and times, however, it is arguable whether the present accuracy warrants such detail.

A printout of the two analyses prograns will be found in Appendix 3.

A SAMPLE PROBLEM

To fulfil the need for a sample problem that will serve as a guide for data arrangement and as a test for the program, a simple example will next be presented and solved.

The problem is as follows; An inlet has the following dimensions:

Length	350 km
Width	200 km
Depth	250 fathoms

The inlet will be analysed for a tide of period 12.42 hours, having an amplitude of 0.743 meters at the mouth. In the absence of friction and Coriolis force the application of equation (2.15) shows that the expected amplitude of the tide at the closed end of the inlet should be 1.000 meters. The tide will be considered uniform across the mouth of the inlet for reasons of convenience, although in reality this would be unlikely. To go along with this, a latitude of 5° North will be assumed. If a grid interval of 50 kms . is selected, the application of equation (6.1) results in $\boldsymbol{\tau} \leq 527.9$ seconds. On choosing 360 intervals per tidal period, $\boldsymbol{\sim}=124.2$ seconds. This might be considered unnecessarily generous, however it will provide good resolution for the phase of the tide. A value
for the friction coefficient of 0.003 will be assumed and the program will be allowed to run through five complete cycles.

For this problem the first 8 data cards will be as in Table 6.1. The boundary-value data cards follow as listed in Chapter 6, section 3. As depths throughout the inlet are constant there will follow 22 cards, each with 250.0 punched in the first 5 columns. For the initial tide heights, values are needed for rows $2,4,6$, and 8. From equation (2.15) we obtain

$$
\begin{equation*}
z(x)=\cos \left(\frac{360 \cdot x}{2994}\right) \tag{8.1}
\end{equation*}
$$

where x is measured in kms. from the closed end of the inlet.

The approximate initial tide heights are then as in Table (8.1).

Row	Height
8	0.995
6	0.95
4	0.865
2	0.743

Table 8.1. Initial tide heights.

The data cards will therefore be, one number to a card (starting in column 1), $0.743,0.743,0.865,0.865,0.95,0.95,0.995,0.995$. The two cards that have to be added to the INPUT subroutine are as in Chapter 6, section 5 .

The program was run on an IBM $360 / 40$ computer and required 7.5 minutes. The two analysis programs required a further 3.5 minutes each. Some of the printed results are shown in Appendix V. The outputs are largely self-explanatory and agree closely with those predicted.

1. Application of the model to the M_{2} tide of the Gulf of California--.

The Gulf of California has its entrance on the Pacific Ocean and is bounded by Lower California to the west and Mexico proper to the east. The gulf is oriented in a northiest-southeast direction with its northern limit being formed by the Colorado River (Latitude 32° N.). Its mouth lies between Cabo San Lucas and Cabo Corrientes (with a mid-latitude of about $22^{\circ} \mathrm{N}$.). The tidal study was confined to that part of the gulf lying to the north of the city of Guaymas (Latitude $28^{\circ} \mathrm{N}$.) for reasons of economy of computer time. The bathymetry of the gulf, along with the grid outline finally chosen is shown in Figure 9.1.

The greatest depth that occurs in this restricted region is some 2740 meters. To represent the coast around the locality of Isla Tiburon to an adequate degree, it was found necessary to select a grid interval of 15 km . Owing to the narrowness of the channel lying between Lower California and Isla Angel de la Guarda, it proved impractical to represent the outline of the island with this particular grid scheme. The effect of the island was partially taken into account by assigning an arbitrary depth of 5 fathoms to all grid points lying within the outline of the island.

To ensure stability a time step of 62.1 seconds was chosen. This conforms to the stability requirements of the two-dimensional explicit finite difference scheme (equation (6.1)), so that

$$
\begin{equation*}
x<\frac{15.000}{\sqrt{2 \times 9.81 \times 2740}} \tag{9.1}
\end{equation*}
$$

or $\tau<65$ seconds.
Input tidal data for this region is scarce: The only places for which adequate tidal data were available consisted of Puerto Penasco in the north, and Guaymas. The amplitudes of the M_{2} tide constituents are 157 and 14 oms. respectively, while the difference in phase was taken as 107 degrees (U.N.A.M., 1967). As no reliable information was available for the variation of the M_{2} constituents across the input boundary opposite Guaymas, a difference of 1 cm . was assumed for the amplitude (the range being smaller in the west), and zero degrees for the phase. This was based on the values of the mean range and the establishment for San Lucas Cove and Guaymas (Matthews, 1968).

Thus with these assumptions, the cards that had to be added to the INPUT subroutine were as follows:

```
(column) 1234567
```

$$
\begin{aligned}
& 21(2,4)=0.130 * \operatorname{COS}(6.28318 *((F I T / P E R)-0.000)) \\
& 21(2,6)=0.133 * \cos \text {. } \\
& \text { Zn }(2,8)=0.136 * \cos \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z1}(32,12)=1.570 * \operatorname{COS}(6.28318 *((\mathrm{FIT} / \mathrm{PER})-0.297))
\end{aligned}
$$

The total duration of the main and analyses programs was about 65 minutes. The cotidal and co-range lines, which may be said to be
the most useful results, are shown in Figure 9.2 .
The co-tidal lines show that between the sea/sea boundary and Isla Tiburon the tidal wave is essentially of progressive wave type, with the phase of the tide changing by 90 degrees. To the north of Isla Tiburon the wave changes to one of standing wave characteristics. This is supported by the orientation of the co-range lines in this region, which lie across the width of the gulf, and the co-tidal lines, which lie along the axis of the northern part of the gulf (see Defant (1960)). The co-range lines in addition show that almost all of the amplification of the tide occurs between Penasco and Isla Tiburon, the range increasing from 90 to 314 cms.

The nature of the tides in the Gulf of California may be conveniently be indicated by the use of the Formzah1 (Courtier, 1938). The Formzahl, F, for any given place is the quantity

$$
\begin{equation*}
F=\frac{K_{1}+o_{1}}{M_{2}+S_{2}} \tag{9.2}
\end{equation*}
$$

For Penasco $F=0.28$, falling in the region in which tides are classified "mixed, mainly semi-diurnal" ($0.25 \leqslant F \leqslant 1.5$). F for Guaymas is 1.92 , and falls under the classification "mixed, mainly diurnal" ($1.5 \leqslant F \leqslant 3.0$). The tidal regime of the gulf thus appears to fall into two categories depending on the position north or south of the narrow section; mostly semi-diurnal to the north, mostly diurnal to the south.

Defant (1960) has stated that the overall tidal configuration of the gulf seems to be one of a standing wave with a nodal line

GULF OF CALIFORNIA
 Co-Range \& Co-Tidal Lines for the M2 Tide

TIDAL RANGE (in cm)

PHASE OF. TIOE (in degrees based of 0° of Gucymas:
X InPut points

occuring near the narrow section. However, as seen above, the varfation of predominance of the semi-diurnal and diurnal constituents with latitude warns one not to expect too simple a standing wave pattern. It should therefore not be too surprising that the M_{2} co-tidal lines should not agree more closely with the few pieces of tidal data available (Matthews, 1968), which show little difference in the establishment for locations between Guaymas and Isla Tiburon.

The most noticible defect in the output is that of the co-tidal lines in the vicinity of the input point near Puerto Penasco. Here an anomaly in the lines may be seen. However, the fact that the anomalous behavior dies out within a short distance leads one to the conclusion that had this input point been left out, the phase of the tide at this point would have been about 115 degrees. This value differs from the data in the U.N.A.M. tide tables by some 8 degrees. It is interesting to note that there is a difference in the establishment of the M_{2} constituent for Guaymas as computed by U.N.A.M. and the U.S.C.\&G.S. (unpublished data). The difference can probably be attributed to the small tide amplitudes available for analysis. On account of this it is difficult to distribute the fault between the model and the tide tables without additional tidal records.

An inspection of the combined set of co-range and co-tidal lines leads one to the conclusion that the difference in amplitude across the input boundary should have been nearer to 2 or 3 cms .,
while the phase difference should have been about 10 degrees, with high tide reaching the east side before the opposite point on the west.

The conclusions suggested by the above application are as follows:

1. In the event that bad data are used at an isolated input point, the fact will be made clear by the distortions in the co-range and co-tidal lines.
2. The effect on the rest of the area will probably become negligible at distances greater than 4 or 5 grid intervals.
3. Apolication of the model to the tides of Cook Irilet--.

Cook Inlet is located with its entrance on the coast of Southcentral Alaska. The inlet is some 150 miles long ard terminates in two arms, Turnagain Arm and Knik Arm. Cook Inlet is generally shaliow, between Homer and Anchorage the greatest depth encountered is of the order of 75 fathoms. At Homer the inlet is 27 miles wide, but narrows locally to 9 miles betveen the East and West Forelands. North of the Forelands the region becomes increasingly complicated (in the hydrodynamic sense) by the presence of shoals and mud flats, with extensive areas of Turnagain Arm being exposed at low tide.

The tides of the upper part of Cook Inlet are amongst the highest in the world and can be classed with those of the Bay of Fundy, Ungava Bay, and the Straits of Magellan. The tides are predominately semi-diurnal, having a mean range of 25.1 feet at Anchorage (U.S.C.\&G.S., 1968) and a value for F (equation (9.2)) of 0.24 . In addition the presence of strong currents and seasonal pack ice cause much hinderance to shippirg. Long-term measurements of tide heights are complicated by the ice, while velocity measurements are made most difficult by the high currents and rough seas.

It seems customary when using numerical models to investigate the tides in an inlet to use M_{2} amplitudes and phases as input conditions. If non-linear equations are used, the resulting currents
are largely without significance as one cannot combine the solutions obtained for the various constituents as the model involves non-linear terms. This of course raises questions as to the correctness of restricting the input to one constituent only. The current conditions are of considerable practical interest in the case of Cook Inlet, so it was decided that efforts would be directed towards the ultimate goal of using real tide measurements as input conditions (subject to removal of high frequency components). Since it has been shown that some 120 constituents are needed to reliably predict the tide at Anchorage (Zetler and Cummings, 1967), it was clear that as a first step the model should be tested with a hypothetical tide obtained by assuming a sinusoidal wave of period 12.42 hours, amplitude based upon the mean range as tabulated in the tide tables (U.S.C.\&G.S., 1968) for the region, and phase based on the high and low tide arrival times.

After some trial runs on an IBM $360 / 40$ computer, a compromise was reached between computer time and the accuracy with which the outline of the inlet could be represented by straight sections of the grid. The model was restricted to that part of the inlet north of Homer. A grid interval of 3.052 kms . enabled the region of interest to be contained within a grid of dimension 65×29. The final grid outline, along with the bathymetry of the region, may be seen in Figure 9.3. To comply with the accepted stability condition, a time interval of 62.10 seconds was chosen. To arrive at the input conditions across the sea/sea boundary at Homer, an estimate was

Figure 9.3 .
made of the range and phase of the tide on the opposite shore using values for Tuxedni Channel and Iliamna Bay. An interpolation was then performed to obtain the values at each input point. Because of the inability of such a model to handle mud flats (i.e. regions where the depth may occasionally become zero), all such regions were assigned an arbitrary depth os 4 fathoms. Furthermore, to avoid problems with the very shallow conditions that exist in Turnagain Arm and Knik Arm, the northern end of the model was terminated in two sea/sea boundaries. The required cards to be added to the IMPüT subroutine are shown in Table 9.1.

Five full tidal cycles were computed, after which tine conditions appeared steady. Each cycle required some 20 minutes of computer time. The analysis programs required $i 5$ minutes, and a chart of the resulting co-tidal and co-range lines may be seen in Figure 9.4. It is at once apparent that the tidal regime of Cook Inlet divides the inlet into two distinct regions. For convenience they may be called North Cook Inlet and. South Cook Inlet. They are separated from one another by the natural feature of the narrow section that Lies between the West and East Forelands.

