MODELING OF WAX PRECIPITATION

By

Amit Y. Bhangale

RECOMMENDED:

Dr. Gang Chen

Dr. Hsing K. Lin

Dr. Tao Zhu, Advisory Committee Chair

Chair, Department of Petroleum Engineering

APPROVED:

Dean, College of Engineering and Mines

Dean of the Graduate School

Date

Dec 10, 2001
MODELING OF WAX PRECIPITATION

A
THESIS

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

By

Fairbanks, Alaska

December 2007
ABSTRACT

Due to increasing oil demand, oil companies are moving into deep water and arctic environments for oil production. In these regions, due to lower temperature, wax starts depositing when the temperature in wellbore falls below Wax Appearance Temperature (WAT). This leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time and removal of wax. Therefore, it is necessary to develop the solution to overcome wax deposition. Wax precipitation is one of the most important phenomena in wax deposition, and hence, it needs to be modeled. There are various models present in literature. The purpose of this study is to compare two major classes of wax precipitation models. Won’s model which considers the wax phase as a non-ideal solution and Pedersen’s model which considers the wax phase as an ideal-solution were compared. Comparison indicated that Pedersen’s model gives better results but the assumption of wax phase as an ideal solution is not realistic. Hence, Won’s model was modified to consider different precipitation characteristics of the different constituents in the hydrocarbon fraction. The results obtained from the modified Won’s model were compared with existing models and it was found that predictions from the modified model are encouraging.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Page</td>
<td>i</td>
</tr>
<tr>
<td>Title Page</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>Disclaimer</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 Literature Review</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Overview of Wax</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Concerns with Wax Deposition</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Need for Modeling Wax Precipitation</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Overview of Thermodynamic Models for Wax Precipitation</td>
<td>5</td>
</tr>
<tr>
<td>2.4.1 Lira-Galeana Model</td>
<td>6</td>
</tr>
<tr>
<td>2.4.2 Erickson’s Model</td>
<td>7</td>
</tr>
<tr>
<td>2.4.3 Pedersen’s Model and its Modified Versions</td>
<td>7</td>
</tr>
<tr>
<td>2.4.4 Won’s Model</td>
<td>7</td>
</tr>
<tr>
<td>2.4.5 Coutinho’s Model</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Selection of Model for Current Study</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 3 Objective of Study</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 4 Thermodynamic Modeling of Wax Precipitation</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Two Phase Flash Calculations</td>
<td>10</td>
</tr>
<tr>
<td>4.2 Won’s Model</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1 Assumptions of Model</td>
<td>12</td>
</tr>
<tr>
<td>4.2.2 Won’s Model Description</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Pedersen’s Model</td>
<td>17</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Demand and supply of oil in the world</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Wax plug in wellbore on platform C in North Sea</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Structure of various types of constituents in hydrocarbon fraction</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of wax precipitation models</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic diagram of flash calculation</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Liquid-Solid equilibrium model by Won</td>
<td>12</td>
</tr>
<tr>
<td>4.3</td>
<td>Liquid-Solid model proposed by Pedersen</td>
<td>19</td>
</tr>
<tr>
<td>4.4</td>
<td>Three phase flash</td>
<td>24</td>
</tr>
<tr>
<td>4.5</td>
<td>Vapor-liquid-solid equilibrium model by Won</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>% wax precipitated as function of temperature for system A</td>
<td>41</td>
</tr>
<tr>
<td>6.2</td>
<td>% wax precipitated as function of temperature for system A: Comparison with other software</td>
<td>42</td>
</tr>
<tr>
<td>6.3</td>
<td>% wax precipitated as function of temperature for system B</td>
<td>44</td>
</tr>
<tr>
<td>6.4</td>
<td>% wax precipitated as function of temperature for system C</td>
<td>45</td>
</tr>
<tr>
<td>6.5</td>
<td>% wax precipitated as function of temperature for oil 1</td>
<td>48</td>
</tr>
<tr>
<td>6.6</td>
<td>% wax precipitated as function of temperature for system A</td>
<td>49</td>
</tr>
<tr>
<td>6.7</td>
<td>% wax precipitated as function of temperature for system B</td>
<td>51</td>
</tr>
<tr>
<td>6.8</td>
<td>% wax precipitated as function of temperature for system C</td>
<td>52</td>
</tr>
<tr>
<td>6.9</td>
<td>% wax precipitated as function of temperature for oil 1</td>
<td>53</td>
</tr>
<tr>
<td>6.10</td>
<td>Three phase equilibrium calculations</td>
<td>54</td>
</tr>
<tr>
<td>7.1</td>
<td>% wax precipitated as function of temperature for system A</td>
<td>63</td>
</tr>
<tr>
<td>7.2</td>
<td>% wax precipitated as function of temperature for system A</td>
<td>64</td>
</tr>
<tr>
<td>7.3</td>
<td>% wax precipitated as function of temperature for system B</td>
<td>65</td>
</tr>
<tr>
<td>7.4</td>
<td>% wax precipitated as function of temperature for system B</td>
<td>66</td>
</tr>
<tr>
<td>7.5</td>
<td>% wax precipitated as function of temperature for system C</td>
<td>67</td>
</tr>
<tr>
<td>7.6</td>
<td>% wax precipitated as function of temperature for system C</td>
<td>68</td>
</tr>
<tr>
<td>7.7</td>
<td>% wax precipitated as function of temperature for Oil 1</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 4.1: Solubility parameters for components up to C40 .. 15
Table 4.2: Constants in Equations 4.28 ... 18
Table 6.1: Composition of oil system A ... 40
Table 6.2: Composition of system B ... 43
Table 6.3: Composition of system C ... 45
Table 6.4: Summary of WAT predictions .. 46
Table 6.5: Composition of oil 1 Pedersen et al .. 47
Table 6.6: Composition after lumping .. 48
Table 6.7: Optimum values of A, B and C in Equation (4.28) ... 50
Table 6.8: Composition of oil used for three phase calculations ... 54
<table>
<thead>
<tr>
<th>LIST OF APPENDICES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A Solid State Fugacity Calculations</td>
<td>77</td>
</tr>
<tr>
<td>Appendix B Liquid and Vapor Fugacity Calculations</td>
<td>78</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to thank my advisor, Dr. Tao Zhu, for his guidance and support throughout my research. Also my sincere appreciation goes to Drs. Gang Chen and H.K. Lin for their continued support and encouragement throughout my research. Also, I would always be grateful to Dr. Shirish Patil for his support throughout my stay in UAF.

This work was undertaken at the Department of Petroleum Engineering, University of Alaska Fairbanks. This work was sponsored by the Arctic Energy Technology Development Laboratory (AETDL)/ National Energy Technology Laboratory (NETL)/U.S. Department of Energy (DOE) under contract no. DE-FC26-01NT41248. I would like to thank ConocoPhillips, especially Mr. Jack Walker for the support given throughout the research.

I would like to thank my parents, Mr. Yashawant Bhangale and Mrs. Jayashree Bhangale and my sister, Juhi Bhangale for their support throughout my life. I would forever be indebted to them. I would also be grateful to all my friends.
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, of usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References here in to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessary constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of author expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Chapter 1
Introduction

Since the industrial revolution, demand for energy has been constantly increasing. Currently oil is the main source of energy throughout the world. Figure 1.1 shows the demand and supply of the crude oil in the world.

![Figure 1.1 Demand and supply of oil in the world (Oil Market Report, 2007)](image)

From Figure 1.1, it can be seen that the demand for oil has been constantly increasing. It can also be observed that oil companies are struggling to meet the ever increasing demand for oil. With rapid development in highly populated China and India, the demand for oil is going to increase at an alarming rate due to huge transportation demands in those large countries. Since oil production started in the early 1900s, most oil fields have reached the mature stage and oil production has been on decline. As a result, oil companies are exploring fields situated in deeper water or in arctic environments. In these regions, the wellbore temperature is very low. Oil generally has n-paraffins as constituents. When the wellbore temperature falls below what is known as the Wax Appearance Temperature (WAT), wax deposition occurs on the walls of the well. Wax deposits restrict the oil flow from the bottomhole to wellhead. This means the production of oil is reduced. Also due to wax deposition in the wellbore, the pressure drop increases, thereby decreasing the amount of oil that can be produced, as the bottomhole pressure is increased. Figure 1.2 shows a typical case of wax deposition in wellbore. Production losses and restarting of operations associated with wax deposition cost millions of dollars (Venkatesan and Creek, 2007).
Hence, control of wax deposition is essential. To address the issue of wax deposition, three important phenomena have to be considered: Wax precipitation, Dynamic wax deposition, and Heat transfer from the wellbore. Wax plug, which is obtained from wax deposition, is a gel that contains solid wax crystals and trapped liquid (Venkatesan and Creek, 2007). Wax precipitation is a thermodynamic phenomenon and will lead to deposition of solid wax crystals. Dynamic wax deposition is the phenomenon in which a gel is formed with wax crystals and liquid. Heat transfer is another important facet as it decides whether the temperature of the wellbore will fall below the WAT or not.

Wax precipitation should be described accurately in order to develop the solutions to control the wax deposition in wellbore. The work done in this thesis mainly involves description of wax precipitation behavior through thermodynamic models.
Chapter 2
Literature Review

2.1 Overview of Wax

When temperature is reduced, most oils show a tendency for solid precipitation. The solid deposit is called as wax. Wax precipitation causes operational problems due to plugging of the wellbore or transportation lines.

It has been found that wax particles are essentially normal paraffins and slightly branched paraffins. Occurrence of napthenes with long paraffinic chains is rare. Structures of typical wax forming components are shown in Figure 2.1.

Pedersen and Christensen (2007) have mentioned that compounds heavier than C_{50} are rarely present in the wax phase. When the molecular weight of plus fraction is high, generally the degree of branching in the components present is high and these components have less chance of entering into a solid phase. In lighter C_{7+} fractions, the components are generally n-paraffins with a lower degree of branching. But their presence in wax is limited due to very low melting temperatures of these components. Hence it is found that the wax phase is generally dominated by C_{20}-C_{50} components.

2.2 Concerns with Wax Deposition

As discussed earlier, wax starts precipitating when the temperature of the system is lowered. This wax precipitation is a precursor to wax deposition. Precipitation and deposition should not be confused. Precipitation is a necessary phenomenon as it is a thermodynamic activity. When temperature is reduced below the WAT, the wax should
precipitate. But wax deposition is a much more complex phenomenon. When an aqueous phase is present with oil, which would be the case in the production well, the wax will deposit on the wall of wellbore. Also there will be formation of wax particles which will stay suspended in the solution. This leads to formation of gel which contains wax crystals and trapped liquid. This phenomenon is called wax deposition. This leads to plugging of pipelines as well as wellbores. This causes a higher pressure drop in the pipeline while transporting the oil. In production wells, due to wax deposition, the amount of energy required to lift the oil from bottomhole to wellhead increases, hence the bottomhole pressures have to be kept significantly higher than in the case without wax deposition. This reduces the amount of oil that is produced from the formation due to lower pressure difference between bottomhole and formation. Also as oil developments are moving into deeper water and arctic environments, the chances are that the wellbore temperature will fall well below WAT and may reach a temperature which is known as the Pour Point Temperature (PPT). At the pour point, no movement of oil is possible because of highly dense wax deposition throughout the cross-section of the pipe. This is the extreme case and the wax needs to be removed from the wellbore manually. This leads to shutdown of the well and restarting the well takes a huge amount of work and results in economic losses (Venkatesan and Creek, 2007). Gluyas and Underhill (2003) have reported that the Staffa field had to be abandoned due to a severe case of wax deposition and remedial treatments failing to take care of the wax deposition problem. These lead to losses of hundreds of millions of dollars. Therefore, there is lot of interest within the oil industry to develop solutions to control wax deposition in the wellbores and pipelines.

2.3 Need for Modeling Wax Precipitation

For developing wax deposition control techniques, the wax deposition phenomenon should be simulated on a computer because studying effects at the field scale is not feasible. For developing wax deposition simulator, three phenomena should be considered: 1) Wax precipitation, 2) Dynamic wax deposition, and 3) Heat transfer from wellbore.

Wax precipitation would describe the amount of wax formed at a given pressure and temperature condition. This is done by thermodynamically modeling wax
precipitation. This does not take into account any effect of flow rate or other dynamic factors.

Dynamic wax deposition describes the formation of gel and the amount of wax deposited on pipe walls. This takes into account the effect of shear rate, flow rate, water cut etc. This requires knowledge of wax precipitation. It is obtained by thermodynamic modeling as discussed earlier (Ahn et al., 2005).

One of the most important parameters controlling wax deposition is the temperature of wellbore. If the temperature is above the WAT, then wax will not precipitate. The temperature of the wellbore is controlled by heat transfer from the wellbore to surroundings.

These three phenomena should be modeled with mathematical models and should be programmed and combined to actually simulate the conditions in the wellbore and wax deposition in it.

Hence, it is necessary to thermodynamically describe the wax precipitation. That is the focus of this study. The next section reviews various thermodynamic models present for describing wax precipitation.

2.4 Overview of Thermodynamic Models for Wax Precipitation

There are many models present in literature which describe precipitation of wax from oil. They can be broadly classified into two categories: 1) those which consider the solid phase as a single phase and 2) those which consider the wax phase as a mixture of multiple solid phases. Some models consider the solid phase as a mixture of multiple independent pure solid phases. The rest of the models consider the solid phase as a single phase. The second category can be divided into two further sub-categories. The first sub-category considers the solid phase as a non-ideal mixture, whereas the second sub-category considers the solid phase as an ideal mixture. Various models present in literature are divided into these categories as shown in Figure 2.2.
The first main category is one which considers the solid phase as a mixture number of a independent pure solid phases. This was developed by Lira-Galeana et al. (1996).