The tides in South Cook Inlet show the characteristic appearance of a progressive Kelvin wave. The co-range lines lie along the length of the inlet with higher amplitudes occuring to the east. The co-tidal lines lie essentially perpendicular to the co-range lines and slope upwards to the right, thus indicating that the wave is not entirely progressive but tends towards a mixed type of wave

```
P=0.051+0.0054
A=2.06-0.06
DO 69 N=6.20.2
P=P-0.0054
A=A+0.0.0
69 21(2,N)=A*COS(6.28318*((FIT/PER)-P))
Z1(6,4)=2.13*COS(6.28318*((FIT/PER)-0.059))
Z1(12,18)=2.53*COS(6.28318*((FIT/PER)-0.06))
21(36,8)=2.74**COS(6.28318*((FIT/PER)-0.221))
Z\(48,4)=2.79*COS(6.28318*((FIT/PFR)-0.314))
21(64,18)=3.82*COS(6.28318*((FIT/PER)-0.376))
21(60,28)=4.25*COS(6.28318*((FIT/PER)-0.402))
```

INPUT
TUXEONI
NINILCHK EASTFORE NORTHFOR ANCHORAG GULLRCCK

Table 9.1. Cards added to INPUT subroutine for Cook Inlet program.

Figure 9.4.
(Defant, 1960). The fact that the two sets of lines are approximately at right angles is an indication that friction probably does not play too important a part in South Cook inlet.

A feature clearly cbserved in Figure 9.4 is the speeding up of the tidal wave on the west side of the inlet after Tuxedni Channel has been reached. The explanation for this is to be found in the bathynetry of the region. Depths of some 60 fathoms occur west of Kalgin Island while 20 fathoms is more typical for the part of the inlet lyirg between Kalgin Island and the Kenai Peninsula. Another point that is worth drawing attention to is that there will be scarcely any change of tidal range with increasing distance up the inlet (as far as the Forelands), not an increase with distance as one would have expected had standing wave behavior been assumed.

The tides of North Cook Inlet have the appearance of the more conventionai standing wave. Considerable distortion from the frictionless case is present, as is evidenced by the co-tidal lines not being perpendicular to the co-range lines. If the amplitudes and phases are plotted in the appropriate fashion on Redfield's estuary tidal analysis diagram (Redfield, 1950), a value of about 3 results for μ, the damping coefficient. The reason for the strong frictional effects is certainly to be found in the shallow depths prevalent throughout North Cook Inlet.

Another result of interest is that as one proceeds up North Cook Inlet the difference in the amplitude of the tide across the
inlet decreases. This is because the difference in phase between the maximum tide height and the maximum current is approaching 90 degrees. If slack water occurs when the tide is at its highest, there will be no Coriolis force and hence no slope of the water surface across the inlet at this instant.

Because of the fact that no attempt could be made to take into account the varying shore line as the mud flats become exposed, to provide the north end of the model with closed boundaries, or to include the effects of the tidal bore that is said to occur at certain times beyond the model limits in Turnagain Arm (U.S.C.\& G.S., 1964), it is almost certain that the reality of the results decreases as one proceeds northwards.

A look at the output of the current analysis shows that the maximum depth-mean currents occur just to the scuth of the West Foreland - East Foreland narrows. They attain a maxirum value of over $200 \mathrm{cms} . / \mathrm{second}$ (i.e. more than 4 knots) and are counter clockwise. It is to be hoped that in the future a knowlege of the real current profile will be used to estimate the current at any depth, given solely the depth-mean current.

On observing the nature of the co-tidal lines in the region of the input at the southern end of the model, one is led to the conclusion that too great a phase difference was assumed to exist across the open boundary. It is likely that the difference should have been nearer 8 degrees and not 18 degrees, as was used. Furthermore it was probably a mistake to have assumed that the
phase of the tide at the input point near Anchorage should have had the same phase as Anchorage. Being half way between Anchorage and Fire Island, the phase should probably have been 7 degrees or so smaller. Finally, on the subject of modifying future input data, it seems that the inclusion of input data for a point near the town of Kenai would have removed the 'awkward' shape of the co-range lines in this region. The predicted range for Kenai is 5.06 meters, some 35 cms . smaller than the tabulated mean range. This input data was specifically left out of the model so that a check would be available as to the veracity of the solution. One concludes from this that all available input data should be used near regions of complex shape.

CHAPTER X

CONCLUSIONS AND FU'TURE WORK

1. Conclusions--.

A variable-geometry model has been described in this thesis that is oriented towards the general user. It is designed to stand alone but also to be made part of larger models such as general oceanographic prediction schemes. The method follows the earlier approaches of Hansen and Yuen, and uses Yuen's equations in an automated form. The method of solution is thus already well documented and examples of previous applications of the method may easily be referred to. A background to the solution of tides in inlets is given, and the means by which the finite difference equations are derived is covered step by step. The prospective user is shown clearly the means by which a particular inlet may be studied and how the input data is prepared. A simple example is covered in some detail with all the cards explained and sample computer outputs shown.

For the user's convenience a magnetic tape is prepared during the last tidal cycle computed, on which all heights and currents are stored; this is so that special types of analysis may be performed at later dates as desired. At the end of the last tidal cycle the tape is automatically analysed for tidal range and phase,
and maximum and minimum currents: these being probably the most useful results of the computation. It is felt that this approach should make the model described particularly attractive to otherwise wary users.

Two applications to real inlets have been included in the thesis. They were to the Gulf of California and to Cook Inlet. It is the writer's opinion that these have provided a satisfactory test for the model.
2. Future work--

The inability of the model to deal with mud flats points to the need for work in this area. Although it is tempting to suggest that modifications be made so as to adjust the inlet outline in units of (2 x grid interval) when necessary during the course of the solution, the nature of such a change might prove too gross to deal realistically with the situation. Before such an improvement can be made it seems that efforts should be directed to mathematical studies rather than towards the more tempting "experimental mathematics" approach. A deeper study of the part played by friction would be applicable to shallow regions such as Cook Inlet and the Bering Sea. Jeffreys (1920) has pointed out the importance of the Bering Sea when considering world-wide frictional dissipation for the M_{2} tide.

Abbott, M. B., 1966.
The Method of Characteristics, American Elsevier, New York, 243 p.

Blondel, A., 1912.
Sur la Theorie des Marees dans un Canal. Appl. a la Mer Rouge, Ann. Fac. Toulouse, 3.

Courtier, A., 1938.
Marees,
Serv. Hydr. Marine, Paris; 37 p.
Defant, A., 1920.
Die Gezeiten und Gezeiten Stromungen im Irischen Kanal, Untersuchungen a.s.o., S. B. Weiner Akad. Wiss. (Math. Nature. Kl.), 129, 253.

Defant, A., 1960.
Physical Oceanography, Vol. 2,
Pergamon Press, New York, 598 p.
Dronkers, J. J., 1964.
Tidal Computations in Rivers and Coastal Waters, North Holland Publishing Company, Amsterdam, 518 p.

Fisher, R. L., Rusnak, G. A., and F. P. Shepard, 1964.
Submarine Topography of the Gulf of California (Chart I), American Association of Petroleum Geologists.

Grace, S. F., 1936.
Friction in the Tidal Currents of the Bristol Channel, Geophys. Supp. M.N.R. Astron. Soc., 3, 388-395.

Hansen, W., 1952.
Gezeiten und Gezeitenstrome der Halbtagigen Hauptmondtide M_{2} in der Nordsee,
Deutsche Hydr. Zeitschr., Erganzungsheft 1.
I.B.M., 1968.

IBM System/360 Disk Operating System: FORTRAN IV Programmer's Guide, Form C 28 6397-0, Oct., 96 p.

Jeffreys, H., 1920.
Tidal Friction in Shallow Seas,
Phil. Trans. A. 221, 239.

Leendertse, J. J., 1967.
Aspects of the Computational Model for Long-Period Nater Wave propagation,
Rand Memorandum R.M.5294-P.R., Delft, 89 p.
Lorentz, H. A., 1926.
Verslag Staatscommissie Zuiderzee 1918-1926 (Report of the
Government Zuiderzee Commission),
Alg. Landsdrukkerij, The Hague.
Matthews, J. B., 1968.
Tides in the Gulf of California,
Thompson, D. A., Editor, Probable Environmental Impact of Heated
Brine Effluents from a Nuclear Desalination Plant on the northern Gulf of California, University of Arizona report submitted to the Office of Saline Water, U.S. Department of the Interior, 41-50.

Proudman, J., 1953.
Dynamical Oceanography,
Methuen, London; J. Wiley, New York, 409 p.
Redfield, A., 1950.
The Analyses of Tidal Phenomena in Narrow Embayments,
No. 529,. Papers in Phys. Ocean. and Meteor., MIT and Woods Hole
Ocean. Inst., 11, no. 4, 36 p.
Richardson, A., 1922.
Weather Prediction by Numerical Process,
Cambridge University Press, 236 p.
Richtmyer, R. D., and K. W. Morton, 1967.
Difference Methods for Initial-Value Problems, 2nd. ed.,
Interscience, New York, 403 p.
Sterneck, R. v., 1914.
Uber die Gezeiten des Aegaischen Meeres,
Akad. Anz. Akad. Wiss. Wien, 10 Dec..
Stoker, J. J., 1957.
Water Waves,
Interscience, New York, 567 p.
Sverdrup, H. V., M. W. Johnson, and R. H. Fleming, 1942.
The Oceans,
Prentice-Hal1, New York, 1087 p.
U.S.C.\&G.S., 1964.
U.S. Coast Pilot No.9, Pacific and Arctic Coasts, Alaska, Cape Spencer to Beaufort Sea, 7th. ed.,
U.S. Government Printing Office, Nashington, D.C., 348 p.
U.S.C.\&G.S., 1968.

Tide Tables, West Coast, North and South America,
U.S. Government Printing Office, Washington, D.C., 224 p.
U.N.A.M., 1967.

Tablas de Prediccion de Mareas, Puertos del Oceano Pacifico, Ap. 1, Parte B, Anales del Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 13, Mexico, 135 p.

Yuen, K. B., 1967.
The Effects of Tidal Barriers upon the M_{2} Tide in the Bay of Fundy, Manuscript Report Series, No. 5, Marine Sciences Branch, Department of Energy, Mines and Resources, Ottawa, 146 p.

Zetler, B. D., and R. A. Cummings, 1967.
A Harmonic Method for Predicting Shallow-Water Tides,
J. Mar. Res., 25, 1, 103-114.

APPENDIX I

LISTING OF PROGRAM FOR VARIABLE-BOUNDARY TIDAL MODEL

```
    m
    C
C
C
C
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0 0 1 8
0019
0 0 2 0
0 0 2 1
0 0 2 2
                THIS BELCNGS TO CHRIS NUNGALL
                INSTITUTE OF mARINE SCIGNCE
```

```
C

\section*{INTEGFR*2 IU}
```

 DIMENSION U1 (65,30),21(65,30),H(65,30),[U(68,31)
 DIMENSION PR(20)
 COMMON MSUM,NSUM,DL,T,GEE,R,F,Y,PER,IPER,ISS,IS,DT,IDAY,IFIT,I,VC,
 FIT, 「IME,UL, ZI,H,IU,PR
 COMMON TIDE
 READ(I,1)IIDA
 FORMAT(I2)
 IIDA=NUMBER OF TIDAL CYCLES
 CALL OPSYS ('LOAD','PHASNMIF1')
 CALL INIT
 CALL OPSYS ('LOAD','PHASNME4')
 CALL ORIKTD
 CALL OPSYS ('LOAO','PHASNME3')
 IFIT=0
 ICYC=0
 FIT=IFIT
 CONTINUE
 UATV CALCULATION
 IFL=0
 L2=MSUM-1
 OO 2107 N=2,12,2
 I=-1
 2100 I=I +2
IF(IU(M,I)-2)2104.2107.2100
C IF IU=3, TREAT IT AS O
C IF IU=2,GO TO NEXT ROW

```
```

0023
0024
0025
0026
0027
0028
0029
0030
0031
0 0 3 2
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
004.3
0044

```
```

0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0053
0060
0061
0 0 6 2
0063
0064
0065
0066
0067

```

0045 0046

0048 0049

0050
0051
0052
0053
0054
0055

0056
0057
0058

0060
0061

0062
0063
0064

0065

0067
```

 U1(M,IMR+2)=U1(M+1,IMR+1)+U1(M-1,IMR+1)-U1(M,IMR)
 U1(M,IML-2)=U1(M+1,IML-1)+UI(M-1,IMLL-I)-UI(M,IML)
 GO TO 2100
 C REPEAT PROCESS
 C NARROW CASE
 2108 U1(M,IML-2)=(UL(M+1,IML-1')+111(M-1,IML-1))/2.
 Z1(M,IML-2)=21(M,IML-1)
 C H(M,IML-2)=0(M,IML-2)+21(M,IML-2)
 H(M,IML-2)=H(M,IML-1)+ZI(M,INL-2)
 UL(M,IML)=U1(M,IML-2)
 ZI(M,IML)=Z1(M,IMI-1)
 H(M,IMR+2)=D(M,IMR+2)+21(M,IMR+?)
 H(M,IMR+2)=11(M,IMR+3)+21(M,IMR+2)
 GO T0 2100
 cONTINUE
 C
 C
 IFL=0
 LI=NSUM-1
 00 2117 N=2,Ll,2
 I=-1
 2110 I= I +2
 IF(IU(I,N)-2)2114,2117,2110
 IF IU=3, TRFAT IT AS O
 IF IU LESS THAN 2, CHECK FOR O OR I
 IF IU=?, GO TO NEXT COLUMN
 IF(IU(I,N))2110,2110,2111
 IF IU=1, CHECK IF Ir IS BOTTOM OR TOP BOUNDARY
 IF(IFL)2112,2112,2113
 IFL=0 INOICATES BOTTOM BOUNDARY, IFL=1 TUP
 IMB=I +2
 IF BOTTON, SET BOTTOM (LOWER) LIMIT. CHANGE IFL VALUE
 BOTTOM BOUNDARY -- UK=0
 IF(IU(I+2,N)-3)2123,2122.2122
 UI(I,N)=UI(I+2,N)
 CONTINUE
    ```
```

0068
0069
0070
0071
0072
0073
0 0 7 4
0 0 7 5
0 0 7 6
0077
0078
0 0 7 9
0080
0 0 8 1
0 0 8 2
0083
0 0 8 4
0085
0 0 8 6
0087
0088
2113 IMT=I-2
C
If TOP, SET TOP (UPPER) limit. change ifl value
C TDP BCUNDARY -- UX=0
IF(IU(I-2,N)-3)2121,2120,2120
2120 Ul(I,N)=U1(I-2,N)
2121 CONTINUE
IFL=0
NOW WE HAVE lImITS FOR NORMAL CAlCULATION
IF(IMT-IMB)2118,2119,2117
CHECK FOR SPECIAL CASE (IE UNUSUALLY NARROW)
C
2119
DO 2116 M=1MP,IMT,2
Z1(M,N)=(Z1(M+1,N)+Z1(M-1,N))/2.
C H(M,N)=D(M,N)+21(M,N)
H(M,N)=H(M,N+1)+L1(M,N)
C116 V1(M,N)=(V1(N+1,N+1)+V1(M-1,N+1)+V1(N-1,N-1)+V1(M+1,N-1))/4.
2116 Ul(M,N+1)=(U1(M+1,N+2)+Ul(M-1,N+2)+Ul(M-1,N)+Ul(M+1,N))/4.
C
H(IMB-2,N)=H(IMB-2,N+1)+l.1(IIBB-2,N)
Z1(IMT+2,N)=(Z1(IMI+1,N)-(ZI!IMT-1,N)/3.))*1.5
H(IMT+2,N)=0(IMT+2,N)+Z1(IMT+2,N)
H([MT+2,N)=H([MT+2,N+1)+LI(IMT+2,N)
C VI(IMT+2,N)=V1(IMT+1,N+I)+VI(IMT+1,N-1)-VI(IMT,N)
Ul(IMT+2,N+1)=Ul(IMT+1,N+?)+UI(IMT+1,N)-UI(IMT,N+1)
C VI(IMB-2,N)=VI(IMB-1,N+1)+VI(IMP-1,N-1)-VI(IMB,N)
Ul(IMB-2,N+1)=U1(IMB-1,N+2)+Ul(IMB-1,N)-U1(IMB,N+1)
go TO 2110
REPEAT PROCESS
NARPDIV CASE
C118
2118 Ul(IMB-2,N+1)=(Ul(IMB-1,N+2)+Ul(IMB-1,N))/2.
21(IMB-2,N)=21(1MB-1,N)

```
```

0089 H(IMB-2,N)=H(IMB-2,N+1)+21(IMP-2,N)
C VI(IMB,N)=V1(IMB-2,N)
U1(IMR,N+1)=U1(IMB-2,N+1)
Z1(IMB,N)=21(IMB-1,N)
C H(IMT+2,N)=0(IMT+2,N)+21(IMT+2,N)
H(IMT+2,N)=H(IMT+2,N+1)+2I(IMT+2,N)
GO TO 2110
2117 CONTINUE
IF(IIDA-IDAY)B999.8999,8998
8997 CALL WRITER(9,U1,7800)
CALL WRITER(9,Z1,7800)
8998 CONTINUE
C
C
C PPINT-UUT UNLY'Z TIMES/TIDAL CYCIE
IF(ISS-IS)E1,81,82
\&1 IS=0
IF(IIDA-INAY)2001,2001,2002
2002 IF(ICYC)2001,2001,82
2001 TIME=FIT*T/(3600.*PER)
C
C
CALL OPSYS ('LOAO','PHASNME2')
CALL WRITE
CALL OPSYS ('LOAO','PHASNME3')
ICYC=ICYC+1
82 IS=IS+2
IFIT=IFIT+2
FIT=IFIT
CALL INPUT
C
C
CALL UVZ
CALL INPUT
THIS REPLACES DESTROYED INPUT-POINT DATA
IF(IPER-IFIT)80.80.GI

```
```

0115
0117
0117
0118
0119
0120
0121
0122
0123
0124
0125
80 IDAY=IDAY+1
C THE NEXT G INSTRUCTIONS ARE INCLUDEO TO LIMIT THE LOSS OF
C DATA TO ONE CYCLE GNLY, IN THE EVENT THAT THE PRUGRAM I'S
C CANCELLED DUE TO EXTERNAL CAUSES. TORESTART AT THE EM!: OF
C THE LAST CYCLE COMPLETED, THE INIT PROGRAM WILLL HAVE TU :E
C ALTERED SLIGHTLY.
WRITE(A,1)IOAY
CALL WRITER(R,IU,4216)
CALL WKITER{6,Z1,7800}
CALL WRITER(8,U1,7800)
CALL WRITER(R,H,7800)
OEWINL }
IF(IIDA+1-IUAY) 33,83,67
83 REWIND }
CALL EXIT
END

```
```

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013

```
```

 SUBROUTINE INPUT
    ```
    SUBROUTINE INPUT
    INTEGER*2 IU
    INTEGER*2 IU
    DIMFNSION UL (65,30), 21(65,30),H(65,30), IU(68,31)
    DIMFNSION UL (65,30), 21(65,30),H(65,30), IU(68,31)
    OIMENSION PR(20)
    OIMENSION PR(20)
    COMMON NSUM,HSUM,DL,T,GEE,R,F,Y,PER,IPER,ISS,IS,DT,IDAY,IFII,ICYC,
    COMMON NSUM,HSUM,DL,T,GEE,R,F,Y,PER,IPER,ISS,IS,DT,IDAY,IFII,ICYC,
IFIT,TIME,UL,ZL,H,IU,PR
IFIT,TIME,UL,ZL,H,IU,PR
    COMMON TIUE
    COMMON TIUE
    Z1(2.4)=0.130*COS(6. <4318*((FIT/PER)-0.000))
    Z1(2.4)=0.130*COS(6. <4318*((FIT/PER)-0.000))
    Z1(2,6)=0.133*COS(0.28314*((:IT/PIR)-0.000))
    Z1(2,6)=0.133*COS(0.28314*((:IT/PIR)-0.000))
    Z1(2,8)=0.136*CUS(6.2931^*((FIT/PER)-0.000))
    Z1(2,8)=0.136*CUS(6.2931^*((FIT/PER)-0.000))
    Z1(2,10)=0.140*COS(6.28319*((FIT/PER)-0.000))
    Z1(2,10)=0.140*COS(6.28319*((FIT/PER)-0.000))
    Z1(32,12)=1.070*CCS(6.28.313*((FIT/PRR)-0.207))
    Z1(32,12)=1.070*CCS(6.28.313*((FIT/PRR)-0.207))
    RETURN
    RETURN
    EMD
```

 EMD
    ```
```

0001
0002.
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0 0 1 3
0014
0015
0016
0017
0018
0017
0020
0021
0022
0023
0024
0025
0026
002.7

```

0001
0002 .
0003

0005

0006

0007
0008
0009
001
0011
0012
0013
0014
0015
0016
0017

0019

0020
0022
0023

0024
0025

0027
```

SUBROUTINE INIT
INTEGER*2 IU
OIMENSION U1 165,30$), 21(65,30), H(65,30), I U(68,31)$
OIMENSION PR(20)
COMMON MSUM,NSUM,DL, T,CEE,R,F,Y,PER,IPER,ISS,IS,DT,IDAY,IFIT,ICYC, IFIT,TIME,UI, Zl,H,IU, PR
COMMON TIDE
C
C
C
SET VELICITIES TO ZERO
$002009 \mathrm{M}=1,65$
$002009 \mathrm{~N}=1,30$
Zl(M,N)=0.
$H(M, N)=0$.
COO9 VI(M,N)=0.
2009 U1 $(M, N)=0$.
C
105 FORMAT(I2)
READ (1,105)NSUM
REAO (1,1)DL
DLL=DL/1000.
WRITE (3,700010LL
7000 FORMAT('1', לOX:'GRID INTERVAL=',FG.2,'KILOMETERS'।
READ(1,1)T
C $T=P E R I O D$ IN HOURS
WRITE (3, 7001$) T$
7001 FDRMAT('0'.50X,'TIDAL PERIOD=',F6.2,'HUURS')
$\mathrm{T}=\mathrm{T} * 3600.0$
GEE=9.81
C GFE IN M/SEC**
C R=FRICTICN COEFFICIENT
READ(1,1)R
WRITE(3,7002)R
7002 FORMATI'0', 50X, 'FRICTION COEFFIGIENT=',F6.4)
READ(1,1)ALAT