2.4.1 Lira-Galeana Model

This model assumes that wax consists of multiple solid phases and each solid phase is described as a pure component that does not mix with other solid phases. The liquid phase is considered as a non-ideal solution and its behavior is described by the Equation of State (EOS). This model is also known as the Multi-Solid Model. The model assumes that a component may exist in pure solid form when the fugacity of the component in the liquid phase mixture is equal to or greater than the solid state fugacity of the pure component. The solid state fugacity of a pure component is found by relating the chemical potential of a component in solid state with chemical potential of a component in liquid state in sub-cooled condition. The model actually fits the experimental data very well, but Pedersen and Michelsen (1997) pointed out that the predictions from the model change when the plus factor characterization procedure is changed, and it is contradictory to the principles of plus factor characterization.
The next main category is one in which the solid phase is considered to be one phase and behaving as an ideal-solution. Erickson’s, Pedersen et al.’s model (1991) and its modified version fall in this category.

2.4.2 Erickson’s Model

This model is a modification of Won’s model but considers the solid phase as an ideal solution. The activity coefficient of the solid phase is considered to be unity. But this model requires experimental determination of amounts of n-paraffinic, iso-paraffinic and naphthenic part of each component through mass spectroscopy (Erickson et al, 1993). This involves huge efforts on experimental part and is rarely done. This model has not been used much.

2.4.3 Pedersen’s Model and its Modified Versions

Pedersen (1995) developed a model in which it was assumed that only part of heavy hydrocarbon fractions can potentially enter into the wax phase. The authors developed a numerical scheme which let them split each hydrocarbon fraction into wax forming and non-wax forming fractions. The authors assumed the solid phase to be an ideal solution in equilibrium with the liquid phase. The liquid phase is assumed to be a non-ideal solution and is described by any EOS. Ronningsen et al. (1997) provided modification of a model in which they introduced a term to account for the effect of pressure. This model is used in PVTSim® which is commercial PVT simulator for the prediction of wax deposition and used by many oil companies (www.calsep.com). Due to use of EOS and tunable parameters, the model becomes very calculation intensive.

The next main category of thermodynamic models is one which considers the solid phase to be a non-ideal solution. Won’s model, Pedersen’s model and Coutinho’s model fall in this category.

2.4.4 Won’s Model

This model was the first one to consider the solid phase to be a non-ideal solution. Both liquid and solid phases were considered as non-ideal solutions, and non-ideality of both
phases was described by the Regular Solution theory. This model assumed that all components present can form wax (Won, 1986).

Pedersen et al. (1991) modified Won’s original model by introducing a large number of tunable parameters to match the experimental data. But this makes the model also very calculation intensive.

Computer Modeling Group’s (CMG) PVT simulator WINPROP® uses modified version of Won’s model but the information regarding it is proprietary and is not published (WINPROP user manual). WINPROP® is used by a large number of oil companies for studying wax deposition.

2.4.5 Coutinho’s Model

This model considers both solid and liquid phases to be non-ideal solutions. The non-ideality is described by activity coefficients. The activity coefficients are obtained by the predictive UNIQUAC model with use of the predictive free energy model. This model gives pretty good predictions (Coutinho et al., 2001).

2.5 Selection of Model for Current Study

A detailed comparative study of all wax models has not been done. Multi-solid model’s limitation has been inconsistency in results after use of a different plus fraction characterization scheme. Pedersen’s model and Won’s model are used by various commercial software companies such as CMG WINPROP®, PVTSim® for a description of wax precipitation. Pedersen’s model is calculation intensive. One of the aims of current study is to compare these two classes of models. Pedersen’s model considers the solid phase to be an ideal solution and it is not what is observed in most cases. The program developed in this study is going to be used in a wellbore simulator which simulates the conditions in wellbore including wax deposition and heat transfer. Due to a large amount of calculations involved in the overall project, it is advisable to have a wax precipitation model which is less calculation intensive. So the other aim is to develop a new model or modify an existing model so the model becomes closer to actual thermodynamic behavior and less calculation intensive.
Chapter 3
Objective of Study

In order to control the wax deposition in the wellbore, the wax precipitation must be modeled. Existing established thermodynamic models can be divided into two categories: a) those who consider the solid phase as a non-ideal solution b) those who consider the solid phase as ideal solution. The purpose of the current work is to compare these two categories of thermodynamic models and find out advantages and shortcomings of each type of model. This is done by programming these models and comparing the predictions with experimental data. Also based on conclusions obtained, modify the existing model to depict actual behavior of wax and if possible make the model less calculation intensive. And then, compare the results from the modified model with the predictions from existing model.
4.1 Two Phase Flash Calculations (Riazi, 2005)

Aforementioned, wax precipitation may occur from the liquid phase as the temperature is lowered. To calculate the temperature at which the first crystal of wax will be precipitated and to predict how much wax will be precipitated, flash calculations must be performed. In flash calculations, a feed of known composition is taken and flashed at given pressure and temperature conditions. The task is to estimate the amount of solid and liquid fractions and composition of each stream.

\[x_i - \text{Liquid composition} \]
\[L - \text{Total moles of liquid} \]

Figure 4.1: Schematic diagram of flash calculation

In figure 4.1, F moles of feed steam with overall composition, \(z_i \) is flashed at pressure, P and temperature, T. Flashing leads to formation of a solid stream (S moles at a composition, \(s_i \)) and a liquid stream (L moles at a composition, \(x_i \)).

Applying overall material balance,

\[F = L + S \] (4.1)

Material balance applied to a particular component i can be expressed as
Since the solid and liquid leaving the flash vessel are in equilibrium, it can be written that

\[s_i = K_{i}^{SL} \cdot x_i \]

(4.3)

Where \(K_{i}^{SL} \): Equilibrium ratio of mole fraction of component \(i \) in solid and liquid phases at \(T \) and \(P \)

Putting \(L = F - S \) and from Equation (4.3), Equation (4.2) becomes

\[F \cdot z_i = (F - S) \cdot x_i + S \cdot K_{i}^{SL} \cdot x_i \]

(4.4)

Solving for \(x_i \), Equation (14) can be written as

\[x_i = \frac{z_i}{1 + \frac{S}{F} (K_{i}^{SL} - 1)} \]

(4.5)

\(s_i \) can be expressed as

\[s_i = \frac{K_{i}^{SL} z_i}{1 + \frac{S}{F} (K_{i}^{SL} - 1)} \]

(4.6)

In addition, for both solid and liquid stream, \(\sum s_i = \sum x_i = 1 \) or \(\sum (s_i - x_i) = 0 \) must be always satisfied. Therefore, from Equations (4.5), (4.6) and the above criterion, the following objective function of \(S/F \) can be obtained:

\[f(S/F) = \sum \frac{(K_{i}^{SL} - 1) z_i}{1 + \frac{S}{F} (K_{i}^{SL} - 1)} = 0 \]

(4.7)

Equation (4.7) is also referred to as the Rachford-Rice equation. For flash calculations, feed moles (\(F \)), feed composition (\(z_i \)), pressure (\(P \)) and temperature (\(T \)) are known. Unknowns are solid moles (\(S \)), liquid moles (\(L \)), solid phase composition (\(s_i \)) and liquid phase composition (\(x_i \)). As shown in Equations (4.1),(4.5), (4.6) and (4.7), if the value of \(K_{i}^{SL} \) is known, the value of solid mole fraction \(S/F \) can be calculated from Equation (4.7) and based on that, all the other unknown variables can be determined. Hence, to do the flash calculations, the value of the equilibrium ratio of the mole fraction of the component in the solid phase to that in the liquid phase should be known. Therefore as
explained earlier in the literature survey, many authors have suggested various models to predict K_{i}^{SL}. In this chapter, Won’s and Pedersen’s models are discussed in detail.

4.2 Won’s Model

Won first presented the model to predict wax precipitation (Won, 1985). But in this study, the modified version of Won’s model is used.

\[f_{i}^{L} = f_{i}^{S} \]

\[f_{i}^{S} = f_{i}^{OS} \]

Figure 4.2 Liquid-Solid equilibrium model by Won

4.2.1 Assumptions of Model

Following are the assumptions made in Won’s model (Won, 1986).

- The solid phase is a single, homogeneous solution which is in equilibrium with the liquid solution.
- Almost all components contained in the reservoir fluid may potentially enter into the wax phase.
- Heat capacity change of fusion is assumed to be negligible.
- Volume change during fusion was also neglected.
- The solid phase is assumed to behave non-ideally.

4.2.2 Won’s Model Description (Won, 1986)

The model was based on the thermodynamic criterion that, at equilibrium, the fugacity of a component i in the solid phase (wax phase) should be equal to the fugacity of the same component in the liquid phase (oil phase). It can be expressed as following:

\[f_{i}^{L} = f_{i}^{S} \] \hspace{1cm} (4.8)

Where $f_{i}^{L} =$ fugacity of a component i in the liquid phase mixture

\[f_{i}^{S} = f_{i}^{OS} \]

The liquid phase fugacity of component i in the mixture can be expressed as
\[f_i^L = \gamma_i^L x_i f_i^{al} \quad (4.9) \]

Where \(\gamma_i^L \) is the activity coefficient of component i in liquid phase. The activity coefficient is generally a function of composition of the phase.

\(x_i \) is the mole fraction of component i in the liquid phase.

\(f_i^{al} \) is the standard state fugacity of component i in the liquid phase. It can also be described as the liquid phase fugacity of component i in its pure form.

The solid phase fugacity of component i in the mixture can be expressed as

\[f_i^S = \gamma_i^S s_i f_i^{os} \quad (4.10) \]

Where \(\gamma_i^S \) is the activity coefficient of component i in the solid phase. \(s_i \) is the mole fraction of component i in the solid phase and \(f_i^{os} \) is the standard state fugacity of component i in the solid phase. It can also be described as the solid phase fugacity of component i in its pure form.

From Equations (4.8), (4.9) and (4.10), we get,

\[\gamma_i^L x_i f_i^{al} = \gamma_i^S s_i f_i^{os} \quad (4.11) \]

From Equation (4.3), \(K_{i}^{SL} = s_i / x_i \) and rearranging Equation (4.11),

\[K_{i}^{SL} = \frac{s_i}{x_i} = \frac{\gamma_i^L f_i^{al}}{\gamma_i^S f_i^{os}} \quad (4.12) \]

Currently, there is no equation of state that can describe the volumetric behavior of a solid. But by relating the chemical potential of the solid phase to that of the liquid phase, the ratio of \(f_i^{al} \) to \(f_i^{os} \) can be expressed as

\[K_{i}^{SL} = \frac{s_i}{x_i} = \left(\frac{\gamma_i^L}{\gamma_i^S} \right) \exp \left[\frac{\Delta H_f}{RT} \left(1 - \frac{T}{T^f} \right) + \frac{\Delta C_p}{R} \left(1 - \frac{T}{T^f} + \ln \frac{T^f}{T} \right) + p \frac{\Delta V}{RT} dP \right] \quad (4.13) \]

Where \(T^f, \Delta H_f, \Delta C_p \) and \(\Delta V \) are fusion temperature, heat of fusion, heat capacity change of fusion and volume change of fusion, respectively. \(P \) & \(T \) are the pressure and temperature at which flashing is being carried out. The derivation is explained in detail in Appendix A.
Won also presented the co-relation to calculate the heat of fusion (ΔH_f) and the temperature of fusion (T_f) as

$$\Delta H_f = 0.1426 \cdot MW_i \cdot T_f^f$$ \hspace{1cm} (4.14)

Where MW_i is the molecular weight of the component i and T_f^f can be obtained from

$$T_f^f = 374.5 + 0.02617 \cdot MW_i - 20172 / MW_i$$ \hspace{1cm} (4.15)

As explained in section 4.2.1, the second and third terms in Equation (4.13) are assumed to be zero. If the solid phase is assumed to be an ideal mixture, then the ratio of activity coefficients becomes 1. But in the actual wax phase, the mixture is found to be behaving non-ideally. So, Won (1986) assumed the solid phase to be a non-ideal mixture. Hence, the ratio of activity coefficients can not be assumed as 1. In Won’s model, he used the regular solution theory to estimate the ratio of activity coefficients.

The activity coefficient for component i (for both liquid and solid phases) can be calculated using the regular solution theory as,

$$\ln \gamma_i = \frac{v_i \left(\bar{\delta} - \delta_i\right)^2}{RT}$$ \hspace{1cm} (4.16)

Where, v_i is the molar volume, δ_i is the solubility parameter and $\bar{\delta}$ is the average solubility parameter of the mixture. The average solubility parameter can be estimated as:

$$\bar{\delta} = \sum \varphi_i \delta_i$$ \hspace{1cm} (4.17)

Where φ_i is the volume fraction of component i and can be obtained for both liquid and solid phases from the following relationships:

$$\varphi_i^l = \frac{x_i v_i}{\sum x_i v_i} \quad \text{and} \quad \varphi_i^s = \frac{s_i v_i}{\sum s_i v_i}$$ \hspace{1cm} (4.18)

The solubility parameter for component i in the liquid phase mixture can be estimated as

$$\delta_i^l = \left(\frac{\Delta H^l - RT}{V}\right)^{0.5}$$ \hspace{1cm} (4.19)

Where ΔH^l the heat of vaporization at $25^\circ C$

The solubility parameter for component i in the solid solution can be estimated as
All the properties in Equation (4.18) are at 25°C.

\(\delta_i^L \) and \(\delta_i^S \) are given by Won for components up to \(C_{40} \). They are presented in Table 4.1. In the current work, the correlations given by Pedersen et al. (1991) have been used for estimating the solubility parameters of the components in the solid and liquid phases as they give better results.

\[
\delta_i^L = 7.41 + a_1 (\ln C_N - \ln 7)
\]

\[
\delta_i^S = 8.50 + a_2 (\ln C_N - \ln 7)
\]

Where \(C_N \) is the carbon number of the component, \(a_1 \) and \(a_2 \) are equal to 0.5914 (cal/cm\(^3\))\(^{0.5}\) and 5.763 (cal/cm\(^3\))\(^{0.5}\), respectively.