```
```

0028
0029
00.30
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
WRITE(3,7003)ALAT
7003 FORMAT('0',5UX,'LATITUDF=',F4.1,'0EGREES')
PHI=ALAT*3.1416/180.0
F=(4.0*3.1416*SI?N(PHI))/(24.0*3600.0)
C F=CORIOLIS PARAMETER, IN RAD/SEC
WRITE(3,7004)F
004 FORMAT('O',5OX,'CORIOLIS PARAMETER=',F10.8,'RADIANS/SECOND']
WRITE(3,700S)
7005 FORMAT('O',5OX,'FOLLOWING PRINTOUIS ARE IN METER-SESOND UNITS'
C STABILIZATIOIN FACTOR
Y=0.99
MEAO(1,1)PFP
C PER=NUMBER OF TIME INTERVNLS/TIDAL PERIOD
IPER=FFR
IZINT=IPER
ISS=PER/12.
C IE PRINT OUT 12 TIMES PER TIOAL CYClf dURING lA:T CYClE
IS=ISS
DT = T/PER
C DT=TIME INCREMENT IN SEDONDS
WRITE (9,77)MSUM
WRITE(9,77)NSUM
77 FORMAT(I2)
WRITE(9.78)DL
78 FORMAT(F12.4)
WRITE/9.999)IZINT
999 FORMAT(IG)
WRITE(9,78)T
C
C READ POINTS AT WHICH U=0
LI=NSUM-1
OO 2020 N=2,L1,2
2020 READ(1,104)(IU(M,N),M=1,6H)
104 FORMAT(68Il)
C
C
READ POINTS AT WHICH V=0

```
```

0 0 5 5
0 0 5 6
0 0 5 7
0058
0 0 5 9
0 0 6 0
0 0 6 1
0062
0 0 6 3
0064
0 0 6 5
0 0 6 6
0067
0068
0 0 6 9
0070
0 0 7 1
0 0 7 2
0 0 7 3
0 0 7 4
0 0 7 5
0 0 7 6
0077
0078
0079
0080
0081
0082
0083

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{0084} & \multirow[b]{2}{*}{C} & \(H(M, I M L-1)=H(M, I M L-1) * 1.8288\) \\
\hline & & READ (1, I) U(M,IMR+2) \\
\hline 0085 & & READ (1, L) 11 (M,IMR+3) \\
\hline 0086 & & \(H(M, I M R+3)=H(M, I N R+3) * 1.8288\) \\
\hline 0087 & & GO TO 2400 \\
\hline \multirow[t]{4}{*}{0088} & 2407 & continue \\
\hline & C & \\
\hline & C & \\
\hline & C & READ DATU \\
\hline 0089 & & \(I F L=0\) \\
\hline 0090 & & \(L 1=\) NSUM -1 \\
\hline 0091 & & 0) \(2517 \mathrm{~N}=2, \mathrm{LI}, 2\) \\
\hline 0092 & & \(\mathrm{I}=-1\) \\
\hline 0093 & 2510 & \(\mathrm{I}=\mathrm{I}+2\) \\
\hline 0094 & & IF(IU(I,N)-212514,2517,2510 \\
\hline 0095 & 2514 & IF (IU(I,N) 2 2510,2510,2511 \\
\hline 0096 & 2511 & IF(IFL) \(2512,2512,2513\) \\
\hline 0097 & 2512 & \(I M B=I+2\) \\
\hline 0098 & & \(I F L=1\) \\
\hline 0099 & & G) TO 2510 \\
\hline 0100 & 2513 & \(1 \mathrm{MT}=\mathrm{I}-2\) \\
\hline 0101 & & \(1 F L=0\) \\
\hline \multirow[t]{2}{*}{0102} & & IF(IMT-IME)251R,2519,2519 \\
\hline & 6519 & READ (1, 1) O(IME-2, N) \\
\hline 0103 & 2519 & READ (1, 1) H(IMH-2, \(\mathrm{N}+1)\) \\
\hline 0104 & & \(\mathrm{H}(1 \mathrm{MB}-2, N+1)=\mathrm{H}(1 \mathrm{MH}-2, \mathrm{~N}+1) * 1.828 \%\) \\
\hline 0105 & & OO \(2516 \mathrm{M}=[\mathrm{MA}, \mathrm{IMT}, 2\) \\
\hline 0106 & & READ (1, 1) H(M,N+1) \\
\hline \multirow[t]{2}{*}{0107} & 2516 & \(H(M, N+1)=H(M, N+1) * 1.8288\) \\
\hline & C & READ (1, 1) \(0(1 \mathrm{MT}+2, \mathrm{~N})\) \\
\hline 0108 & & READ ( 1,1 ) H(IMr \(+2, N+1)\) \\
\hline 0109 & & \(H(I M T+2, W+1)=11(1 M T+2, N+1) * 1.8283\) \\
\hline \multirow[t]{2}{*}{0110} & & GO TO 2510 \\
\hline & C518 & READ (1, 1) 1 )( 1 MB-2, N) \\
\hline 0111 & 2518 & REAO (1, 1) H(INH-2,N+1) \\
\hline . 0112 & & \(H(I M H-2, N+1)=H(1 M B-2, N+1) * 1.828 \%\) \\
\hline
\end{tabular}

C \(\operatorname{READ}(1,1) D(I M T+2, N)\)
READ \((1,1) H(I N T+2, N+1)\)
\(\mathrm{H}(\mathrm{IMT}+2, \mathrm{~N}+1)=\mathrm{H}(1 \mathrm{MT}+2, \mathrm{~N}+1) * 1.828 \mathrm{r}\)
GO TO 2510
2517 CONTINUE
C
C
\(C\)
\(C\)
C
READ 1 INITIAL
\(L F L=0\)
\(L 2=M S U M-1\)
\(002607 \mathrm{M}=2 . \mathrm{L} 2.2\)
\(\mathrm{I}=-1\)
\(2600 \quad 1=1+2\)
IFIIU(M,I)-2)2604,2607,2600
2604 IF(IU(M,I)) 2600,2600,2601
2601 IF(IFL) \(2602,2602,2603\)
\(2602 \quad \mathrm{MLL}=\mathrm{I}+1\)
\(I F L=1\)
GO TO 2600
\(2603 \quad I M R=I-1\)
\(I F L=0\)
DO \(2606 \mathrm{~N}=\mathrm{IML}, I M R, 2\)
\(2606 \operatorname{KEAD}(1,1) 21(M, N)\)
GO TO 2600
2607 CUNTINUE
C
RETURN
ENO

0006
0007
0008
0009
0010
0011
0012
0013 0014

0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
                SUBROUTINE WRITE
        INTEGER*2 IU
        DIMENSIDN U1 (65,30), 21(65,30), H(65,30), 1U(68,31)
        DIMENSION PR(20)
        COMMDN MSUM, NSUM, DL,T,GEE,R,F,Y,PER,IPER,ISS,IS,DT, IDAY,IFIT,ICYC,
        IFIT,TIME,UI, ZI,H,IU, PR
        COMmON TIDE
            WRITE Z'S
        WRITE 3,110 )
110 FORMAT('1',63x,'z-VALUES')
        WRITE \((3,4)\) TIME
4 FORMATI' ', 'CONOITIONS AFTER',2X.F5.2,'HOURS')
        LRITE \((3,5)\) LDAY
5 FORMATI' ', 'NUMBER OF TIDAL CYCLES COMPLETED', \(2 x, 121\)
        WRITE(3.102)

    \(2=17 \quad N=18 \cdot 1\)
        \(005002 \mathrm{~J}=1\), MSUM
        \(M=M S U M+1-J\)
5002 WRITE(3,101)M,(Z1(M,N),N=1,18)
101 FORMAT(' ','M=•,12,1X,LR(1X,「6.2))
    IFINSUM-18)5004,5004,5003
5003 VRITE(3,110)
        WRITE 3,4 )TIME
        WRITE (3,b)IDAY
        WRITE 3,103 )
103 FORMATIO', \(N=19 \quad N=20 \quad N=21 \quad N=22 \quad N=23 \quad N=24 \quad N=25 \quad: l=?\)
    \(16 \quad N=27 \quad N=28 \quad N=29 \quad N=301)\)
        DO \(500 \mathrm{~s} \quad \mathrm{~J}=\mathrm{I}, \mathrm{MSUM}\)
        \(M=M S U M+1-J\)
5005 WRITE (3,106)(Z1(M,N),N=19,29)
106 FORMAT(' , 111(1X,F6.2))
5004 CONTINUE
```

C WRITE U:S
WRITE(3,113)
113 FORMAT('I',63X,'U-VALUFS')
WRITE(3,4)TINE
WRITE(3,5)IDAY
V.\ITE(3.102)
M=MSUM
7008 00 7012 I=1,18
7012 PR(I)=0.
OO 7010 N=2,1R,2
7010 PR(N)=Ul(M,N)
WRITE(3,101)N,(PR(N),N=1,18)
M=M-1
IF(M)7016,7016,7009
7009 INDICATES THAT M IS EVEN
7000 DO 7013 I=1,18
7013 PR(I)=0.
OO 7014 N=1.17.2
PR(N)=U1(M,N)
WRITE(3,101)M,(PR(N),N=1,18)
M=:M-1
GO T0 7008
7016 CONTINUF
IF(NSIMM-18)7104,7104,7103
7103 WRITF(3,113)
WRITE(3,4)TIME
WRITE(3,5)IDAY
WRITE(3,103)
M=MSUM
7108 DO 7112 I=1,12
7112 PR(I)=0.
O\cap 7110 N=2,10,2
7110 PR(N)=U1(M,N+18).
W:ITE(3,106)(PR(J),J=1,11)
M=M-1
IF(M)7116,7116,7109

```

\begin{tabular}{|c|c|c|}
\hline 0094 & & IF (NSUM-18)6104,6104,6103 \\
\hline 0095 & 6103 & WRITE (3,112) \\
\hline 0096 & & WRITE \((3,4)\) TIME \\
\hline 0097 & & WRITE \((3,5)\) IDAY \\
\hline 0098 & & WRITE (3,103) \\
\hline 0079 & & \(\mu=\) MSUM \\
\hline 0100 & 6108 & D0 6112 I=1,12 \\
\hline 0101 & 6112 & PR(I) \(=0\) 。 \\
\hline 0102 & & DO 6110 N=2,10,2 \\
\hline & C110 & \(P R(N)=V 1(M, N+18)\) \\
\hline 0103 & 6110 & \(\operatorname{PR}(N)=111(M, N+19)\) \\
\hline 0104 & & WRITE (3,106) (PR(J), J=1,11) \\
\hline 0105 & & \(N=M-1\) \\
\hline 0106 & & IF (M) \(6116,6116,6109\) \\
\hline 0107 & 6109 & DO \(6113 \quad 1=1,12\) \\
\hline 0108 & 6113 & PR(I) \(=0\) 。 \\
\hline 0109 & & DO 6,114 \(\mathrm{N}=1,11,2\) \\
\hline & C114 & \(P R(N)=V 1(M, N+18)\) \\
\hline 0110 & 6114 & PR(N) \(=\) U1( \(M, N+19)\) \\
\hline 0111 & & WRITF(3,106)(PR(J), J=1,11) \\
\hline 0112 & & \(\mu=11-1\) \\
\hline 0113 & & GO TO 6108 \\
\hline 0114 & 6116 & CONTINUE \\
\hline 0115 & 6104 & continue \\
\hline 0116 & 2 & FORMAT(' ©, 13) \\
\hline 0117 & 3 & FORMAT('1') \\
\hline 0118 & & RETURN \\
\hline 0119 & & END \\
\hline
\end{tabular}
```

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0 0 1 9
0020
0 0 2 1
0022
SUBROUTINE UVZ
INTEGER*2 IU
DIMENSION U1 (65,30), 21(65,30),H(65,30),IU(68,31)
DIMENSION PR.(20)
COMMON MSUM,NSUM,DL,T,GEE,R,F,Y,PER,IPER,ISS,IS,DT,IDAY,IFIT,ICYC,
LFIT,TIME,UL,ZL,H,IU,PR
C
COMMON TIDE
U-POINT CALCULATION
IFL=0
LI=NSUM-1
00 3117 N=2.L1.2
I=-1
3110 I=I+2
IF(IU(I,N)-2)3114,3117,3110
C IF IU=3, TREAT IT AS O
C IF IU=2 GO TO NEXT COLUMN
3114 IF(IU(I,N))3110,3110,3111
C IF IU=1, CHECK IF IT IS DOTTOM OR TOP BOUNDARY
3111 IF(IFL)3112,3112,3113
C
3112
IFL=0 INDICATES BOTTOM ROUNDARY, IFL=1 TOP
C
IMB=I +2
IF fOTTOM, SET ROTIOM (LOWER) LIMIT. CHANGE IFL VALUE
IFL=1
GO TO 3110
3113 IMT=I-2
C. IFL=0
C NOW WF HAVE LIMITS FOR CALCILATION
IF(IMT-IMG)3118,3119,3119
C
CHECK FOR SPECIAL CASE (IF UNUSUALLY NARROW)
3119 OO 3116 M=IMB,IMT,?
C CalCULATION OF U AT (M,N)
ZXATU=(Z1(1N+L,N)-Z1(M-1,N))/(2.*DL)
C VI, Ul SHOULD BE FOR TIME (T) -- HERE THEY ARE TAKFN FOR TIME (T-1)
C STABILIZATION OF LEADING U-TERM

```
```

0 0 2 3
0 0 2 4
0 0 2 5
0026
0027
0 0 2 8
0 0 2 9
0030
0031
0 0 3 2
0 0 3 3
0 0 3 4
0 0 3 5
0 0 3 6
0 0 3 7
0038
0 0 3 9
0 0 4 0
0 0 4 1
USTAB=(Y*U1 (M,N))+((1,-Y)*(U1(M+1,N+1)+U1(M-1,N+1)
1 +U1(M-1,N-1)+(U1(M+1,N-1))/4.)
3116 U1(M,N)=USTAB+(2.*DT*(1-USTAB*R*SQRT((UI(M,N)*U1(M,N))
C 1 +(VI(M,N)*VI(M,N)))/H(M,N))+(F*VI(M,N))-(GE[*IXATU)))
1 +(Ul(M,N+1)*U1(M,N+1)))/H(N,N))+(F*U1(M,N+1))-(GEE*IXATU))!
C END OF U AT (M,iv) CALCULATION
GO TO 3110
c NARRO: CASE
3118 GO TO 3110
C IN NARROW CASE, NO U-PDINT CALCULATION IS POSSIbLE
3117 CONTINUF
C
C
C v-POINT CALCULATION
IFL=0
L2=MSUM-1
DO 3107 M=2,L2,2
I=-1
3100 I = I + 2
IF(IU(M,I)-2)3104,3107,3100
C [lF IU=3, TREAT IT AS O
IF IU LESS THAN 2, CHECK FOR O OR I
C IF IU=3, TREAT IT AS O
3104 IF(IU(M,I))3100,3100,3101
C IF IU=1, CHEGK IF IT IS LEFT OR RIGHT BOUNDARY
3101 IF(IFL)3102,3102,3103
C
3102
IML=I+2
C
if left, set left (lower) limit. change ifl value
IFL=1
OO TO 3100
3103 [MR=I-2
C IF RIGHT, SET RIGHT (UPPER) LIMIT. CHANGE IFL VALUE
IFL=0
NOW we have limits fur calculatiun
IF(IMR-IMLI3108,3109,3109

```
```

 C CHECK FOR SPECIAL CASE (IE UNUSUALLY NARROW)
 0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
3109 DO 3106 N=IML,IMR,2
C CALGULATION OF V AT (M,N)
ZYATV = (21(M,N-1)-21(M,N+1))/(2.*OL)
C VI, Ul SHOULO UE FOR TIME (T) -- HERE THEY ARF TAKEN FOR TIME (T-1)
C STABILIZATION OF LEADING V-TERM
C VSTAH= (Y*VI(M,N))+((1.-Y)*(V1(M+1,N+1)+V1(M-1,N+1)
VSTAB=(Y*Ul(M,N+1))+((1, -Y)*(U1 (M+1,N+2)+Ul(M-1,N+2)
C 1 +VI(M-1,N-1)+VI(M+1,N-1))/4.1
1+Ul(M-1,N)+U1(M+1,N))/4..)
C106 V1(M,N)=VSTAH+(2.*OT*((-VSTAB*R*SQRT(IU1(M,N)*U1(M,N))
3106 Ul(M,N+1)=VSTAB+(2.*UT*(1-VSTAB*R*SORT((U1(M,N)*U1(M,N))
C 1 + (VI(M,N)*VI(M,N)))/H(M,N))-(F*U1(M,N))-(GEE*ZYATV)))
l +(U1(M,N+1)*Ul(N,N+1)))/H(N,N))-(F*UL(M,N))-(GEE*ZYATV)))
C END DF V AT (M,N) CALCULATION
GO TO 3100
3108 GO TO 3100
C NARRON CASE
C IN NARROW CASE, NO v-PGINT CALCULATION IS POSSIBLE
3107 CONTINUE
C.
C
C Z-POINT CALCULATION
C NOTEO VALUES ARE CALCULATED AT INPUT POINTS--THESE ARE FALS:
IFL=0
L2=MSUM-1
DO 4107 M=2,L2,2
I=-1
4100 I=I +2
IF(IU(M,I)-2)4104,4107,4100
IF IU=3, TREAT IT AS 0
IF IU LESS THAN 2, CHFCK FOR O OR 1
IF IU=2,GO TO NEXI ROW
4104 IF(IU(M,I))4100,4100,4101
C IF IU=], CHECK IF II IS LEFT OR RIGHT BOUNOARY
4101 IF(IFL)4102,4102,4103

```
```

0 0 5 7
0058
0059
0060
0 0 6 1
006?
0 0 6 3
0064
0065
0066 4106 Z1(M,N)=Z1(M,N)-(2.*OT*(HUX+HVY))
0067
0068
0 0 6 9
0070
4102 1ML=I+1
C IF LEFT, SET LEFT (LOWER) LIUIT. CHANGE IFL VALUE
IFL=1
GOTO 4100
4103 IMR=I-1
C IF RIGHT, SET RIGHT IUPPERI LIMIT. CHANGE IFL VALU:
IFL=0
NOW WE HAVE LIMITS FGR CALGULATION
DO 4106 N=IML.IMR,2
C CALCULATION OF Z AT (M,N)
HUX=((H(M+1,N)*Ul(M+1,N))-(H(M-1,N)*U1(M-1,N)))/(DL*2.)
C HVY=((H(M,N-1)*VL(M,N-1))-(H(M,N+1)*VL(M,N+1)))/(DL*2.)
HVY=((H(N,N-1)*U1(H,N))-(H(M,N+1)%U1(M,N+2)))/(DL*2.)
STABILIZATION UF LL
Z1(M,N)=(Y*21(M,N))+((1,-Y)*(Z1(M+1,N)+Z1(M-1,N)
1 + L1(M,N-1)+21(M,N+1))/4.)
C HUX AND HVY SHUULD INVOLVF }22\mathrm{ VAlUES, BUT HERF THEY ARE
C APPROXIMATED BY ZI.
C END DF Z-CALCULATION
GO TO 4lOO
4107 CONTINUE
RETURN
ENO

```
```

0 0 0 1
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
002?
0028
0029
C
111
102
fORMAT('O','
1 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15 N=16 v
2=17 N=18'1
5008 D0 5012 [= 1,18
5012 PR(I)=0.
DO 5010 N=2,18,2
CO10 PR(N)=0(M,N)
5010 PRP(N)=H(M,N+1)
WRITE(3,108)M,(PR(N),N=1,18)
FORMAT(' ','N=',12,1X,18(1X,F5.1))
M=M-1
IF(M)5016,5016,5009
5009 [NDICATES ThAT M IS EVFN
C
5009 00 5013 1=1,18
5013 PR(I)=0.
DO 5014 N=1,17,2
PR (N)=0)(M,N)
5014 PRP(N)=H(M,N+1)
WRITE(3,10E)M,(PR(N),N=1,18)
M=M-1
GO TC 500%
5016 CONTINUE
IF(NSUM-18)5104,5104,5103
5103: WRITE(3,111)

```

\[
\begin{aligned}
& N=21 \quad N=22 \quad N=23 \quad N=24 \quad N=25 \quad N=? \\
&=30 \cdot 1
\end{aligned}
\]

\section*{APPENDIX II}

LISTING OF DATA COMPRESSION SUBroutine

Note: This subroutine is required by the tidal model program and the two analysis programs.
* this assembler subroutine can be used to read or write large tape
* blocks by a fortran program. before calling the subroutine for
* writing, the user must write' at least once on to the tape to
*insure that the tape is properly opened. naturally the tape hhfn
* read hack, also must read' the tape fur the same reasin. when
* finished writing a tape with this subroutine, the user must eeind-
* file' or trewind' the tape to close it properly.
* the furmat for the furtran call do writf a record iassumed to be a Lapge array of oimension (100.10)) on data set REFERENCF = 5 wOULD BE

CALL WRITER (5,ARRAY,4000)
to read the array, one could ccoe
CALL READER (6, BARRAY,4000)

NOTES.
the first argument specifies the data set reference =. It may be a constant or a fixed point variable containing the data set REFERENCE \(=\).
any number of variables or arrays may be written. specify merely in the second and third arguments the name of the first variable to
* be written and the fitire lengit of the variables to be hritten.
* it may be necessary to refer to the storage map tu determinf.
* Which variable is actually first in core and what the actual
* LENGTH is.
* the third argument represents the number of bytes to be britien.
* fortran words of single precision contaín 4 bytes each, while
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{* DOUBLE PRECISION VARIABLES} \\
\hline TAPEIO & Start & 0 \\
\hline \multirow[t]{5}{*}{WRITER} & EQU * & \\
\hline & ENTRY & WRITER \\
\hline & USING & *,15 \\
\hline & SAVE & (14.12) \\
\hline & L. 4 & 5,1 \\
\hline \multirow[t]{2}{*}{G0} & LM & 2,4,0(1) \\
\hline & L & 2,012) \\
\hline \multicolumn{3}{|l|}{*} \\
\hline & 1 & 4.014) \\
\hline & STH & 4,CCVPTR+6 \\
\hline & ST & 3,CCWPTR \\
\hline & STC & 5,CCh.PTR \\
\hline & SH & 2, = \(\mathrm{H}^{\prime \prime} 3\) - \\
\hline & STC & 2, CCET 7 \\
\hline & EXCP & CCB \\
\hline & VAIT & CCE \\
\hline & RETURN & ( 14,12 ) \\
\hline \multirow[t]{5}{*}{READER} & EQU & * \\
\hline & ENTRY & READER \\
\hline & SAVE & (14,12) \\
\hline & LA & 5,2 \\
\hline & LA & 9,READER-WRITER \\
\hline \multirow[t]{3}{*}{SR} & & 15.9 \\
\hline & B & GO \\
\hline & DS & OF \\
\hline CCB & CCB & SYS000, CCWPTR \\
\hline CCWPTR & CCW & 0,0, X'20', 0 \\
\hline & ENO - & \\
\hline
\end{tabular}

ESTABLISH ADDRESSABILITY
SAVE ALL FORTRAN REGISTERS
LOAD WRITE OP COOE
LCAD PARM POINTERS
\(R ?=D S\) KFF ND.
\(R 3=A(I O A R E A)\)
\(R 4=L E N G T H\)
STURE LENGTH
STORE ADORESS
STORE LP CIDE
GET SYS NO. FROM US REF NO.
STORE IN CCB
UO I/O IIPERATION
WAII FEK CUMPLETIUN
RETURN

SAVE REGISTERS
LOAD REAOER OP CODE
GET DIFFFRENCE
'TWLEK' BASE REGISTER

LISTING OF HEIGHT AND CURRENT ANALYSIS PROGRAMS

\begin{tabular}{|c|c|c|}
\hline 0036 & & GO TO 8100 \\
\hline 0037 & 8107 & CONTINUE \\
\hline 0038 & & \(T=0\). \\
\hline 0039 & & \(I T=0\) \\
\hline 0040 & 15 & CALL REAUER(9,21,7800) \\
\hline & C & READ Ul \\
\hline 0041 & & CALL READER(9, 21,7800\()\) \\
\hline & C & PEAO 21 \\
\hline 0042 & & \(I F L=0\) \\
\hline 0043 & & L2 = MSUM-1 \\
\hline 0044 & & \(004107 \mathrm{M}=2,12,2\) \\
\hline 0045 & & \(1=-1\) \\
\hline 0046 & 4100 & \(\mathrm{I}=\mathrm{I}+2\) \\
\hline 0047 & & IF (IU(M, ()-2)4104,4107,4100 \\
\hline 0048 & 4104 & IF (IU(M, I) \(4100,4100,4101\) \\
\hline 0049 & 4101 & IF(IFL)4102,4102,4103 \\
\hline 0050 & 4102 & \(\underline{M L L}=1+1\) \\
\hline 0051 & & \(1 F L=1\) \\
\hline 0052 & & GO T0 4100 \\
\hline . 0053 & 4103 & - \(1 \mathrm{MR}=1-1\) \\
\hline 0054 & & IFL \(=0\) \\
\hline 0055 & & DO \(13 \mathrm{~N}=\mathrm{IML}, \mathrm{IMR,2}\) \\
\hline 0056 & & IF (Z1(M,N)-ZMAX (M,N) ) 10,10,11 \\
\hline 0057 & 11 & \(Z M A X(M, N)=Z L(M, N)\) \\
\hline 0058 & &  \\
\hline & C & PUT ASSUCIATED PHASE BELOW \(l\) \\
\hline 0059 & & ZMAX (M, \(N+1)=0 . C\) \\
\hline 0060 & & ZMAX (M-1, \(\mathrm{N}+\mathrm{I})=0.0\) \\
\hline 0061 & 10 & IF (21(M,N)-IMIN(M,N))12,13,13 \\
\hline 0062 & 12 & \(Z M I N(M, N)=Z 1(M, N)\) \\
\hline 0063 & & ZNIN(M-1,N) = T \(N\) PH \\
\hline 0064 & & 7MIN (M,N+1) N (0.0 \\
\hline 0065 & & \(2 M I N(N-1, N+1)=0.0\) \\
\hline 0066 & 13 & C.ONT INUF \\
\hline 0067 & & GO TO 4100 \\
\hline 0068 & 4107 & CONTINU! \\
\hline
\end{tabular}

0069
0070 0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0092
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093

0094
0095
0096
0097
```