For calculating the average solubility parameter and the activity coefficient, the molar volume is required. Won presented the correlation for calculating the molar volume as

\[
v_i = \frac{MW_i}{d_i^L}
\]

\[
d_i^L = 0.8155 + 0.6272 \cdot 10^{-4} \cdot MW_i - 13.06 / MW_i
\]

Won assumed that the molar volumes of component \(i \) in solid and liquid phases are equal. Therefore,

\[
v_i^L = v_i^S
\]

Using (4.23), (4.24) and (4.18), the volume fraction factor \((\phi_i) \) can be calculated. The solubility parameters can be obtained from Equations (4.21) and (4.22). Using the solubility parameters \((\delta) \) and the volume fraction factors \((\varphi) \), the average solubility parameter can be estimated with Equation (4.17). With the knowledge of molar volume, solubility parameter (for both liquid and solid phases) and average solubility parameter, the activity coefficients for the components in both liquid and solid phases can be calculated from Equation (4.16). After applying Equation (4.16) to both liquid and solid phases, the ratio of activity coefficients can be expressed as
\[
\gamma_i' = \exp \left[\frac{v_i}{RT} \left((\bar{\delta} - \delta_i) - (\bar{\delta} - \delta_i)^2 \right) \right]
\]
(4.26)

Table 4.1 Solubility parameters for components up to C40 (Won, 1986)

<table>
<thead>
<tr>
<th></th>
<th>(T')</th>
<th>(\Delta h')</th>
<th>(\delta^1)</th>
<th>(\delta^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>cal/gmol</td>
<td>(cal/cc)^0.5</td>
<td>(cal/cc)^0.5</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>216</td>
<td>0</td>
<td>7.12</td>
<td>7.12</td>
</tr>
<tr>
<td>C1</td>
<td>90</td>
<td>0</td>
<td>5.68</td>
<td>5.68</td>
</tr>
<tr>
<td>C2</td>
<td>101</td>
<td>385</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>C3</td>
<td>86</td>
<td>0</td>
<td>6.65</td>
<td>6.65</td>
</tr>
<tr>
<td>C4</td>
<td>138</td>
<td>0</td>
<td>6.65</td>
<td>6.65</td>
</tr>
<tr>
<td>C5</td>
<td>97</td>
<td>996</td>
<td>7.02</td>
<td>7.62</td>
</tr>
<tr>
<td>C6</td>
<td>143</td>
<td>1750</td>
<td>7.25</td>
<td>8.13</td>
</tr>
<tr>
<td>C7</td>
<td>179</td>
<td>2510</td>
<td>7.41</td>
<td>8.5</td>
</tr>
<tr>
<td>C8</td>
<td>201</td>
<td>2070</td>
<td>7.53</td>
<td>8.78</td>
</tr>
<tr>
<td>C9</td>
<td>221</td>
<td>3270</td>
<td>7.63</td>
<td>9</td>
</tr>
<tr>
<td>C10</td>
<td>237</td>
<td>4030</td>
<td>7.71</td>
<td>9.17</td>
</tr>
<tr>
<td>C11</td>
<td>250</td>
<td>4800</td>
<td>7.78</td>
<td>9.32</td>
</tr>
<tr>
<td>C12</td>
<td>261</td>
<td>5560</td>
<td>7.83</td>
<td>9.44</td>
</tr>
<tr>
<td>C13</td>
<td>270</td>
<td>6330</td>
<td>7.88</td>
<td>9.55</td>
</tr>
<tr>
<td>C14</td>
<td>278</td>
<td>7100</td>
<td>7.92</td>
<td>9.64</td>
</tr>
<tr>
<td>C15</td>
<td>285</td>
<td>7870</td>
<td>7.96</td>
<td>9.72</td>
</tr>
<tr>
<td>C16</td>
<td>291</td>
<td>8640</td>
<td>7.99</td>
<td>9.9</td>
</tr>
<tr>
<td>C17</td>
<td>297</td>
<td>9410</td>
<td>8.02</td>
<td>9.86</td>
</tr>
<tr>
<td>C18</td>
<td>302</td>
<td>10200</td>
<td>8.05</td>
<td>9.92</td>
</tr>
<tr>
<td>C19</td>
<td>306</td>
<td>11000</td>
<td>8.07</td>
<td>9.97</td>
</tr>
<tr>
<td>C20</td>
<td>311</td>
<td>11700</td>
<td>8.09</td>
<td>10</td>
</tr>
<tr>
<td>C21</td>
<td>314</td>
<td>12500</td>
<td>8.11</td>
<td>10.1</td>
</tr>
<tr>
<td>C22</td>
<td>318</td>
<td>13300</td>
<td>8.13</td>
<td>10.1</td>
</tr>
<tr>
<td>C23</td>
<td>321</td>
<td>14900</td>
<td>8.15</td>
<td>10.1</td>
</tr>
<tr>
<td>C24</td>
<td>324</td>
<td>15600</td>
<td>8.17</td>
<td>10.2</td>
</tr>
<tr>
<td>C25</td>
<td>327</td>
<td>16400</td>
<td>8.18</td>
<td>10.2</td>
</tr>
<tr>
<td>C26</td>
<td>329</td>
<td>17200</td>
<td>8.2</td>
<td>10.3</td>
</tr>
<tr>
<td>C27</td>
<td>332</td>
<td>18000</td>
<td>8.21</td>
<td>10.3</td>
</tr>
<tr>
<td>C28</td>
<td>334</td>
<td>18800</td>
<td>8.22</td>
<td>10.3</td>
</tr>
<tr>
<td>C29</td>
<td>336</td>
<td>19000</td>
<td>8.24</td>
<td>10.3</td>
</tr>
<tr>
<td>C30</td>
<td>338</td>
<td>20400</td>
<td>8.25</td>
<td>10.4</td>
</tr>
<tr>
<td>C31</td>
<td>340</td>
<td>21200</td>
<td>8.26</td>
<td>10.4</td>
</tr>
<tr>
<td>C32</td>
<td>342</td>
<td>22000</td>
<td>8.27</td>
<td>10.4</td>
</tr>
<tr>
<td>C33</td>
<td>343</td>
<td>22800</td>
<td>8.28</td>
<td>10.4</td>
</tr>
<tr>
<td>C34</td>
<td>345</td>
<td>23600</td>
<td>8.29</td>
<td>10.4</td>
</tr>
<tr>
<td>C35</td>
<td>346</td>
<td>24400</td>
<td>8.3</td>
<td>10.5</td>
</tr>
<tr>
<td>C36</td>
<td>348</td>
<td>25200</td>
<td>8.31</td>
<td>10.5</td>
</tr>
<tr>
<td>C37</td>
<td>349</td>
<td>26000</td>
<td>8.32</td>
<td>10.5</td>
</tr>
<tr>
<td>C38</td>
<td>351</td>
<td>26800</td>
<td>8.33</td>
<td>10.5</td>
</tr>
<tr>
<td>C39</td>
<td>352</td>
<td>27600</td>
<td>8.34</td>
<td>10.5</td>
</tr>
<tr>
<td>C40</td>
<td>353</td>
<td>28400</td>
<td>8.35</td>
<td>10.6</td>
</tr>
</tbody>
</table>
From Equation (4.26) and (4.13), K_i^{SL} can be expressed as

$$K_i^{SL} = \frac{S_i}{x_i} = \exp\left[\frac{\Delta H_f}{RT} \left(1 - \frac{T}{T_f}\right) + \frac{v_i}{RT} \left((\bar{\delta}_s - \delta_i)_L^2 - (\bar{\delta}_s - \delta_i)_L^2\right)\right]$$ \hspace{1cm} (4.27)

As explained in section 4.1, with the knowledge of K_i^{SL}, the Rachford-Rice Equation can be solved to obtain the amount of wax precipitated (S/F). But, it should be noted that for calculating K_i^{SL}, the compositions of the liquid (x_i) and solid streams (s_i) are required, and before attempting to solve the Rachford-Rice equation, these values are not known. So, it is an open ended problem. The work-around procedure for this problem will be explained in the next chapter.

4.3 Pedersen’s Model

One of the main drawbacks with Won’s model as reported in literature is that it overestimates the amount of wax precipitated (Fredenslund et al., 1988). Pedersen and Christensen (2007) attributed the problem to assigning the melting properties of n-paraffins to all the constituents of a hydrocarbon pseudo-component. As seen from Equation (4.14) and (4.15), Won has assigned the melting properties of the wax forming components to the non-wax forming components, too. For example, consider oil dominated by C_{10} component. From Won’s model, all constituents in the oil (paraffins, iso-paraffins, aromatics, naphthenes, whichever of them are present) will be assigned the melting properties of paraffins. So, if the sample is cooled to a temperature below the melting point of C_{10}, then the model will predict that almost all of the oil constituents will be converted into wax. The solid phase will include the aromatics and naphthenes which have less of a tendency to go into solid phase. In general, the potential wax forming components constitute about 15% of oil’s weight. So the predictions from Won’s model are not consistent with the experimental data. Therefore, it is necessary to distinguish between the potentially wax forming and non-wax forming compounds (Pedersen and Christensen, 2007).

The experimental techniques such as Gas Chromatography (GC) can identify the hydrocarbon components with less than 7 carbon atoms. But as the carbon number goes up, various types of compounds such as n-paraffins, naphthenes, aromatics are
represented together in one single carbon number fraction. The composition analysis does not describe how much of n-paraffin is present in e.g. C\textsubscript{20} fraction. In general, the n-paraffins are expected to enter into the wax phase. The presence of branched paraffins and naphthenes is not very common in the solid phase (wax phase). Aromatics are not generally present in the wax phase. Only a part of each C\textsubscript{7+} fraction contributes to the wax formation. This generally is the n-paraffin fraction. Therefore it is essential to know how much of n-paraffin is present in each carbon number fraction. The amount can be found out from PNA analyses but it is rarely done due to the complexity and huge amount of efforts involved. Hence, Pedersen (1995) developed a theoretical scheme to find out the amount of wax forming components contained in as single carbon number fraction.

According to the model, the mole fraction of potentially wax forming part, \(z^S_i\), of a pseudo-component \(i\), having a total mole fraction, \(z^{old}_i\), is given by

\[
z^S_i = z^{old}_i \left[1 - \left(A + B \cdot M_i \right) \cdot \left(\frac{\rho_i - \rho^p_i}{\rho^p_i} \right)^C \right]
\]

(4.28)

Where, \(M_i\) is the molecular weight of pseudo-component \(i\), \(\rho_i\) is the density of pseudo component \(i\) at the standard conditions and \(\rho^p_i\) is density of the n-paraffin with the molecular weight \(M_i\) at the atmospheric pressure and 15°C. \(\rho^p_i\) can be obtained from

\[
\rho^p_i = 0.3915 + 0.0675 \cdot \ln M_i
\]

(4.29)

A, B and C are the constants which are found by fitting the predictions with the experimental data. Pedersen gave the values of A, B and C which were fitted to many oil samples. They are given in table 4.2.

| Table 4.2 Constants in Equations 4.28 |
A	0.8824
B	5.353*10^{-4}
C	0.1144
The non-wax forming part can be obtained from

\[z_i^{\text{non-S}} = z_i^{\text{old}} - z_i^S \] (4.30)

Where, \(z_i^{\text{non-S}} \) represents the non-wax forming part of the pseudo-component \(i \). In general, \(z_i^S \) is lower than \(z_i^{\text{old}} \). If \(z_i^S \) equals \(z_i^{\text{old}} \), that means all the constituents in pseudo-component \(i \) can potentially enter into wax phase. As each component is split into the wax forming and non-wax forming components, the number of components one has to work with get doubled.

4.3.1 Assumptions of Pedersen’s Model

- All constituents of a pseudo-component can not enter into the wax phase.
- Only C\(_7\) can potentially form wax.
- The solid phase is a single, homogeneous solution in equilibrium with the liquid solution.
- The solid phase is assumed to behave ideally.
- The equilibrium ratio, \(K_i^{SL} \), the ratio between the mole fractions of component \(i \) in the solid and liquid phases, is assumed to be 0 for the non-wax forming parts of all pseudocomponents.

4.3.2 Pedersen’s Model Description (Pedersen, 1995)

\[
\begin{align*}
\text{Liquid} & \quad f_i^L = x_i \cdot \phi_i \cdot P \\
\text{Solid} & \quad f_i^S = s_i f_i^{os}
\end{align*}
\]

Figure 4.3 Liquid-Solid model proposed by Pedersen

As shown in Figure 4.3, a component \(i \) in the liquid phase is in equilibrium with the same component \(i \) in the solid phase. The basic criterion for equilibrium is same as that for Won’s model as described in section 4.3.2. At equilibrium, the fugacity of a
component i in the liquid mixture, f_i^L, should be equal to the fugacity of the same component i in the solid phase, f_i^S. Therefore,

$$f_i^L = f_i^S$$

(4.31)

The fugacity of component i in the liquid phase mixture can be described as:

$$f_i^L = x_i \phi_i^L P$$

(4.32)

Where x_i is the mole fraction of component i in the liquid phase, ϕ_i^L is the fugacity coefficient of i in the liquid phase and P is the system pressure. The fugacity coefficient of component i in the liquid phase mixture can be obtained from any Equation of State (EOS) like Peng-Robinson EOS (PR-EOS) as,

$$\ln(\phi_i^L) = \frac{b_i}{b_m} (Z_L - 1) - \ln(Z_L - B_m) - \frac{A_m}{B(\delta_2 - \delta_1)} \left[\frac{2\psi_i - b_i}{\psi - b_m} \right] \ln \left[\frac{Z_L + \delta_2 B_m}{Z_L + \delta_1 B_m} \right]$$

(4.33)

Where $b_i, A_m, B_m, b_m, \psi_i,$ and ψ are the parameters for PR-EOS. Z_L is the compressibility factor for a component i in the liquid mixture at the system pressure and temperature. The calculation procedures of these parameters are described in Appendix B. δ_1 and δ_2 equal to $1 + \sqrt{2}$ and $1 - \sqrt{2}$ respectively.