$\mathrm{IT}=\mathrm{IT}+2$
$\mathrm{T}=\mathrm{T}+2$.
IF(IZINT-IT)16,16.15
C
16 WRITE 3,200$)$ TT
200 FORMAT('1', \dagger OX,'TIOAL PERICD=',FG.2, 'HOURS')
WRITE(3,2CI)DL
201 FORMAT(' '50X.'GKIO INTERVAL=',F6.2,'KILOMETERS')
WRITE 3,202$)$
202 FORMAT(' '2OX, 'OUTPUT DESCRIPTICN..')
WRITE 3 , 203)
203 FORMAT(' '.35X.'UNITS..METERS,UEGREES')
WRITE $(3,204)$
204 FORMAT(' ',53X,'N=2,4,6,ETC.')
WRITE $(3,205)$
WRITE (3,205)
WRITE $(3,205)$
205 FORMAT(' ',57X, '世')
WRITE 3,206)

```

```

WRITE $(3,205)$
WRITE $(3,205)$
WRITE $(3,205)$
WRITE (3,205)
WRITE $(3,207)$
FORNAT (' ',55X, 'ANGLE')
WRITE ZMAX ANU PHASE
WRITE (3,110)
110 FORMAT('1', $47 X$, 'MAXIMUM HFIGHTS ANO ASSOCIATEO PHASE')
WRITE (3,102)
FORMAT (${ }^{\prime \prime}, 1 \quad N=2 \quad N=4 \quad N=6$
102

| 1 | $N=8$ | $N=2$ | $N=4$ | $N=6$ |
| :--- | :--- | :--- | :--- | :--- |
| 2 | $N=10$ | $N=12$ | $N=14$ | $N=16$ |

$12=$ MSUN-
DO 5002 J=1,L2,2

```

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123

0126
0127
0128
0129
0130
0131
```

 M=MSUM+1-J
 WRITE(3,106)(IMAX(M,N),N=1,18)
 WRITE (3,3)
 106 FORMAT(' *,5X,13(1X,FG.1))
M=M-1
WRITE(3,101)M,(ZMAX(M,N),N=1,18)
FORMAT(' ','M=1,12,1X,18(1X,F6.2))
FORMAT(' ')
5002 CONTINUF
M=1
WRITE(3,106)(ZMAX(M,N),N=1,18)
IF(NSUN-18)6004,6004,6003
WRITE (3,110)
WRITE(3,103)
FORMAT(10','N=20 N=22 N=24 N=?
00 6005 J=L,L2,?
M=MSUM+1-J
WRITE(3,166)(ZMAX(M,N),N=19,27)
WRITE(3.3)
M=M-1
WRITE(3,16l)(ZMAX(M,N),N=19,29)
6 0 0 5 ~ C D N T I N U E ~
M=1
WRITE(3,166)(ZMAX(M,N),N=19,29)
6004
C
CONTINUE
WRITE ZMIN AND PHASE
WRITE(3,170)
WRITE(3,102)
DO 7002 J=1,12,?
N=MSUM+1-J
WRITE(3,1U6)(/MIN(M,N),N=!,10)
WRITE (3,3)
M=M-1

```
```

 WPITE(3,101)M,(ZMIN(M,N),N=1,18)
 0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
01.64
0165

```
```

 7002 CONTINUE
    ```
    7002 CONTINUE
        M=1
        M=1
        WRITE(3,106)(ZMIN(M,N),N=1,18)
        WRITE(3,106)(ZMIN(M,N),N=1,18)
        IF(NSUM-18)5004,5004,5003
        IF(NSUM-18)5004,5004,5003
        WRITE(3,170)
        WRITE(3,170)
        FORHAT('1',47X,'mINImUM heIGHTS aNU ASSOCIATEO PHASE')
        FORHAT('1',47X,'mINImUM heIGHTS aNU ASSOCIATEO PHASE')
        HRITE(3,103)
        HRITE(3,103)
        10 5005 J=1,L2,2
        10 5005 J=1,L2,2
        M=MSUM+1-J
        M=MSUM+1-J
        WRITE(3,166)(ZMIN(M,N),N=19,29)
        WRITE(3,166)(ZMIN(M,N),N=19,29)
        WRITE(3,3)
        WRITE(3,3)
        N=M-1
        N=M-1
        WRITE(3,16I)(ZMIN(M,N),N=19,29)
        WRITE(3,16I)(ZMIN(M,N),N=19,29)
        cONTIMUE
        cONTIMUE
        M=1
        M=1
        WRITE(3,166)(ZMIN(M,N),N=19,29)
        WRITE(3,166)(ZMIN(M,N),N=19,29)
    l6t FORMAT(' , 11(1X,F6.1))
    l6t FORMAT(' , 11(1X,F6.1))
    161 FORMAT(' ',11(1X,FG.2))
    161 FORMAT(' ',11(1X,FG.2))
    5004 CONTINUE
    5004 CONTINUE
    C
    C
C
C
    DO 9000 M=1,0',
    DO 9000 M=1,0',
    00 9000 N=1,30
    00 9000 N=1,30
    9000 Z1(M,N)=10000000.0
    9000 Z1(M,N)=10000000.0
        IFL=0
        IFL=0
        L2=MSUM-1
        L2=MSUM-1
        DO 5107 M=2,L2,2
        DO 5107 M=2,L2,2
        I =-1
        I =-1
    5100 I I=I+2
    5100 I I=I+2
        IF(IU(M,I)-215104,5107,5100
        IF(IU(M,I)-215104,5107,5100
    5104 IF(IU(M,I))5100,5100,5101
    5104 IF(IU(M,I))5100,5100,5101
    5101 [F(IFL)5102,5102,5103
    5101 [F(IFL)5102,5102,5103
    5102 IML=I+1
    5102 IML=I+1
        IFL=1
        IFL=1
        GU TO 5100
```

 GU TO 5100
    ```
```

0166 5103 IMR=I-1
0167 IFL=0
0168
0169 ZLIM,N)=ZMAX(M,N)-ZMIN(M,N)
0170
0171
01/2
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0171
0192
0193
0194
0195
0196
0197
DO 23 N=INL,IMR,?
CONSTRUCT TIDAL RANGE
Z1(M,N+1)=0.0
Z1(M-1,N+1)=0.0
IF(ZMIN(M-1,N)-ZMAX(M-1,N))300,301,301
C IF TZMIN LESS THAN TZMAX, LCW TIDF COMFS REFORE HIGH TIDE
300 ZMIN(M-1,M)=ZMIN(M-1,N)+360.
301 Z1(N-1,N)=((LMAX(M-1,N)+LMIN(M-1,N))/2.)-90.
C CONSTRUCT MEAN PHASE
23 CONTINUE
GO TO SlOO
S107 CONTINUE
C WRITE TIDE RANGE ANO MEAN PHASE
210 FORMAT('1',5 2X,"TIOE PANGE ANO NEAN PHASE')
WPITE(3,102)
L2=MSUM-2
DO 5202 J=1,L2,2
M=MSUM+1-J
WRITE(3,106)(21(M,N),N=1,18)
WRITE (3,3)
M=M-1
WRITE(3,101)M, (L1(M,N),N=1,18)
5202 CONTINUE
M=1
W@ITE(3,106)(21(M,N),N=1,18)
IF(NSUM-18)5204,5204,5203
503 WRITE(3,210)
WRITE(3,103)
005205 J=1,L2,2
M=MSUM+1-J
WRITE(3,16G)(Z1(N,N),N=19,29)

```
\[
\begin{array}{lll}
0198 & M=M-1 \\
0199 & \text { WRIITE(3,161) }(21(M, N), N=19,29) \\
0200 & 5205 & C O N T I N U E \\
0201 & & M=1 \\
0202 & & \text { WRITE } \\
0203 & 5204 & \text { CONTINUF } 166)(21(M, N), N=19,29) \\
0204 & & \text { REWIND } \\
0205 & & \text { CALLEXIT } \\
0206 & & \text { END }
\end{array}
\]
```

```
0001
```

```
0001
0002
0002
0003
0003
0004
0004
0005
0005
0006
0006
0007
0007
0008
0008
0009
0009
0 0 1 0
0 0 1 0
0011
0011
0012
0012
0013
0013
0 0 1 4
0 0 1 4
0015
0015
0016
0016
0017
0017
0 0 1 8
0 0 1 8
0019
0019
0020
0020
0 0 2 1
0 0 2 1
0022
0022
0 0 2 3
0 0 2 3
0024
0024
0025
0025
0026
0026
0 0 2 7
0 0 2 7
0 0 2 8
0 0 2 8
0 0 2 9
0 0 2 9
0 0 3 0
0 0 3 0
0031
0031
0032
```

0032

```
```

0022

```
0022
    INTEGER*2 IU
    INTEGER*2 IU
    INTEGER*2 IU
    DINENSION IU(68,31),U1(65,30),RNAX(65,30),RMIN(65,30)
    DINENSION IU(68,31),U1(65,30),RNAX(65,30),RMIN(65,30)
    DINENSION IU(68,31),U1(65,30),RNAX(65,30),RMIN(65,30)
    READ(9,77)MSUM
    READ(9,77)MSUM
    READ(9,77)MSUM
    READ(9,77)NSUM
    READ(9,77)NSUM
    READ(9,77)NSUM
77 FORMAT(I2)
77 FORMAT(I2)
77 FORMAT(I2)
    READ(9.78)DL
    READ(9.78)DL
    READ(9.78)DL
        DL=GRID INTERVAL IN NETERS
        DL=GRID INTERVAL IN NETERS
        DL=GRID INTERVAL IN NETERS
    DL=DL/lCOO
    DL=DL/lCOO
    DL=DL/lCOO
    READ(9,999)ILINT
    READ(9,999)ILINT
    READ(9,999)ILINT
        IZINT=NUNRER UF INTERVALS -- IE NUMBER OF CURPENT ANC
        IZINT=NUNRER UF INTERVALS -- IE NUMBER OF CURPENT ANC
        IZINT=NUNRER UF INTERVALS -- IE NUMBER OF CURPENT ANC
        HEIGHT CAlCULATICNS
        HEIGHT CAlCULATICNS
        HEIGHT CAlCULATICNS
    FORNAT([4)
    FORNAT([4)
    FORNAT([4)
    READ(9,78)IT
    READ(9,78)IT
    READ(9,78)IT
                            TT=PERIOD IN SECGNDS
                            TT=PERIOD IN SECGNDS
                            TT=PERIOD IN SECGNDS
    TT=TT/3600.
    TT=TT/3600.
    TT=TT/3600.
    FORMAT(F12.4)
    FORMAT(F12.4)
    FORMAT(F12.4)
    ZINT=IZINT
    ZINT=IZINT
    ZINT=IZINT
    REAO(9)((IU(N,N),N=1,67),N=1,31)
    REAO(9)((IU(N,N),N=1,67),N=1,31)
    REAO(9)((IU(N,N),N=1,67),N=1,31)
    DO 1C M=1,65
    DO 1C M=1,65
    DO 1C M=1,65
    DO 1C N=1,30
    DO 1C N=1,30
    DO 1C N=1,30
    RMAX(M,N)=10000000.0
    RMAX(M,N)=10000000.0
    RMAX(M,N)=10000000.0
    RNIN(M,N)=10000000.0
    RNIN(M,N)=10000000.0
    RNIN(M,N)=10000000.0
    IFL=C
    IFL=C
    IFL=C
    L2=MSUM-1
    L2=MSUM-1
    L2=MSUM-1
    LO 8107 M=2,L2,2
    LO 8107 M=2,L2,2
    LO 8107 M=2,L2,2
    I=-1
    I=-1
    I=-1
8100 I = I +2
8100 I = I +2
8100 I = I +2
    IF(IL(M,I)-2)8104,8107,8100
    IF(IL(M,I)-2)8104,8107,8100
    IF(IL(M,I)-2)8104,8107,8100
    8104 1F(IU(N,I))8100,8100,8101
    8104 1F(IU(N,I))8100,8100,8101
    8104 1F(IU(N,I))8100,8100,8101
    8101 IF(IFLI8102,8102,8103
    8101 IF(IFLI8102,8102,8103
    8101 IF(IFLI8102,8102,8103
8 1 0 2 ~ I N L = I + I
8 1 0 2 ~ I N L = I + I
8 1 0 2 ~ I N L = I + I
    IFL=1
    IFL=1
    IFL=1
    (b) TC }810
    (b) TC }810
    (b) TC }810
8103 IMR=I-1
8103 IMR=I-1
8103 IMR=I-1
    IFL=C
    IFL=C
    IFL=C
    0O 8884 N=IML,IMR,2
```

 0O 8884 N=IML,IMR,2
    ```
    0O 8884 N=IML,IMR,2
```

```
RMAX(M,N)=0.0
0 0 3 5
0036
0 0 3 7
0038
0 0 3 9
0 0 4 0
0 0 4 1
0 0 4 2
0 0 4 3
0 0 4 4
0045
0 0 4 6
0047
0048
0049
0050
0051
0052
0 0 5 3
0054
0 0 5 5
0 0 5 6
0 0 5 7
0058
0 0 5 9
0060
0061
0 0 6 2
0 0 6 3
0 0 6 4
```

```
8884 RMIN(M,N)=0.C
```

8884 RMIN(M,N)=0.C

```
    GO TO &100
```

 GO TO &100
 8107 CONTINUE
 8107 CONTINUE
 T=0.
 T=0.
 IT=0
 IT=0
 CALL READER(9,U1,78OO)
 CALL READER(9,U1,78OO)
 READ Ul
 READ Ul
 1FL=0
 1FL=0
 L2=MSUM-1
 L2=MSUM-1
 DO 4107 M=2,L2,.2
 DO 4107 M=2,L2,.2
 I=-1
 I=-1
 I=I+2
 I=I+2
 F(IL(M,[)-214104,4107,4100
 F(IL(M,[)-214104,4107,4100
 4104 IF(IU(N,I))4100,4100,4101
 4104 IF(IU(N,I))4100,4100,4101
 4101 IF(IFL)4102,4102,4103
 4101 IF(IFL)4102,4102,4103
 IML=I +1
 IML=I +1
 IFL=1
 IFL=1
 GO TC 4100
 GO TC 4100
 INR=I-1
 INR=I-1
 1FL=0
 1FL=0
 DO 14 N=IML,IMR,2
 DO 14 N=IML,IMR,2
 UATZ=(U1(N+1,N)+Ul(M-1,N))/2.
 UATZ=(U1(N+1,N)+Ul(M-1,N))/2.
 VATZ =-(V1(N,N+1)+V1(N,N-1))/2.
 VATZ =-(V1(N,N+1)+V1(N,N-1))/2.
 VATZ=-(Ul(N,N+2)+Ul(N,N))/2.
 VATZ=-(Ul(N,N+2)+Ul(N,N))/2.
 THIS CHANGES CIRECTION OF +V
 THIS CHANGES CIRECTION OF +V
 RC=SQRT((UATZ*UATZ)+(VATZ*VATZ))
 RC=SQRT((UATZ*UATZ)+(VATZ*VATZ))
 COMPUTE VECTORIAL CURRENT AI Z(M,N)
 COMPUTE VECTORIAL CURRENT AI Z(M,N)
 IF(RC-RMAX(M,N))12,11,11
 IF(RC-RMAX(M,N))12,11,11
 RMAX(M,N)=RC
 RMAX(M,N)=RC
 RMAX(M-1,N)=TRIG(UATZ,VATZ)
 RMAX(M-1,N)=TRIG(UATZ,VATZ)
 RMAX(N,N+1)=(TT/ZINT)*T
 RMAX(N,N+1)=(TT/ZINT)*T
 RMAX(M-1,N+1)=0.0
 RMAX(M-1,N+1)=0.0
 12 IF(IT)I,1,2
 12 IF(IT)I,1,2
 1 RM'IN(M,N)=RC
 1 RM'IN(M,N)=RC
 RMIN(M-1,N)=TRIG(UATZ,VATZ)

```
RMIN(M-1,N)=TRIG(UATZ,VATZ)
```

```
    0065
    0066
    0067
    0068
    0069
    070
    0071
    0072
    0073
    0074
    00.75
    0076
    0077
    0078
    0079
    0080
    0081
    0082
    0083
    0084
    0085
    0086
    0087
    0088
    0089
    0090
    0091
    0092
    0093
    0094
    0095
    0096
    0097
    0098
    0099
```

0065
0066
0067
0068 0069
0070
0071
0072
0073
0074
00.75

0076
0077 0078

0079
0080
0081
0082 0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095

0097
0098
0099

```
    RMIN(N,N+1)=(TT/ZINT)*T
    RNIN(N-1,N+1)=0.0
    GO TO 14
2 IF(RC-RMIN(N,N))13,13,14
13 RMIN(M,N)=RC
    RNIN(N-1,N)=IRIG(UATZ,VATZ)
    RMIN(M,N+I)=(TT/LINT)*T
    RN[N(N-1,N+1)=0.0
    14 CONTINUE
    GO TO 4100
    4107 CONTINLE
        1T=1T+2
        r= T+2.
        CALL READER(9,U1,7800)
    READ ll
        IF(IZINT-IT)16,16,15
        CONTINUE
        WRITE(3.200) TT
        FORMAT('1',50X,'TIDAL PERICD=', r6.2,'HOURS')
        WRITE(3,201)DL
        FORMAT(' '.50X,'GRID INTERVAL=',F6.2.'KILONETFRS')
        WRITE(3,202)
        FORMAT('',2OX,'CUTPUT DESCRIPTICN..')
        WRITE(3,203)
        FORMAT(' '.35X,'UNITS..NETERS/SHC.,DEGREES,HOURS*)
        WRITE(3,204)
    204 FORNAT(' ',53X,'^=2,4,6,ETC.')
        WRITE(3.205)
        WRITE(3,205)
        WRITE(3,205)
    205 FORMATI'..57x,**')
        WRITE(3,206)
    206 FORNAT(', '4OX,'N=2,4,ETC*****CURRENT****TIME*****)
        WRITE(3,205)
        WRITE(3,205)
        WRITE(3,205)
```

```
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
```

0100
0101
\cdot
103
0105 0106

0107
0108
0109
0111
0112
0113
0114
0115
0116
0117
0119
0120
0121
0122
0123
0124
0125
0126
0128
0130

```
WRITE 3,205 )
WRITE(3,207)
207 FORMAT(' '.55X,'ANGLE')
```

C
C
年ax,angle, Ano tine
WRITE(3,110)
FORMAT('l'.48X,'NAXIMUM CURRENTS, ANGLES, AND TIMES') WRITE(3,102)
FORMATI'O', $\quad N=2$
$N=10$
$N=12$
$N=4$
$N=14$
$N=6$
$N=!$

```
L2 \(=\) NSUN -2
DO 5C02 J=1,L2,2
\(M=M S L N+1-J\)
WRITE(3,106) (RNAX(N,N),N=1,18)
WRITE \((3,3)\)
106 FORMAT(' 1,5x,18(1X,F6.1))
\(M=M-1\)
WRITE(3,101)N,(RMAX(N,N),N=1,18)
3 FORMAT(')
101 FORMAT(' ', 'N=1,12,1X,18(1X,F6.2))
5002 CONTINUE
\(M=1\)
WRITE 3,106 )(RMAX(N,N),N=1,18) IF (NSUN-18)6004,6004,6003
\(6003 \operatorname{WRITF}(3.110)\) WRITE 3,103 )
103 FORMAT('O','
\(N=20\)
\(N=22\)
\(N=24\)
\(N=?\)
\(16 \quad N=28\)
\(M=M S U N+1-J\)
WRITE (3,166) (RNAX(M,N),N=19.29)
WRITE 3,3 )
FORMAT(' ',11(1X.F6.1))
\(N=M-1\)
WRITE(3,161)(RNAX(N,N),N=19,29)
```

```
    0131 161 FORMAT(' •,11(1X,FG.2))
    0132
    0133
    0134
    0135
0 1 3 6
0137
0138
0 1 3 9
0140
0141
0142
0 1 4 3
0144
0 1 4 5
0146
    0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
015月
0159
0 1 6 0
0 1 6 1
0162
0 1 6 3
0164
```