As the wax phase is assumed to an ideal solution, the fugacity of component i, f_i^S in the solid phase mixture can be described as,

$$f_i^S = s_i f_i^{os}$$

(4.34)

Where, f_i^{os} is the fugacity of pure component i in the solid phase and it can be expressed as:

$$f_i^{os} = f_i^{ol} \exp \left(\frac{-\Delta H_i^f}{RT} \left[1 - \frac{T}{T_i^f} \right] \right)$$

(4.35)

Where f_i^{ol} is the fugacity of pure component i in the liquid phase at the system pressure, P and temperature T, T_i^f and ΔH_i^f are fusion temperature, heat of fusion of pseudo-component i, respectively. They are given by,

$$\Delta H_i^f = 0.1426 \cdot MW_i \cdot T_i^f$$

(4.36)
Where MW_i is the molecular weight of component i and T_i^{f} can be obtained from,

$$T_i^{f} = 374.5 + 0.02617 \cdot MW_i - 20172 / MW_i$$ \hspace{1cm} (4.37)

$f_i^{ol.}$ is expressed as,

$$f_i^{ol.} = \phi_i^{ol.} \cdot P$$ \hspace{1cm} (4.38)

Where $\phi_i^{ol.}$ is the fugacity coefficient for pure component i in the liquid phase and can be obtained from application of PR-EOS to single component as,

$$\ln(\phi_i^{ol.}) = Z_i^{pure} - 1 - \ln(Z_i^{pure} - B_i^{pure}) + \frac{A_i^{pure}}{2\sqrt{2}B_i^{pure}} \ln \frac{Z_i^{pure} + (1 - \sqrt{2})B_i^{pure}}{Z_i^{pure} + (1 + \sqrt{2})B_i^{pure}}$$ \hspace{1cm} (4.39)

A_i^{pure} and B_i^{pure} are PR EOS parameters for a single component i and Z_i^{pure} is the compressibility factor of pure component i in the liquid phase. Calculations of these parameters are described in Appendix B.

From Equations (4.34), (4.35) and (4.38), the fugacity of component i in the solid phase mixture can be expressed as

$$f_i^{S} = s_i \exp \left(\frac{-\Delta H_i^f}{RT} \left[1 - \frac{T}{T_i^{f}} \right] \right) \phi_i^{ol.} \cdot P$$ \hspace{1cm} (4.40)

From (4.31), (4.32) and (4.40), it can be written that,

$$x_i \phi_i^{L} P = s_i \exp \left(\frac{-\Delta H_i^f}{RT} \left[1 - \frac{T}{T_i^{f}} \right] \right) \phi_i^{ol.} \cdot P$$ \hspace{1cm} (4.41)

It should be noted that there is a difference between ϕ_i^{L} and $\phi_i^{ol.}$. ϕ_i^{L} is the fugacity coefficient of a component i in the liquid phase mixture (obtained by Equation (4.33)) and $\phi_i^{ol.}$ is the fugacity coefficient of a pure component i in the liquid phase (obtained by Equation (4.39)). Rearranging Equation (4.41) and noting that $K_i^{SL} = s_i / x_i$,

$$K_i^{SL} = \frac{s_i}{x_i} = \frac{\phi_i^{L}}{\exp \left(\frac{-\Delta H_i^f}{RT} \left[1 - \frac{T}{T_i^{f}} \right] \right) \phi_i^{ol.}}$$ \hspace{1cm} (4.42)

As seen from section 4.1, the Rachford-Rice equation can be solved to obtain the liquid and solid stream compositions and the amount of wax precipitated if the values of
The values of K_i^{SL} are known. The values of K_i^{SL} can be obtained from Equation (4.42). But for finding the value of ϕ_i^{SL}, the liquid stream composition should be known, so this is, again, an open ended problem. The solution to this problem is explained in the next chapter.

Also for calculating ϕ_i^l and ϕ_i^{nl} from PR EOS, the critical properties (P_c, T_c) of the pseudo-components should be known. The critical pressure of a n-paraffin is lower than that for an aromatic with same molecular weight. As discussed earlier, the n-paraffins go into the wax phase where as the aromatics do not generally form wax. Therefore, the wax forming part of the pseudo-component (mainly consisting of n-paraffins) should have a lower P_c than the non-wax forming part (mainly consisting of naphthenes, aromatics). So the values of P_c for the wax forming and non-wax forming components are obtained from the following co-relations:

$$P_{ci}^S = P_{ci} \left(\frac{\rho_i^p}{\rho_i} \right)^{3.46}$$ \hspace{1cm} (4.43)

And

$$\frac{1}{P_{ci}} = \frac{\left(\frac{z_i^{\text{total}} - z_i^S}{z_i^{\text{total}}} \right)^2}{P_c^{\text{no-S}}} + \frac{\left(\frac{z_i^S}{z_i^{\text{total}}} \right)^2}{P_{ci}^S} \frac{2\left(z_i^{\text{total}} - z_i^S \right) \cdot \left(\frac{z_i^S}{z_i^{\text{total}}} \right)}{\sqrt{P_c^{\text{no-S}}} \cdot \sqrt{P_{ci}^S}}$$ \hspace{1cm} (4.44)

Where, P_{ci}^S and $P_{ci}^{\text{no-S}}$ are the critical pressures of the wax forming and non-wax forming part of the pseudo-component i and P_{ci} is the critical pressure of pseudo-component i before it is split into the wax forming and non-wax forming parts using Equation 4.28. z_i^{total} represents the mole fraction of the pseudo-component i in the feed stream in Figure 4.1. z_i^S and $z_i^{\text{no-S}}$ represent the wax forming and non-wax forming part of that pseudo component and $z_i^{\text{old}} = z_i^S + z_i^{\text{no-S}}$. Therefore the feed stream to the flash vessel in Figure 4.1 contains twice the number of components than those initially, since each single carbon number fraction is split into two parts. For example, consider a C$_{20}$ component with mole fraction $z_{C_{20}}$ in oil. After splitting, the feed stream to the flash vessel in Figure 4.1 will contain two pseudo-components C_{20}^S and $C_{20}^{\text{no-S}}$ with mole fractions $z_{C_{20}}^S$ and $z_{C_{20}}^{\text{no-S}}$, of which the former can enter into the wax phase where as the
latter will always stay in the liquid phase. The wax forming and non-wax forming parts are treated as different components (The values of K_{i}^{SL} for the non-wax forming components are taken as 0 for all calculations). These z's should not be confused with Z's in Equation (4.33) and (4.39), small letter z's represent the mole fractions of component in the feed stream to the flash vessel where as capital letter Z's represent the compressibility factors of the components.

Ronningsen et al. (1997) introduced a correction factor for describing the solid phase fugacity of component i at high pressures as,

$$f_{i}^{S} = s_{i} \exp \left(\frac{-\Delta H_{i}^{f}}{RT} \left[1 - \frac{T}{T_{i}^{f}} \right] + \frac{\Delta V_{i}(P - P_{ref})}{RT} \right) \phi_{i}^{ol} \cdot P$$

(4.45)

where, ΔV_{i} is the volume change associated with the solidification process. They suggested that it should taken as -10% of the molar volume of pseudo-component i in the liquid phase. P_{ref} is taken as 14.7 psia as the melting properties are generally available at the atmospheric pressure. Using Equation (4.45), the expression for K_{i}^{SL} is modified to,

$$K_{i}^{SL} = \frac{s_{i}}{x_{i}} \exp \left(\frac{-\Delta H_{i}^{f}}{RT} \left[1 - \frac{T}{T_{i}^{f}} \right] + \frac{\Delta V_{i}(P - P_{ref})}{RT} \right) \phi_{i}^{ol}$$

(4.46)

Both Won's model and Pedersen's liquid-solid models, deal with wax precipitation from the liquid phase. This case is generally valid at lower pressures where the components which may enter into the vapor phase have already vaporized. But at higher pressures, the vapor phase influences the wax precipitation. For this, three phase equilibrium containing vapor phase should be described. This is done in following section.
4.4 Three Phase Flash Calculations (Won, 1986)

As explained earlier, to find out the amount of wax precipitated, flash calculations need to be performed. At higher pressures, the three phase flash calculations need to be performed as the vapor phase comes into the picture along with the liquid and solid phases. This is explained in Figure 4.4. A feed of F moles with known composition, \(z_i \), is flashed in a flash vessel (with known pressure P and temperature T) and three streams are formed: a liquid stream of L moles with an overall composition as \(x_i \), a vapor stream of V moles with an overall composition \(y_i \) and a solid stream of S moles with an overall composition \(s_i \).

The overall material balance can be written as,

\[
F = V + L + S \quad (4.47)
\]

The component balance yields,

\[
F \cdot z_i = V \cdot y_i + L \cdot x_i + S \cdot s_i \quad (4.48)
\]
As the solid and liquid phases are in equilibrium in the flash vessel, it can be written that
\[s_i = K_{i}^{SL} \cdot x_i \]
(4.49)

Where \(K_{i}^{SL} \): Equilibrium ratio of the mole fractions of component \(i \) in the solid and liquid phases at \(T \) and \(P \)

Also, as the vapor and liquid phases are in equilibrium,
\[y_i = K_{i}^{VL} \cdot x_i \]
(4.50)

Where \(K_{i}^{VL} \): Equilibrium ratio of the mole fractions of component \(i \) in the vapor and liquid phases at \(T \) and \(P \)

Substituting \(s_i \) and \(y_i \) from Equation (4.49) and (4.50) and \(L = F - V - S \) and rearranging for \(x_i \), Equation (4.48) can be written as,
\[x_i = \frac{F \cdot z_i}{V \cdot K_{i}^{VL} + (F - V - S) + S \cdot K_{i}^{SL}} \]
(4.51)

Dividing \(F \) and rearranging, \(x_i \) can be expressed as,
\[x_i = \frac{z_i}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} \]
(4.52)

Substituting value of \(x_i \) in Equations (4.49) and (4.50),
\[s_i = \frac{K_{i}^{SL} \cdot z_i}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} \]
(4.53)

\[y_i = \frac{K_{i}^{VL} \cdot z_i}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} \]
(4.54)

For both solid and liquid streams, \(\sum s_i = \sum x_i = 1 \) or \(\sum (s_i - x_i) = 0 \) must be always satisfied. Also for both vapor and liquid stream, \(\sum y_i = \sum x_i = 1 \) or \(\sum (y_i - x_i) = 0 \) must be always satisfied.

\[f_{SL}^{SL} \left(\frac{V}{F}, \frac{S}{F} \right) = \sum (s_i - x_i) = \sum \frac{(K_{i}^{SL} - 1) \cdot z_i}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} = 0 \]
(4.55)
Equations (4.55) and (4.56) represent the modified Rachford-Rice method for the three phase flash involving vapor, liquid and solid phases. In these equations, \(z_i \) is known. V/F and S/F are the fractions that need to be found out as S/F represents the mole fraction of wax precipitated. If values of \(K_{i}^{VL} \) and \(K_{i}^{SL} \) are known, then these equations can be solved to obtain V/F and S/F and by Equations (4.52), (4.53) and (4.54), the compositions of each stream can be found out. Won’s model (1986) described the method to predict \(K_{i}^{VL} \) and \(K_{i}^{SL} \) for three phases. This model is described in the next section. The solution for the Rachford-Rice problem will be explained in the next chapter.

4.5 Three Phase Modeling

This model is presented in the same paper by Won (1986) in which he proposed the two phase model. The assumptions for this model are essentially the same as that for the two phase model as described in section 4.2.1.

\[
f_{VL}^{i} \left(\frac{V}{F} , \frac{S}{F} \right) = \sum (y_i - x_i) = \sum \frac{(K_{i}^{VL} - 1) \cdot z_i}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} = 0 \tag{4.56}
\]

As shown in Figure 4.5, the solid phase is in equilibrium with the liquid and gas phases. All the phases are considered to be non-ideal mixtures. At equilibrium, the fugacity of each component in all the phases should be equal. Therefore,

\[
f_{i}^{S} = f_{i}^{L} = f_{i}^{V} \tag{4.57}
\]

Where, \(f_{i}^{S} \), \(f_{i}^{L} \) and \(f_{i}^{V} \) represent the fugacities of component i in the solid, liquid and vapor phases respectively. This equilibrium can be considered as two separate
equilibriums as \(f_i^S = f_i^L \) and \(f_i^L = f_i^V \). The first one considers the equilibrium between the liquid and solid phases and the latter one considers the equilibrium between the liquid and vapor phases.

As both liquid and solid phases are considered as non-ideal mixtures, as explained in section 4.2.2,

\[
\begin{align*}
 f_i^L &= \gamma_i^L x_i f_i^{ol} \\
 f_i^S &= \gamma_i^S s_i f_i^{os}
\end{align*}
\]

(4.58)

(4.59)

Equating the fugacities and applying the Regular Solution Theory as explained in section 4.2.2, \(K_i^{SL} = s_i/x_i \) is obtained as,

\[
K_i^{SL} = \frac{s_i}{x_i} = \exp \left[\frac{\Delta H_i^f}{RT} \left(1 - \frac{T}{T_i^f} \right) + \frac{V_i}{RT} \left((\overline{\delta} - \delta_i)^2_L - (\overline{\delta} - \delta_i)^2_S \right) \right]
\]

(4.60)

which is exactly as same Equation (4.27). \(T_i^f \) and \(\Delta H_i^f \) are the fusion temperature and the heat of fusion and can be obtained from Equations (4.14) and (4.15). \(\delta_i^L \) and \(\delta_i^S \) are the solubility parameters for the liquid and solid phases respectively and can be obtained from Equations (4.21) and (4.22). \(\overline{\delta} \) is the average solubility parameter of the mixture and is obtained from Equation (4.17). It requires the average volume fraction \(\varphi_i \), which is obtained by Equations (4.18) and (4.23)-(4.25). Thus knowing the values of all the parameters in Equation (4.60), \(K_i^{SL} \) can be calculated.

As both the vapor and liquid phases are assumed to behave non-ideally,

\[
\begin{align*}
 f_i^V &= y_i \cdot \phi_i^V \cdot P \\
 f_i^L &= x_i \cdot \phi_i^L \cdot P
\end{align*}
\]

(4.61)

(4.62)

Where, \(y_i \) and \(x_i \) are the mole fractions of component i in the vapor and liquid phases, respectively. \(\phi_i^V \) and \(\phi_i^L \) are the fugacity coefficients of component i in the vapor and liquid phases. These \(\phi \)'s should not be confused with the \(\varphi \)'s in Equation (4.17) and (4.18). The former are the fugacity coefficients and the latter ones are the volume fractions of each component in the various phases. \(\phi_i^V \) can be calculated from PR EOS.
\[
\ln(\phi_i^L) = \frac{b_i}{b_m} (Z_v - 1) - \ln(Z_v - B_m) - \frac{A_m}{B(\delta_2 - \delta_1)} \left[\frac{2\psi_i}{b_i} - \frac{b_i}{b_m} \right] \ln\left[\frac{Z_v + \delta_2 B_m}{Z_v + \delta_1 B_m} \right]
\] (4.63)

Where \(b_i, A_m, B_m, b_m, \psi_i \), and \(\psi \) are the parameters for PR-EOS. \(Z_v \) is the compressibility factor for component \(i \) in the vapor mixture at the system pressure and temperature. Calculation procedures of these parameters are described in Appendix B. \(\delta_1 \) and \(\delta_2 \) equal to \(1 + \sqrt{2} \) and \(1 - \sqrt{2} \) respectively. \(\phi_i^L \) is obtained from Equation (4.33). Equating Equations (4.61) and (4.62), and noting \(K_{i}^{VL} = \frac{y_i}{x_i} \)

\[
K_{i}^{VL} = \frac{y_i}{x_i} = \frac{\phi_i^L}{\phi_i^{VL}}
\] (4.64)

Thus, \(K_{i}^{SL} \) and \(K_{i}^{VL} \) can be obtained and as explained in section 4.5, the Rachford-Rice equation for the three phase problem can be solved to obtain the amount of wax, liquid and vapor phases formed and the composition of each stream. But again, the problem is the same that for the calculation of both \(K_{i}^{SL} \) and \(K_{i}^{VL} \), \(x_i, y_i \) and \(s_i \) should be known. But for the first iteration, they are not known. The solution procedure is explained in next chapter.
Chapter 5
Development of Algorithm

5.1 Two Phase Flash Calculations

To find out the amount of wax formed and the amount of wax precipitated, flash calculations have to be performed first. As explained in section 4.1, the Rachford-Rice equation needs to be solved for this purpose. For two phase flash calculations, the Rachford-Rice equation is expressed as,

\[f(S/F) = \sum \frac{(K_{i}^{SL} - 1)z_{i}}{1 + \frac{S}{F}(K_{i}^{SL} - 1)} = 0 \]

(5.1)

In Equation (5.1), S/F is the value that one is interested in determining, as it represents the amount of wax precipitated. Oil may contain up to 200 components; therefore, a direct solution to Equation (5.1) is very difficult. A numerical method has to be used to solve the equation. \(K_{i}^{SL} \) has to be calculated from either Won’s model or Pedersen’s model, but these models require the compositions of the solid and liquid phases. Since the compositions of solid and liquid stream are unknown, the values of \(K_{i}^{SL} \) have to be guessed in order to find S/F and the compositions of each stream. The compositions then should be used to find the correct values of \(K_{i}^{SL} \) from Won’s or Pedersen’s model. This will be explained in detail in the next section. For this section, it is assumed that the correct guess values of \(K_{i}^{SL} \) are available.

For solving Equation (5.1), Newton’s method is used. The initial guess value of S/F is needed. Due to the large number of components involved and non-linearity of the equation, the nature of flash calculation is such that the convergence of the solution depends largely on the initial guess value of S/F. Therefore, Riazi (2005) suggested the following formula to calculate the initial guess value of S/F:

\[(S/F)_{initial} = \frac{\sum [z_{i} \cdot (K_{i}^{SL} - 1)]}{\sum [z_{i} \cdot (K_{i}^{SL} - 1)] - \sum \left[\frac{z_{i} \cdot (K_{i}^{SL} - 1)}{K_{i}^{SL}} \right]} \]

(5.2)
Then the value of \((S/F)\) \(^{\text{initial}}\) is substituted in Equation (5.1) to calculate the value of \(f(S/F)\). If it is smaller than a preset tolerance criterion \((\varepsilon)\), then the value of \(S/F\) is the correct one. For this study, a tolerance criterion of \(10^{-10}\) was used. If the value of \(f(S/F)\) is larger than \(\varepsilon\), then the new value of \((S/F)\) is determined by Newton’s method:

\[
(S/F)_{\text{new}} = (S/F) - \frac{f(S/F)}{f'(S/F)}
\]

(5.3)

where \(f'(S/F)\) is the first order derivative of \(f(S/F)\) with respect to \((S/F)\). It is obtained as,

\[
f'(S/F) = -\sum_{i} \frac{z_i \cdot (K_{i}^{SL} - 1)^2}{[(S/F) \cdot (K_{i}^{SL} - 1) + 1]^2}
\]

(5.4)

Therefore, the procedure to solve the Rachford-Rice equation for a two phase flash problem is given below.

1. The feed composition \((z_i)\), initial guess values of \(K_{i}^{SL}\), pressure \((P)\) and temperature \((T)\) are known.

2. Find out the initial guess value of \((S/F)\), \((S/F)_{\text{initial}}\), from Equation (5.2).

3. Substitute \((S/F)_{\text{initial}}\) in Equation (5.1) to evaluate \(f(S/F)\).

4. If \(f(S/F) < \varepsilon\), then the value of \((S/F)\) is correct, and the compositions of solid and liquid streams are determined from Equations (4.5) and (4.6).

5. If \(f(S/F) > \varepsilon\), then find \(f'(S/F)\) from Equation (5.4)

6. Calculate the new value of \((S/F)\) from Equation (5.3) and the value obtained from step 5.

7. Substitute \((S/F)\) obtained from step 6 in Equation (5.1) to evaluate \(f(S/F)\).

8. Repeat steps 4-7 until the \((f(S/F) < \varepsilon)\) criterion is satisfied.

9. From the correct value of \((S/F)\), calculate the solid and liquid stream compositions.

It should be noted that the correct value of \((S/F)\) is obtained from the assumed values of \(K_{i}^{SL}\), and may not correspond to the actual \(K_{i}^{SL}\) values. The actual equilibrium ratio values should be obtained from Won’s model or Pedersen’s model. The procedure to obtain those values will be explained in later sections of this chapter.
5.2 Initial Guess Values of K_{i}^{SL}

As discussed earlier, to solve the Rachford-Rice equation, the values of K_{i}^{SL} are required. These values can be obtained from Won’s model or Pedersen’s model, but the models require the compositions of liquid and solid streams, which are not known initially; thus K_{i}^{SL} values have to be guessed. Due to the complex nature of the Rachford-Rice equation, the solution will not converge, however, unless proper values of K_{i}^{SL} are used. The same problem is faced when the Rachford-Rice equation is used for the vapor-liquid flash calculations. For the vapor-liquid flash calculations, the initial guess values of equilibrium ratios are obtained by Wilson’s co-relation. It is given as,

$$K_{i}^{VL} = \frac{y_{i}}{x_{i}} = \frac{P_{ci}}{P} \exp \left[5.37 \cdot (1 + \omega_{i}) \left(1 - \frac{T_{ci}}{T} \right) \right]$$

(5.5)

where, P_{ci}, T_{ci} and ω_{i} are the critical pressure, critical temperature, and the acentric factor of component i, respectively. P and T are the pressure and temperature values at which the flash calculations are carried out. y_{i} and x_{i} represent the mole fractions of component i in the vapor and liquid phases, respectively. As the hydrocarbon fraction becomes heavier (i.e., when the carbon number of a fraction increases), the tendency of the fraction to go into the vapor phase decreases. Therefore, the value of K_{i}^{VL} decreases. An exactly opposite behavior is observed when the solid phase precipitation is considered. The heavier fractions have a higher tendency to go into the solid phase; therefore, the value of K_{i}^{SL} (which is the ratio of mole fractions of component i in the solid and liquid phases) increases. Hence, Mei et al. (1999) suggested using the reciprocal of K_{i}^{VL} for calculating the initial guess values of K_{i}^{SL} as:

$$K_{i}^{SL, initial} = \frac{s_{i}}{x_{i}} = \frac{1}{K_{i}^{VL, initial}} = \frac{1}{\frac{P_{ci}}{P} \exp \left[5.37 \cdot (1 + \omega_{i}) \left(1 - \frac{T_{ci}}{T} \right) \right]}$$

(5.6)

Thus, using the initial guess values of K_{i}^{SL}, the Rachford-Rice equation can be solved using the procedure explained in section 5.1, and the composition of solid and
liquid phases can be obtained. Using the compositions, the correct values of K_{i}^{SL} are obtained from Won’s or Pedersen’s model.

5.3 Two Phase Flash Calculations Using Won’s Model

Using the initial guess values of K_{i}^{SL}, the amount of wax precipitated (S/F) and the compositions of solid (s_i) and liquid streams (x_i) can be calculated. The values do not correspond to reality, however, as the calculations have no thermodynamic base. Won’s model gives the method to calculate the values of K_{i}^{SL} using thermodynamics.

An algorithm for estimating the amount of wax precipitated and the compositions of solid and liquid phases by Won’s model is developed and described below.

1. The feed composition (z_i), pressure (P) and temperature (T) are known.
2. Find out the initial guess values of K_{i}^{SL} using Equation (5.6). Solve the Rachford-Rice equation using the procedure explained in section 5.1 to find out S/F, s_i and x_i, which are compositions of solid and liquid streams, respectively.
3. Calculate δ_i^L and δ_i^S using Equations (4.21) and (4.22) for all components.
4. Estimate the molar volume of each component in solid (v_i^S) and liquid phases (v_i^L) from Equations (4.23) through (4.25).
5. Find out the volume fractions of each component in solid (φ_i^S) and liquid phases (φ_i^L) using Equation (4.18).
6. Calculate $\overline{\delta}$, the average solubility parameter of the mixture, for both the liquid and solid phases by appropriately putting the volume fraction and the solubility parameters of component phase using Equation (4.17).
7. Find out T_i' and $\Delta H_i'$, the fusion temperature and the heat of fusion, from Equations (4.14) and (4.15) for each component.
8. Using the terms obtained in the above steps, find out K_{i}^{SL} for each component using Equation (4.27).
9. Solve the Rachford-Rice equation using the procedure explained in section 5.1 and the newly obtained K_{i}^{SL} values, to obtain the solid mole fraction (S/F), the compositions of wax (s_i) and liquid phases (x_i).

10. Repeat steps 3-9, till constant values of the solid mole fraction (S/F) are obtained. A program based on the above-described algorithm was developed in MATLAB. The results obtained are presented in the next chapter.

5.4 Two Phase Flash Calculations Using Pedersen’s Model

Pedersen’s model gives another method to calculate K_{i}^{SL} based on thermodynamics. An algorithm of estimating the amount of wax precipitated and the compositions of solid and liquid phases based on Pedersen’s model is developed and described below.

1. The feed composition (z_j), pressure (P), and temperature (T) values are known. For C$_7$+ components, $z_i^{old} = z_i$.

2. Calculate the density of n-paraffin ρ_i^p using Equation (4.29) for each C$_7$+ component.

3. Estimate the wax forming fraction of each C$_7$+ component (z_i^S) using Equation (4.28) and the values of constants given in Table 4.2.

4. Calculate the non-wax forming fraction of each C$_7$+ component (z_i^{n-S}) using Equation (4.30) and the values obtained in step 3. The wax forming fraction and non-wax forming fraction are treated as two different components. These components form the new feed to the flash vessel. The C$_7$+ components get doubled in this new feed due to the division into these fractions.

5. Obtain initial guess values of K_{i}^{SL} using Equation (5.6) for the wax forming fractions. For the non-wax forming components and components C$_1$-C$_7$, the values of K_{i}^{SL} are assumed to be zero.

6. Solve the Rachford-Rice equation using the procedure explained in section 5.1 to find out S/F, s_i and x_i, which are the compositions of solid and liquid streams.
7. The wax forming and non-wax forming components are assigned the critical properties using Equations (4.43) and (4.44).

8. Calculate the fugacity of each component in the liquid phase, \(\phi_i^L \), using Equation (4.33) and the procedure explained in Appendix B.

9. Calculate the liquid phase fugacity of each pure \(C_7^+ \) component, \(\phi_i^{pL} \) using Equation (4.39) and the procedure explained in Appendix B.

10. The fusion temperature \((T_f^i) \) and the heat of fusion \((\Delta H_f^i) \) of each pseudo-component \(i \) are obtained from Equations (4.36) and (4.37), respectively.

11. Knowing all the terms in Equation (4.42), the \(K_{iSL}^i \) values are calculated. At higher pressures, use Equation (4.46) instead of Equation (4.42). \(V_i \) required for the calculations is obtained from PR EOS.

12. Again for the non-wax forming fractions, the \(K_{iSL}^i \) s are assumed to be 0.

13. Solve the Rachford-Rice equation using the procedure explained in section 5.1 and these newly obtained \(K_{iSL}^i \) values to find out the solid mole fraction \((S/F) \) and compositions of the wax \((s_i) \) and liquid phases \((x_i) \).

14. Repeat steps 7-13, till constant values of solid mole fraction \((S/F) \) are obtained.

A program based on the above described algorithm was developed in MATLAB. The results obtained are presented in the next chapter.

5.5 Three Phase Flash Calculations

At higher pressures, the vapor phase also enters the picture. For finding the amount of wax and vapor phases formed and the compositions of wax, vapor and liquid streams, the Rachford-Rice equation modified for three phases has to be solved as described in section 4.4.

The Rachford-Rice equation for the three phase flash calculations is,

\[
f^{SL} \left(\frac{V}{F}, \frac{S}{F} \right) = f^{SL} = \sum (s_i - x_i) = \sum \frac{(K_{iSL}^i - 1) \cdot z_i}{1 + \frac{V}{F} \cdot (K_{iSL}^i - 1)} = 0 \tag{5.7}
\]
In Equations (5.7) and (5.8), the values of \((V/F)\) and \((S/F)\) are unknown and are our area of interest, as \((S/F)\) represents the mole fraction of wax formed. The values of \(K_i^{SL}\) and \(K_i^{VL}\) are determined from the model explained in section 4.5. The model requires the composition of each stream and it is not known initially. Therefore, the initial values of \(K_i^{SL}\) and \(K_i^{VL}\) have to be guessed. The initial guess values of \(K_i^{SL}\) and \(K_i^{VL}\) can be estimated from Equations (5.5) and (5.6). From Equation (5.8), it can be seen that these equations are simultaneous, non-linear equations. Also, as many components are involved, a direct solution for this problem is not possible. Therefore, the multivariate Newton’s method is applied for finding out the values of \(S/F\) and \(V/F\) (King, 1971).

The methods for estimating initial guesses for multivariate Newton’s method are very complicated and were not used. The program for solving Rachford-Rice equation was written. The initial values of \((V/F)\) were assumed to be in the range of 0.85-0.90, whereas values \((S/F)\) were assumed to be in the range of 0.01-0.05. These values did not introduce any convergence problems, for the data sets used in this study. These values are substituted in Equations (5.7) and (5.8), and the values of \(f^{SL}(V/F, S/F)\) and \(f^{VL}(V/F, S/F)\) were calculated. If these values are smaller than a preset tolerance criterion \((\varepsilon)\), then the values of \((S/F)\) and \((V/F)\) are correct. For the current study, a tolerance criterion of \(10^{-5}\) was used. If values are larger than \(\varepsilon\), then the new values of \((S/F)\) and \((V/F)\) is determined by multivariate Newton’s method as,

\[
(V/F)_{j+1} = (V/F)_j + \left(f^{SL}_j \cdot \frac{\partial f^{VL}_j}{\partial (S/F)}_j \right) \left(f^{VL}_j \cdot \frac{\partial f^{SL}_j}{\partial (S/F)}_j \right) \left[\frac{\partial f^{VL}_j}{\partial (V/F)}_j \cdot \frac{\partial f^{SL}_j}{\partial (S/F)}_j - \frac{\partial f^{VL}_j}{\partial (S/F)}_j \cdot \frac{\partial f^{SL}_j}{\partial (V/F)}_j \right]^{-1} \left(f^{SL}_j \cdot \frac{\partial f^{VL}_j}{\partial (S/F)}_j \right) \left(f^{VL}_j \cdot \frac{\partial f^{SL}_j}{\partial (S/F)}_j \right)\]

(5.9)
where, j indicates the iteration number. $\frac{\partial f^{VL}}{\partial (S/F)}$ and $\frac{\partial f^{VL}}{\partial (V/F)}$ are the values of the partial derivatives of $f^{VL}\left(\frac{V}{F}, \frac{S}{F}\right)$ when differentiated with respect to (S/F) and (V/F) respectively while keeping other variables constant, and evaluated by substituting values of (S/F) and (V/F) in j^{th} iteration. Those partial derivatives are expressed as,

$$
(5.10)
$$

Similarly,

$$
\frac{\partial f^{SL}}{\partial (S/F)} \quad \text{and} \quad \frac{\partial f^{SL}}{\partial (V/F)}
$$

are the values of the partial derivatives of $f^{SL}\left(\frac{V}{F}, \frac{S}{F}\right)$ when differentiated with respect to (S/F) and (V/F), respectively, while keeping other variables constant, and evaluated by substituting values of (S/F) and (V/F) in j^{th} iteration. Those partial derivatives are expressed as,

$$
\frac{\partial f^{SL}}{\partial (S/F)} = -\sum z_i \cdot \frac{(K_i^{SL} - 1)}{1 + \frac{V}{F} \cdot (K_i^{VL} - 1) + \frac{S}{F} \cdot (K_i^{SL} - 1)} \left(\frac{K_i^{SL} - 1}{1 + \frac{V}{F} \cdot (K_i^{VL} - 1) + \frac{S}{F} \cdot (K_i^{SL} - 1)} \right)
$$

$$
\frac{\partial f^{SL}}{\partial (V/F)} = -\sum z_i \cdot \frac{(K_i^{SL} - 1)}{1 + \frac{V}{F} \cdot (K_i^{VL} - 1) + \frac{S}{F} \cdot (K_i^{SL} - 1)} \left(\frac{K_i^{SL} - 1}{1 + \frac{V}{F} \cdot (K_i^{VL} - 1) + \frac{S}{F} \cdot (K_i^{SL} - 1)} \right)
$$

(5.11)

(5.12)
Therefore, the procedure to solve the Rachford-Rice equation for the three phase flash problem can be summarized as

1. The feed composition \((z_i) \), initial guess values of \(K^*_{i} \) and \(K_{i}^{VL} \), pressure \((P) \) and temperature \((T) \) are known.
2. Use the initial guesses of \((S/F) \) and \((V/F) \) in the range mentioned earlier.
3. Calculate the values of \(f_{SL} \) and \(f_{VL} \) from Equations (5.7) and (5.8).
4. If \(f_{SL} < \varepsilon \) and \(f_{VL} < \varepsilon \), then the values of \((S/F) \) and \((V/F) \) are correct, and the compositions of vapor, solid and liquid streams are determined from Equations (4.52) through (4.54).
5. If \(f_{SL} > \varepsilon \) or \(f_{VL} > \varepsilon \), then calculate the values of Equations (5.13) and (5.14). Also, calculate the values of \(\frac{\partial f_{SL}}{\partial (S/F)} \) and \(\frac{\partial f_{SL}}{\partial (V/F)} \) from Equations (5.11) and (5.12).
6. Obtain the new values of \((V/F) \) and \((S/F) \) from Equations (5.9) and (5.10) using the values obtained in step 3 and 5.
7. Substitute the new values of \((V/F) \) and \((S/F) \) obtained from step 6 into Equations (5.7) and (5.8).
8. Repeat steps 4-7 till \((f_{SL} < \varepsilon \) and \(f_{VL} < \varepsilon \)) criterion is satisfied.

\[
\frac{\partial f_{SL}}{\partial (V/F)} = -\sum z_i \cdot \left[\frac{(K^*_{i} - 1)}{1 + \frac{V}{F} \cdot (K^*_{i} - 1) + \frac{S}{F} \cdot (K^*_{i} - 1)} \right] \cdot \left[\frac{(K_{i}^{SL} - 1)}{1 + \frac{V}{F} \cdot (K_{i}^{VL} - 1) + \frac{S}{F} \cdot (K_{i}^{SL} - 1)} \right]
\]

\((5.14) \)
ratio values. These equilibrium ratio values should be obtained from Won's model for three phase flash calculations.

5.5.1 Three Phase Equilibrium Calculations

Won's model gives a method to calculate K_{i}^{SL} and K_{i}^{VL} based on thermodynamics. An algorithm of estimating the amount of wax precipitated and the compositions of vapor, liquid and solid phases based on Won's three phase model is developed and described below.

1. The feed composition (z_i), pressure (P) and temperature (T) are known.

2. Find out the initial guess values of K_{i}^{SL} and K_{i}^{VL} from Equations (5.5) and (5.6). Solve the Rachford-Rice equation using the procedure explained in section 5.5 to obtain (S/F) and (V/F) and y_b, s_i and x_i which are the compositions of vapor, solid and liquid streams from Equations (4.52) through (4.54).

3. For calculation of K_{i}^{SL}
 a. Calculate δ_i^L and δ_i^S using Equations (4.21) and (4.22) for all the components.
 b. Estimate the molar volume of each component in the solid (v_i^S) and liquid phases (v_i^L) from Equations (4.23) through (4.25).
 c. Find out the volume fractions of each component in the solid (ϕ_i^S) and liquid phase (ϕ_i^L) using Equation (4.18).
 d. Calculate $\bar{\delta}$, the average solubility parameter of the mixture, for both liquid and solid phases by appropriately substituting the volume fraction and solubility parameters of each component using Equation (4.17).
 e. Find out T_i^f and ΔH_i^f, the fusion temperature and the heat of fusion, from Equations (4.14) and (4.15) for each component.
 f. Using the terms obtained in the above steps, find out the K_{i}^{SL} values for each component using Equation (4.27).

4. For calculation of K_{i}^{VL}
a. Calculate the fugacity of each component in the liquid phase, \(\phi_i^L \) using Equation (4.33) and the procedure explained in Appendix B.
b. Calculate the fugacity of each component in vapor phase, \(\phi_i^V \) using Equation (4.63) and the procedure explained in Appendix B.
c. Using the terms obtained in the above steps, estimate \(K_{i/\text{VL}} \) for each component using Equation (4.64).

5. Solve the Rachford-Rice equation using the procedure explained in section 5.5 and these newly obtained \(K_{i/\text{SL}} \) and \(K_{i/\text{VL}} \) values to calculate the solid mole fraction (S/F), the vapor mole fraction (V/F) and the compositions of vapor (\(y_i \)), wax (\(s_i \)) and liquid phases (\(x_i \)) from Equations (4.52) through (4.54).

6. Repeat steps 3-5, till the constant values solid (S/F) and vapor mole fractions (V/F) are obtained.

This algorithm allows us to predict the amount of wax precipitated and the amount of vapor phase formed at a given pressure and temperature. A program based on the above described algorithm was developed, and results obtained from it are presented in the next chapter.
Chapter 6

Predictions and Comparisons

6.1 Predictions from Won’s model

Dauphin et al. (1999) published data for wax precipitation from the liquid phase, which have become the standard for testing the wax precipitation models. Table 6.1 gives the composition of a system used by Dauphin et al.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>0.80065</td>
</tr>
<tr>
<td>C18</td>
<td>0.029981</td>
</tr>
<tr>
<td>C19</td>
<td>0.025723</td>
</tr>
<tr>
<td>C20</td>
<td>0.022065</td>
</tr>
<tr>
<td>C21</td>
<td>0.018946</td>
</tr>
<tr>
<td>C22</td>
<td>0.016246</td>
</tr>
<tr>
<td>C23</td>
<td>0.013939</td>
</tr>
<tr>
<td>C24</td>
<td>0.01196</td>
</tr>
<tr>
<td>C25</td>
<td>0.01026</td>
</tr>
<tr>
<td>C26</td>
<td>0.008812</td>
</tr>
<tr>
<td>C27</td>
<td>0.007555</td>
</tr>
<tr>
<td>C28</td>
<td>0.006513</td>
</tr>
<tr>
<td>C29</td>
<td>0.005561</td>
</tr>
<tr>
<td>C30</td>
<td>0.004769</td>
</tr>
<tr>
<td>C31</td>
<td>0.004101</td>
</tr>
<tr>
<td>C32</td>
<td>0.00351</td>
</tr>
<tr>
<td>C33</td>
<td>0.003024</td>
</tr>
<tr>
<td>C34</td>
<td>0.002589</td>
</tr>
<tr>
<td>C35</td>
<td>0.001889</td>
</tr>
<tr>
<td>C36</td>
<td>0.001904</td>
</tr>
</tbody>
</table>

The composition in Table 6.1 was used as feed composition \(z_i \). Next, flash calculations were carried out using the procedure explained in section 5.1. Won’s model was used to predict \(K_{rSL} \) values. Then, flash calculations were repeated until constant values of the solid mole fractions were obtained. The calculation procedure is explained in detail in
section 5.3. Then the solid mole fraction was converted into the weight percent. Figure 6.1 presents a comparison of the results obtained from Won’s model with the experimental data.

![Wax precipitation as function of temperature graph](image)

Figure 6.1 % wax precipitated as function of temperature for system A

It can be seen from Figure 6.1 that, as the temperature is reduced, the amount of wax precipitated increases. This is consistent with the experimental observation. It can also be seen that Won’s model overestimates the amount of wax precipitated at a given temperature, but the wax appearance temperature (WAT) prediction is close to the experimental value. The WAT of system A was found from the experiments to be 308.75K. As the WAT is the temperature at which wax starts precipitating, it can be taken as the temperature at which the 0% of wax precipitation curve meets the temperature line. It is estimated as 308.90K from Won’s model. So the prediction is quite close.

The predictions from Won’s model were compared with commercial computer software to learn the difference in predictions. The composition of system A was used as a feed to Computer Modeling Group’s PVT simulator WINPROP®, but, the program failed to execute for the given composition. Therefore, the same composition was used in
PVTPROP's PROTROLEUM® software for the predictions. The comparison is shown in Figure 6.2.

It can be seen that predictions from the Protroelum®’s wax module show a different behavior. At higher temperatures, the predictions are lower than the experimental values, whereas the predictions are significantly higher at lower temperatures. Protroleum® uses the polymer solution theory model (Zhou et al., 1995). The WAT predicted using Protroleum® is around 304.55K, so the WAT prediction is better using Won’s model than that by Protroleum® software.

The reason why Won’s model overestimates the amount of wax precipitated can be attributed to the use of melting properties of n-paraffins to the whole carbon number fraction. This essentially means that all the components in a single carbon number fraction are n-paraffins and can precipitate as wax. This is not actually the case. Pedersen (1995) has mentioned that stable oil contains around 15% paraffinic compounds. Therefore, the amount of wax precipitated is generally higher for Won’s model.

The model was tested for another mixture, system B. The composition of system B is shown in Table 6.2.
Table 6.2 Composition of system B

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>0.800033</td>
</tr>
<tr>
<td>C18</td>
<td>0.033915</td>
</tr>
<tr>
<td>C19</td>
<td>0.029102</td>
</tr>
<tr>
<td>C20</td>
<td>0.024961</td>
</tr>
<tr>
<td>C21</td>
<td>0.021427</td>
</tr>
<tr>
<td>C22</td>
<td>0.018372</td>
</tr>
<tr>
<td>C23</td>
<td>0.015766</td>
</tr>
<tr>
<td>C24</td>
<td>0.013528</td>
</tr>
<tr>
<td>C25</td>
<td>0.011604</td>
</tr>
<tr>
<td>C26</td>
<td>0</td>
</tr>
<tr>
<td>C27</td>
<td>0</td>
</tr>
<tr>
<td>C28</td>
<td>0</td>
</tr>
<tr>
<td>C29</td>
<td>0.006288</td>
</tr>
<tr>
<td>C30</td>
<td>0.005405</td>
</tr>
<tr>
<td>C31</td>
<td>0.004631</td>
</tr>
<tr>
<td>C32</td>
<td>0.003972</td>
</tr>
<tr>
<td>C33</td>
<td>0.003411</td>
</tr>
<tr>
<td>C34</td>
<td>0.002922</td>
</tr>
<tr>
<td>C35</td>
<td>0.002508</td>
</tr>
<tr>
<td>C36</td>
<td>0.002153</td>
</tr>
</tbody>
</table>

The composition for system B was used in the program for Won’s model to predict the % of wax deposited as a function of temperature. As expected, as the temperature is reduced more and more wax starts precipitating. Figure 6.3 gives the comparison of results obtained from the model and experimental data. Also, the predictions are compared with Protroleum®’s wax module. Again, CMG’s Winprop® failed to execute for the given composition.
From Figure 6.3, it can be seen that the predictions from Won's model are higher than the experimental values. Protroleum® gives better results, but overestimates at lower temperatures. The WAT predicted from Won's model is 310.42K, while that from Protroleum® is 305.1K. The experimental value of WAT for system B is 309.65K. Hence, the WAT predicted from Won's model is closer than that from Protroleum®. The reason for the overestimation of wax precipitated is the same as described earlier.

The model was tested for the third sample, system C. Composition of the sample given in Table 6.3 was used as feed composition. The amount of wax precipitated as a function of temperature was predicted using Won's model and Protroleum® software. The results are compared with the experimental data in Figure 6.4.

From Figure 6.4, it can be seen that, again, Won's model predicts higher wax precipitation than the experimental values. Also, the predictions are higher from the Protroleum® software at lower temperatures. The WATs predicted from Won's model and Protroleum® are 311.2K and 304.75K, respectively. The experimental value of WAT is 310.37K. As observed in earlier cases, the WAT predictions from Won's model are much closer to the experimental values.
Table 6.3 Composition of system C

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>0.800033</td>
</tr>
<tr>
<td>C18</td>
<td>0.037241</td>
</tr>
<tr>
<td>C19</td>
<td>0.031958</td>
</tr>
<tr>
<td>C20</td>
<td>0.027418</td>
</tr>
<tr>
<td>C21</td>
<td>0.023527</td>
</tr>
<tr>
<td>C22</td>
<td>0.020185</td>
</tr>
<tr>
<td>C23</td>
<td>0.017317</td>
</tr>
<tr>
<td>C24</td>
<td>0.014858</td>
</tr>
<tr>
<td>C25</td>
<td>0</td>
</tr>
<tr>
<td>C26</td>
<td>0</td>
</tr>
<tr>
<td>C27</td>
<td>0</td>
</tr>
<tr>
<td>C28</td>
<td>0</td>
</tr>
<tr>
<td>C29</td>
<td>0</td>
</tr>
<tr>
<td>C30</td>
<td>0.00593</td>
</tr>
<tr>
<td>C31</td>
<td>0.005086</td>
</tr>
<tr>
<td>C32</td>
<td>0.00437</td>
</tr>
<tr>
<td>C33</td>
<td>0.003745</td>
</tr>
<tr>
<td>C34</td>
<td>0.003209</td>
</tr>
<tr>
<td>C35</td>
<td>0.002754</td>
</tr>
<tr>
<td>C36</td>
<td>0.002368</td>
</tr>
</tbody>
</table>

Figure 6.4 % wax precipitated as function of temperature for system C
A summary of the WAT predictions is given in Table 6.4.

<table>
<thead>
<tr>
<th></th>
<th>System A</th>
<th>System B</th>
<th>System C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAT experimental (K)</td>
<td>308.75</td>
<td>309.65</td>
<td>310.37</td>
</tr>
<tr>
<td>WAT from Won's model (K)</td>
<td>308.9</td>
<td>310.42</td>
<td>311.2</td>
</tr>
<tr>
<td>WAT from Protroleum (K)</td>
<td>304.55</td>
<td>305.1</td>
<td>304.75</td>
</tr>
<tr>
<td>Average Absolute Deviation (K)</td>
<td>0.15</td>
<td>0.77</td>
<td>0.83</td>
</tr>
</tbody>
</table>

From Table 6.4 it can be seen that the average absolute deviation for the WAT prediction is very low. Won’s model predicts the WATs reasonably even though it overestimates the amount of wax precipitated. Therefore, Won’s model is still used in industry.

From system A to system C, the composition changes in that the mole fractions of intermediate components are lowered. The melting properties assigned by Won’s model are such that heavier components have a higher tendency of going into wax phase. Therefore, the heavier components will have larger mole fractions in the wax phase. As the composition changes from system A to C, the volume fraction of heavier components also increases in the solid phase; thus equilibrium ratio values become higher for system C than those for system A at the same temperature. Hence, the amount of wax precipitated becomes higher at a given temperature for system C, and the WAT also increases accordingly. The same trend is observed here.

Even though solid-liquid equilibrium data given by Dauphin et al. (1999) are considered standard for wax models, the Won’s model is checked with a real reservoir fluid system. Composition of oil used is given in Table 6.5. The composition given is only up to C_{30+} components. Generally, the wax forming components are within the range of C_{15}-C_{50}. Therefore, to study the actual behavior, the C_{30+} components need to be split to C_{80} using any plus factor characterization scheme. The model then becomes very calculation intensive due to the large number of components involved and due to the complex nature of flash calculations. It is advised that the characterized components should be lumped together to a suitable number of components to simulate the process. Pedersen’s lumping scheme was used for lumping. The composition after lumping is given in Table 6.6, as given by Pedersen et al. (1991).
<table>
<thead>
<tr>
<th>Component</th>
<th>Mole%</th>
<th>mol wt</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.139</td>
<td>16.043</td>
<td>0.3</td>
</tr>
<tr>
<td>C2</td>
<td>0.507</td>
<td>30.07</td>
<td>0.356</td>
</tr>
<tr>
<td>C3</td>
<td>0.481</td>
<td>44.097</td>
<td>0.507</td>
</tr>
<tr>
<td>i-C4</td>
<td>0.563</td>
<td>58.124</td>
<td>0.563</td>
</tr>
<tr>
<td>C4</td>
<td>0.634</td>
<td>58.124</td>
<td>0.584</td>
</tr>
<tr>
<td>i-C5</td>
<td>1.113</td>
<td>72.151</td>
<td>0.625</td>
</tr>
<tr>
<td>C5</td>
<td>0.515</td>
<td>72.151</td>
<td>0.631</td>
</tr>
<tr>
<td>C6</td>
<td>2.003</td>
<td>86</td>
<td>0.69</td>
</tr>
<tr>
<td>C7</td>
<td>5.478</td>
<td>90.9</td>
<td>0.749</td>
</tr>
<tr>
<td>C8</td>
<td>8.756</td>
<td>105</td>
<td>0.768</td>
</tr>
<tr>
<td>C9</td>
<td>7.222</td>
<td>117.7</td>
<td>0.793</td>
</tr>
<tr>
<td>C10</td>
<td>5.414</td>
<td>132</td>
<td>0.808</td>
</tr>
<tr>
<td>C11</td>
<td>5.323</td>
<td>148</td>
<td>0.815</td>
</tr>
<tr>
<td>C12</td>
<td>4.571</td>
<td>159</td>
<td>0.836</td>
</tr>
<tr>
<td>C13</td>
<td>5.289</td>
<td>172</td>
<td>0.85</td>
</tr>
<tr>
<td>C14</td>
<td>4.72</td>
<td>185</td>
<td>0.861</td>
</tr>
<tr>
<td>C15</td>
<td>4.445</td>
<td>197</td>
<td>0.873</td>
</tr>
<tr>
<td>C16</td>
<td>3.559</td>
<td>209</td>
<td>0.882</td>
</tr>
<tr>
<td>C17</td>
<td>3.642</td>
<td>227</td>
<td>0.873</td>
</tr>
<tr>
<td>C18</td>
<td>3.104</td>
<td>243</td>
<td>0.875</td>
</tr>
<tr>
<td>C19</td>
<td>2.717</td>
<td>254</td>
<td>0.885</td>
</tr>
<tr>
<td>C20</td>
<td>2.597</td>
<td>262</td>
<td>0.903</td>
</tr>
<tr>
<td>C21</td>
<td>1.936</td>
<td>281</td>
<td>0.898</td>
</tr>
<tr>
<td>C22</td>
<td>2.039</td>
<td>293</td>
<td>0.899</td>
</tr>
<tr>
<td>C23</td>
<td>1.661</td>
<td>307</td>
<td>0.899</td>
</tr>
<tr>
<td>C24</td>
<td>1.616</td>
<td>320</td>
<td>0.9</td>
</tr>
<tr>
<td>C25</td>
<td>1.421</td>
<td>333</td>
<td>0.905</td>
</tr>
<tr>
<td>C26</td>
<td>1.233</td>
<td>346</td>
<td>0.907</td>
</tr>
<tr>
<td>C27</td>
<td>1.426</td>
<td>361</td>
<td>0.911</td>
</tr>
<tr>
<td>C28</td>
<td>1.343</td>
<td>374</td>
<td>0.915</td>
</tr>
<tr>
<td>C29</td>
<td>1.3</td>
<td>381</td>
<td>0.92</td>
</tr>
<tr>
<td>C30+</td>
<td>13.334</td>
<td>624</td>
<td>0.953</td>
</tr>
</tbody>
</table>
Using the composition given in Table 6.5 as feed, the results obtained from Won’s model are shown in Figure 6.5.

![Figure 6.5](image)

Figure 6.5 % wax precipitated as function of temperature for oil 1

From Figure 6.5, it can be seen that, as in earlier cases, Won’s model over-predicts the amount of wax precipitated. The WAT determined experimentally is 304.16K, while that
from Won’s model is 310.68K. There is a deviation of about 6.52K. This can also be attributed to the assigning of melting properties of n-paraffins to all components in a single carbon number fraction.

6.2 Predictions from Pedersen’s Model

Pedersen’s model assumption distinguishes between n-paraffinic compounds and other components in hydrocarbon families. This scenario is much closer to reality. The model was tested against the solid-liquid experimental data published by Dauphin et al. (1999), as it has become the standard for wax modeling. The composition given in Table 6.1 was used as the feed composition for the flash calculations. The procedure explained in section 5.4 was used to predict the amount of wax precipitated at a given temperature. The predictions are compared with experimental data, as well as the predictions obtained from Won’s model. The results are shown in Figure 6.6.

![Figure 6.6 % wax precipitated as function of temperature for system A](image)

From Figure 6.6, it can be seen that predictions for the amount of wax precipitated from Pedersen’s model are much closer to the experimental values than those from Won’s model. This can be attributed to the concept of distinguishing between n-paraffins and other components of carbon fraction. In Won’s model, the assignment of melting
properties of n-paraffins to whole carbon fraction means that the whole carbon fraction is n-paraffinic and can form wax. Hence, the predictions are higher for Won’s model. Pedersen’s model separates n-paraffins from other components with the distribution explained in Equation (4.28). A, B, and C are the constants which are obtained by tuning them with experimental data. For tuning, the Levenberg-Marquardt optimization routine in MATLAB was used. It uses the least-squares method to fit the data. Optimum values obtained are shown in Table 6.7.

| Table 6.7 Optimum values of A, B and C in Equation (4.28) |
|-----------------|-----------------|
| A | 0.5903 |
| B | 5.70*10^{-4} |
| C | 0.1354 |

The WAT obtained from Pedersen’s model is 314.6K whereas that from Won’s model is 308.90K. The experimental value of the WAT of 308.75K is close to the prediction from Won’s model. This error can be attributed to the assumption of ideality in a solid phase. The experimental data has indicated that the solid phase generally behaves as a non-ideal solution.

The model is tested with another data set from Dauphin’s data. The composition is given in Table 6.2. This composition of system B was used as composition of feed stream to flash vessel. The A, B and C values are the values obtained by optimizing the data for all the samples; therefore A, B, and C, given in Table 6.7, were used. Predictions from Pedersen’s model are given in Figure 6.7 as a function of temperature. The results are compared with the experimental data as well as the predictions from Won’s model. From Figure 6.7, it can be see that, again, the predictions for the amount of wax precipitated from Pedersen’s model are closer to the experimental values than those from Won’s model. The reason is the same as that in the earlier case. The WAT predicted from Pedersen’s model is 315.2K, while that from experiments is 309.65K. The prediction from Won’s model (310.4K) is closer to the experimental value.
Pedersen's model was tested against another sample data from Dauphin. The composition is given in Table 6.3. The values for A, B and C, given in Table 6.7, were used in the procedure explained in section 5.4. The predictions were compared with experimental data and predictions from Won's model in Figure 6.8. The trend is similar to those seen in earlier cases. The predictions from Pedersen's model are closer to experimental data than those from Won's model. This is due to the splitting of a carbon fraction into the wax forming and non-wax forming parts. Yet again, the WAT predicted for system C using Pedersen's model is 315.6K. It is considerably different from the experimental value of 310.37K. The prediction of Won's model is much closer. This deviation can be attributed to the assumption of the solid phase behaving as an ideal solution.
The model also was checked for real reservoir fluid. For this, the composition of oil given in Table 6.5 was used as the feed composition. As seen earlier, the composition up to C_{30} is not sufficient to describe the behavior of wax; therefore, the C_{30+} fraction needs to be split into higher carbon number fractions. As the number of components increase, however, the flash calculations become very unstable. Therefore, to get the actual description and to reduce the number of components; the components are lumped together using Pedersen’s scheme. The composition after lumping is shown in Table 6.6. The results obtained from the model are shown in Figure 6.9. These results were compared with the experimental data and were compared with the predictions from Won’s model. It can be seen that the predictions from Pedersen’s model are lower than those from Won’s model and closer to the experimental values. This is due to the splitting of carbon fraction into wax forming and non-wax forming components, but the WAT predicted from Pedersen’s model is 311.2K and that from Won’s model is 310.68K, while the experimental value is 304.68K. Again, the WAT prediction is closer with Won’s model. This can be attributed to the assumption of the solid behaving as an ideal solution, as it is not what is expected in reality.
6.3 Predictions from Three Phase Flash Calculations

As discussed earlier, at higher pressures the vapor phase will come into the picture. For this condition, the three phase flash calculations need to be performed. Sections 4.4 and 4.5 explain the three phase modeling. The composition of the oil used is given in Table 6.8.

The experimental data for three phase solid-liquid-vapor equilibrium is scarce; therefore, predictions from the developed program are compared with predictions given by Won (1986) in Figure 6.10. From this figure, it can be seen that predictions from the developed program are in close agreement with predictions from Won’s model. This is because the program is based on Won’s model. The deviation can be due to the use of different EOS for describing vapor-liquid equilibrium. The PR EOS was used in this study while in Won’s paper, the SRK EOS was used.
Table 6.8 Composition of oil used for three phase calculations (Won, 1986)

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole %</th>
<th>Component</th>
<th>Mole %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>9.16</td>
<td>C21</td>
<td>0.037</td>
</tr>
<tr>
<td>C1</td>
<td>68.8</td>
<td>C22</td>
<td>0.031</td>
</tr>
<tr>
<td>C2</td>
<td>8.43</td>
<td>C23</td>
<td>0.026</td>
</tr>
<tr>
<td>C3</td>
<td>5.11</td>
<td>C24</td>
<td>0.022</td>
</tr>
<tr>
<td>C4</td>
<td>5.11</td>
<td>C25</td>
<td>0.018</td>
</tr>
<tr>
<td>C5</td>
<td>1.05</td>
<td>C26</td>
<td>0.015</td>
</tr>
<tr>
<td>C6</td>
<td>0.63</td>
<td>C27</td>
<td>0.012</td>
</tr>
<tr>
<td>C7</td>
<td>0.83</td>
<td>C28</td>
<td>0.01</td>
</tr>
<tr>
<td>C8</td>
<td>0.95</td>
<td>C29</td>
<td>0.0086</td>
</tr>
<tr>
<td>C9</td>
<td>0.52</td>
<td>C30</td>
<td>0.0071</td>
</tr>
<tr>
<td>C10</td>
<td>0.26</td>
<td>C31</td>
<td>0.0059</td>
</tr>
<tr>
<td>C11</td>
<td>0.2</td>
<td>C32</td>
<td>0.0049</td>
</tr>
<tr>
<td>C12</td>
<td>0.17</td>
<td>C33</td>
<td>0.0041</td>
</tr>
<tr>
<td>C13</td>
<td>0.16</td>
<td>C34</td>
<td>0.0034</td>
</tr>
<tr>
<td>C14</td>
<td>0.15</td>
<td>C35</td>
<td>0.0028</td>
</tr>
<tr>
<td>C15</td>
<td>0.11</td>
<td>C36</td>
<td>0.0024</td>
</tr>
<tr>
<td>C16</td>
<td>0.086</td>
<td>C37</td>
<td>0.002</td>
</tr>
<tr>
<td>C17</td>
<td>0.078</td>
<td>C38</td>
<td>0.0016</td>
</tr>
<tr>
<td>C18</td>
<td>0.068</td>
<td>C39</td>
<td>0.0014</td>
</tr>
<tr>
<td>C19</td>
<td>0.054</td>
<td>C40</td>
<td>0.0011</td>
</tr>
<tr>
<td>C20</td>
<td>0.045</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.10 Three phase equilibrium calculations
6.4 Summary of comparisons

- Won’s model overestimates the amount of wax precipitated at a given temperature, but the WAT predicted by Won’s model are in agreement with the experimental data.

- The reason for overestimation of wax precipitated is the model’s inability to distinguish between wax forming and non-wax forming components.

- Predictions from Pedersen’s model for the amount of wax formed are lower than those from Won’s model and closer to the experimental values. This is due to the model being able to distinguish between n-paraffinic (wax forming components) and other components in carbon fraction (non-wax forming components).

- The WAT predicted by Pedersen’s model are much higher than those by Won’s model. This can be attributed to the assumption in Pedersen’s model that the solid phase behaves as an ideal solution, as it is contradictory to the experimental observation.
Chapter 7
Modification of Won’s Model

There is growing evidence which suggest that only compounds with long n-alkyl chains form a wax phase. These components with long n-alkyl changes are also known as n-paraffins (Coutinho et al., 2001). The other components present in oil, such as branched paraffins and naphthenes, generally do not enter into the wax phase. As explained in section 4.3, it is very difficult to distinguish between n-paraffins and other components experimentally, as it requires a huge amount of work on the experimental part and is not generally done. Pedersen (1995), as explained earlier, devised an easy numerical model to distinguish between wax forming and non-wax forming components. In the proposed modification of Won’s model, this concept of splitting a carbon fraction into the wax forming and non-wax forming components is used.

Also, most mixtures behave non-ideally in the solution (Prausnitz, 1969). Therefore, the assumption of the solid phase behaving ideally does not really depict the actual scenario. For that reason, the assumption of the solid phase behaving non-ideally, which was made in Won’s model, is retained in this modification.

The melting properties given in Won’s model were actually for n-paraffins, but were used for the whole fraction of a pseudo-component. In this modification, there will be a distinction between the wax forming and non-wax forming components. The melting properties will only be assigned to wax forming components. Non-wax forming components will not be present in the solid phase and will contribute only in the liquid phase.

The presence of C\textsubscript{1}- C\textsubscript{7} components in the wax phase is rare. If they are present, it is often argued that, during experiments, these components get trapped in the wax phase and are not actually present in the wax phase as solids. In this modification, therefore, it is assumed that only C\textsubscript{7+} components can form wax.

7.1 Assumptions of Modified Model

- The solid phase is a single, homogeneous solution, which is in equilibrium with the liquid solution.
• The solid phase is assumed to be behaving non-ideally.
• Only C$_7$+ components can form wax.
• Only part of a pseudo-component can potentially enter into the wax phase.
• The heat capacity change of fusion is assumed to be negligible.
• The equilibrium ratio, $K_{i \text{SL}}$, the ratio between mole fraction of component i in solid phase and liquid phase, is assumed to be 0 for non-wax forming parts of all pseudo-components.

7.2 Modified Won’s model

According to the modified Won’s model, the mole fraction of the potentially wax forming component, z_i^S, of a pseudo-component i, having a total mole fraction z_i^old is given by, similar to Pedersen’s model (1995),

$$z_i^S = z_i^\text{old} \left[1 - (A + B \cdot M_i) \left(\frac{\rho_i - \rho_i^p}{\rho_i^p} \right)^C \right]$$ \hspace{1cm} (7.1)

where M_i is the molecular weight of pseudo-component i, ρ_i is the density of the pseudo component at standard conditions and ρ_i^p is the density of n-paraffin with molecular weight M_i at atmospheric pressure and 15°C. ρ_i^p can be obtained from

$$\rho_i^p = 0.3915 + 0.0675 \cdot \ln M_i$$ \hspace{1cm} (7.2)

The values of A, B, and C are constants which are determined from the predictions tuning with the experimental data. The non-wax forming part ($z_i^{\text{no-S}}$) can be obtained from

$$z_i^{\text{no-S}} = z_i^\text{old} - z_i^S$$ \hspace{1cm} (7.3)

From the above equations, all C$_7$+ components are split into two parts: wax forming part (z_i^S) and non-wax forming parts ($z_i^{\text{no-S}}$). These two parts are treated as two different components. Therefore, the number of components are doubled C$_7$+ onwards. The non-wax forming part does not come into picture when the solid phase is being considered,
but the wax-forming part is in all calculations corresponding to the liquid phase, as it is a component that may potentially enter into wax phase.

Thermodynamic criterion is the same in Won’s model, which is at equilibrium the fugacity of a component i in solid phase (wax phase) should be equal to the fugacity of the same component in the liquid phase (oil phase). Therefore,

\[f_i^L = f_i^S \] \hspace{1cm} (7.4)

Where \(f_i^L \) = fugacity of a component i in the liquid phase mixture.

\(f_i^S \) = fugacity of a component i in the solid phase mixture.

The liquid phase fugacity of component i in the mixture can be expressed as

\[f_i^L = \gamma_i^L x_i f_{i,\text{al}}^L \] \hspace{1cm} (7.5)

where \(\gamma_i^L \) is the activity coefficient of component i in liquid phase, \(x_i \) is the mole fraction of component i in liquid phase mixture, and \(f_{i,\text{al}}^L \) is the standard state fugacity of component i in liquid phase. It can also be described as the liquid phase fugacity of component i in its pure form.

The solid phase fugacity of component i in the mixture can be expressed as

\[f_i^S = \gamma_i^S s_i f_{i,\text{os}}^S \] \hspace{1cm} (7.6)

where \(\gamma_i^S \) is the activity coefficient of component i in solid phase, \(s_i \) is the mole fraction of component i in solid phase, and \(f_{i,\text{os}}^S \) is the solid phase fugacity of component i in its pure form.

From Equations (7.4), (7.5) and (7.6)

\[\gamma_i^L x_i f_{i,\text{al}}^L = \gamma_i^S s_i f_{i,\text{os}}^S \] \hspace{1cm} (7.7)

As \(K_{i,\text{SL}}^S = s_i / x_i \), rearranging Equation (7.7),

\[K_{i,\text{SL}}^S = \frac{s_i}{x_i} = \frac{\gamma_i^L f_{i,\text{al}}^L}{\gamma_i^S f_{i,\text{os}}^S} \] \hspace{1cm} (7.8)

Currently, there is no equation of state that can describe the volumetric behavior of a solid. As explained in Appendix A, however, by relating the chemical potential of the solid phase to that of the liquid phase, the ratio of \(f_{i,\text{al}}^L \) to \(f_{i,\text{os}}^S \) can be expressed as:
\[
\frac{f_{i,ol}^{\text{col}}}{f_{i,os}^{\text{col}}} = \exp \left[\frac{\Delta H_f^i}{RT} \left(1 - \frac{T}{T_f^i} \right) + \frac{\Delta C_p}{R} \left(1 - \frac{T}{T_f^i} + \ln \frac{T}{T_f^i} \right) + \frac{\rho}{RT} \int_0^\rho \frac{\Delta V}{dP} dP \right],
\]

(7.9)

where \(T_f^i, \Delta H_f^i, \Delta C_p \) and \(\Delta V \) are fusion temperature, heat of fusion, heat capacity change during fusion and volume change of fusion, respectively. \(P \) & \(T \) are the pressure and temperature, respectively at which flashing is being carried out. Therefore, from Equations (7.8) and (7.9),

\[
K_i^{\text{SL}} = \frac{x_i}{y_{i,S}} = \left(\frac{y_{i,L}}{y_{i,S}} \right) \exp \left[\frac{\Delta H_f^i}{RT} \left(1 - \frac{T}{T_f^i} \right) + \frac{\Delta C_p}{R} \left(1 - \frac{T}{T_f^i} + \ln \frac{T}{T_f^i} \right) + \frac{\rho}{RT} \int_0^\rho \frac{\Delta V}{dP} dP \right],
\]

(7.10)

Co-relations given by Won were used to calculate the heat of fusion (\(\Delta H_f^i \)) and temperature of fusion (\(T_f^i \)) of the wax forming components as

\[
\Delta H_f^i = 0.1426 \cdot \MW_i \cdot T_f^i
\]

(7.11)

where \(\MW_i \) is the molecular weight of the component, and \(T_f^i \) can be obtained from

\[
T_f^i = 374.5 + 0.02617 \cdot \MW_i - 20172 / \MW_i
\]

(7.12)

As explained in section 7.1, the second term is assumed to be zero. Ronningsen et al. (1997) suggested that volume change during solidification should be taken as -10% of the molar volume of the pseudo-component i in a liquid phase. \(P_{\text{ref}} \) is taken as 14.7 psia, as the melting properties are generally available at atmospheric pressure. The molar volume of a component in liquid phase can be obtained from Won (1986):

\[
v_{i,L} = \MW_i / d_{i,L}^{25}
\]

(7.13)

\[
d_{i,L}^{25} = 0.8155 + 0.6272 \cdot 10^{-4} \cdot \MW_i - 13.06 / \MW_i
\]

(7.14)

and therefore, the molar volume of component i solid is obtained by \(v_{i,S} = 0.9 \cdot v_{i,L} \).

The solid phase is assumed to be a non-ideal mixture. Hence, the ratio of activity coefficients cannot be equated to 1. Similar to Won’s model (1986), the use of regular solution theory to estimate the ratio of activity coefficients (for both liquid and solid phases) yields:

\[
\ln \gamma_i = \frac{v_i (\delta - \delta_i) \Delta s}{RT}
\]

(7.15)
where \(v_i \) is the molar volume, \(\delta_i \) is the solubility parameter, and \(\bar{\delta} \) is the average solubility parameter of the mixture. The average solubility parameter can be estimated as:

\[
\bar{\delta} = \sum \varphi_i \delta_i \tag{7.16}
\]

where \(\varphi_i \) is the volume fraction of component \(i \), and it can be obtained for both liquid and solid phases from the following relationships:

\[
\varphi_i^L = \frac{x_i v_i}{\sum x_i v_i} \quad \text{and} \quad \varphi_i^S = \frac{s_i v_i}{\sum s_i v_i} \tag{7.17}
\]

The molar volumes for solid and liquid phases are obtained from Equations (7.13) and (7.14). The solubility parameters for the components in the liquid and solid phases