```
6 0 0 5 ~ C O N T I N U E ~
```

6 0 0 5 ~ C O N T I N U E ~
M=1
M=1
WRITE(3,166)(RNAX(N,N),N=19,29)
WRITE(3,166)(RNAX(N,N),N=19,29)
CONTINUE
CONTINUE
C
C
C
C
C hRITE RMIN, ANGLE, AND TIME
C hRITE RMIN, ANGLE, AND TIME
WRITE(3,170)
WRITE(3,170)
170 FORMATI'1',48X,'MININUN CURRENTS, ANGLES, AND TIMES')
170 FORMATI'1',48X,'MININUN CURRENTS, ANGLES, AND TIMES')
WRITE(3,102)
WRITE(3,102)
L2=MSUN-2
L2=MSUN-2
DO 7002 J=1,L2,2
DO 7002 J=1,L2,2
M=MSUN+1-J
M=MSUN+1-J
WRITE(3,106)(RMIN(M,N),N=1,18)
WRITE(3,106)(RMIN(M,N),N=1,18)
WRITE (3,3)
WRITE (3,3)
M=M-1
M=M-1
WRITE(3,101)M,(RNIN(M,N),N=1,18)
WRITE(3,101)M,(RNIN(M,N),N=1,18)
7002 CONTINUE
7002 CONTINUE
N=1
N=1
WRITE(3,106)(RNIN(N,N),N=1,18)
WRITE(3,106)(RNIN(N,N),N=1,18)
IF(NSUM-18)5004,5004,5003
IF(NSUM-18)5004,5004,5003
5003 WRITE(3.170)
5003 WRITE(3.170)
WRITE(3,103)
WRITE(3,103)
vO 5005 J=1,L2,2
vO 5005 J=1,L2,2
M=MSLM+1-.J
M=MSLM+1-.J
WRITE(3,166)(RNIN(N,N),N=19,29)
WRITE(3,166)(RNIN(N,N),N=19,29)
WRITE(3,3)
WRITE(3,3)
N=M-1
N=M-1
WRITE(3,161)(RNIN(N,N),N=19.29)
WRITE(3,161)(RNIN(N,N),N=19.29)
5005 CONTINUE
5005 CONTINUE
M=1
M=1
WRITE(3,166)(RNIN(N,N),N=19,29)
WRITE(3,166)(RNIN(N,N),N=19,29)
5004 CONTINLE
5004 CONTINLE
REWIND 9
REWIND 9
CALL EXIT
CALL EXIT
END

```
        END
```

```
OOO1 FUNCTION TRIGIUATZ,VATZ)
0002
0003
0004
0005
0006
0007
0008
0007
0010
0011
0012
0013
0014
0015
0016
0017
0018
```

```
    C GECTDE IJPON QUADRANT
```

 C GECTDE IJPON QUADRANT
 IF(UAIZ)9000,9001,9001
 IF(UAIZ)9000,9001,9001
 9001 [F(VATZ)9007,9002,900?
 9001 [F(VATZ)9007,9002,900?
 9002 LEG=((ATAN2(VNIZ,UATL))*190.)/3.14159
 9002 LEG=((ATAN2(VNIZ,UATL))*190.)/3.14159
 AMGLE IS BETWEEN O ANI) OO
 AMGLE IS BETWEEN O ANI) OO
 GO TU 9009
 GO TU 9009
 9000 UATZ=-UATZ
 9000 UATZ=-UATZ
 IF(VATZ)9004,9003,9003
 IF(VATZ)9004,9003,9003
 0EG=90.+((ATAN2(UATZ,VATZ))*180.1/3.14159
 0EG=90.+((ATAN2(UATZ,VATZ))*180.1/3.14159
 ANGLF IS BETWEEN OO AND 180
 ANGLF IS BETWEEN OO AND 180
 GO TO 9009
 GO TO 9009
 VATT=-VATL
 VATT=-VATL
 ANGLE IS BETWEEN 18O ANR 270
 ANGLE IS BETWEEN 18O ANR 270
 OEG=180.+((NTAN2(VATL,UATZ))*18U.)/3.14159
 OEG=180.+((NTAN2(VATL,UATZ))*18U.)/3.14159
 G0 TC 900G
 G0 TC 900G
 VATZ=-VATZ
 VATZ=-VATZ
 ANGLE IS FEEIWELN 270 ANO 3&口
 ANGLE IS FEEIWELN 270 ANO 3&口
 DFG=270.+((ATAN2(UATZ.VATL))*180.)/3.1415?
 DFG=270.+((ATAN2(UATZ.VATL))*180.)/3.1415?
 9009 CONTLNUK
 9009 CONTLNUK
 TRIG=DEG
 TRIG=DEG
 RETURN
 RETURN
 (NO
    ```
        (NO
```


APPEITIIX IV

FORIAT OF OUTPUT TAPE

| MSUM | I2 | max grid length |
| :--- | :---: | :--- |
| NSUI | I2 | max grid width |
| DL | F12.4 | grid spacing, meters |
| IZINT | I4 | number of intervals |
| IT | F12.4 | Tidal period in seconds |
| IU | unformatted | boundary information |

IU may be obtained by the statement $\operatorname{READ}(9)((I U(M, N), M=1,67), N=1,31)$

NOTE: IU is a half-word integer matrix

U1

21

U1

21
unformatted
"
"
"

11

11
record 1

2

3

4

U1

21

IZINT-1

IZINT
end of file label

It will be advisable to use the same program for reading Ul and 21 as was used for writing them. This program may be seen in Appendix II.

The program is designed to start at a certain address in the core (in this case at the beginning of the first word of the Ul array) and to continue writing until a certain number of bytes (1/4 singleprecision words) have passed. In this case, the number of bytes equals $65 \times 30 \times 4$, or 7800 . When reading such data, the reverse process takes place.

If it is considered desirable to write other analysis programs it will be found helpful if either of the two analysis programs are used as examples.

APPENDIX V

SELECTIONS FROM THE SAMPLE PROBLEM CORPUTER OUTPUT

GRIC INTERVAL $=50.00 \mathrm{KILQNETERS}$
TILAL PERIOC $=12.42$ HCURS
FRICTION COEFFICIENT $=$ C.OC 30
LATITUCE $=5.0 C E G R E E S$
CCRICLIS PARANETFR=0.COOC1268RACIANS/SECONO
fCLLCWING PRINTCUTS ARF IN NETER-SECOND UNITS
K 3 준
$\mapsto N \omega \& \cup \sigma \sim \infty$

 000000000^{11}
000000000^{0}
 000000000^{11}
000000060^{10} 000000000_{11}^{21}
0.0000600^{0} $000000000 \stackrel{11}{1}$ 0.0000000%
060000600^{21}

| | $N=1$ | $N=2$ | $N=3$ | $N=4$ | $N=5$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $M=9$ | 0.0 | 1.01 | 0.0 | 1.01 | 0.0 |
| $M=8$ | 0.99 | $C .99$ | 0.95 | 0.99 | $C .99$ |
| $M=7$ | 0.0 | $C .97$ | 0.0 | 0.97 | 0.0 |
| $M=6$ | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| $M=5$ | 0.0 | 0.90 | 0.0 | 0.90 | 0.0 |
| $M=4$ | 0.86 | $C .86$ | 0.86 | 0.86 | 0.86 |
| $M=3$ | 0.0 | 0.80 | 0.0 | 0.80 | 0.0 |
| $M=2$ | 0.74 | $C .74$ | 0.74 | $C .74$ | 0.74 |
| $M=1$ | 0.0 | $C .68$ | 0.0 | $C .68$ | 0.0 |

Z-VALUES

| $N=6$ | $N=7$ | $N=8$ | $N=9$ | $N=10$ | $N=11$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | $C .0$ |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | $C .0$ |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | $O .0$ |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | 1.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ |
| 0.0 | 0.0 | 0.0 | 0.0 | $C .0$ | $C .0$ |

$\begin{array}{cccc}1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{cccc}1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 11 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}$
000000000^{211}
000000000°
000000000 IIn
0000000000
200000000

000000000 K
0.0000000° 000000000^{2}
0000000000
 00000000011
0.0000000 7 2
 2
2
2
-1

00000000011 －00000000
 101
000000000%
000000001
000000
 0.0000000^{21}
$0.0000000 u^{0.000}$
0000000000
000000000^{211}
0.00600
000000000_{11}^{2} $\div 0^{\circ} 00000000$
00000000011
0000000000
$000000000 \frac{2}{11}$
0000000000

```
                                    TICAL PERIOC= 12.42FOURS
                                    GRIC INTERVAI= 5O.OOKILONETERS
CUTPUT DESCRIPTICN..
    LNITS..METERS,DEGNFES
                        A=2,4,6,FTC.
                                    *
N=2.4, ETC*****HEIGFT*****
                    *
                    *
ANGLE
```


| $M=$ | 8 | あれあれあれ れれれれねれ | $\begin{array}{r} 0.59 \\ 0.0 \end{array}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{array}{r} 0.99 \\ 0.0 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M=$ | 6 | あれあれれね | C． 9,5 | 0.0 | 0.95 |
| | | れたれれあ | C． C | O．C | 35\％．C |
| $M=$ | 4 | 安れあれな | C． 86 | 0.0 | 0.86 |
| | | | 358.0 | O．C | 358.0 |
| $M=$ | 2 | 米为女为为 | C． 74 | C． 0 | 0.74 |
| | | | 0.0 | O．C | 0.0 |

$N=6$
$N=8$
$N=10$

 C。 (

| $M=$ | 8 | まれれれれあ キれれそれそ | $\begin{gathered} -1.01 \\ 178.0 \end{gathered}$ | $\begin{gathered} 0.0 \\ 0.0 \end{gathered}$ | $\begin{gathered} -1.01 \\ 178.0 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $M=$ | 6 | | $-\mathrm{C} .96$ | CB 0 | -0.96 |
| | | | 178．0 | O．C | 178.0 |
| $M=$ | 4 | れが安れあれ | $-\mathrm{C} .97$ | 0.0 | $-\mathrm{C} .87$ |
| | | ＊あれれね | 178．0 | O．C | 17% |
| $m=$ | 2 | | $-\mathrm{C} .74$ | 0.0 | －C． 1 |
| | | 戍れあれあれ | 18 C | O．C | 180.0 |

NINININ GEICHTS ANC ASSOCIATHO PFASA

$N=6$
$\mathrm{N}=\{$
$N=10$

C。 (

O. (

$\stackrel{\rightharpoonup}{\omega}$

ICE RANGL ANE NEAN PF:ASF


```
                                    TITAL PERIDC= 12.42HCURS
                                    GR!O INIGRVAL= SC.COKILONETERS
CUTPUT CESCRIPTION..
    LNITS..NETERS/SFC.,NEGREES,HCURS
                                n=2,4,6,ETC.
                    *
    *
        N=2.4,ETC*****CURRENT****TINE*****
        *
        *
        *
    ANCLE
```


$\Lambda=4 \quad N=6 \quad N=8 \quad N=10$

 $\%$
\vdots
$\%$
$\%$

| $\%$ |
| :---: |
| $\%$ |
| \therefore |
| \therefore |

2
\vdots
\vdots
\vdots
\vdots
\therefore
戠客

$$
N=?
$$

$$
N=4
$$

| $M=$ | 8 | ＊が为れ | $0 . \mathrm{CO}$ | 6.14 | C． CO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | ＊＊＊＊＊＊ | 107．t | C． C | $11 \% .7$ |
| $M=$ | 6 | もち＊＊＊＊＊ | C． CO | 12.35 | C．CO |
| | | ＊＊＊＊が安 | 21.8 | C．C | 32．3 |
| $M=$ | 4 | | C．CO | C． 0 | C． CO |
| | | | 59.9 | C．C | 234.8 |
| $M=$ | 2 | れたちゃれ＊ | 0.10 | 0.0 | $0 . \mathrm{co}$ |
| | | あれか大き＊ | 25．5 | C．C | 97.7 |

minifun currents, angles, and times

$N=6$
$N=8$
$N=10$

[^0]: The program then calculates the mean range from (max tide heightminimum tide height), and mean phase from:

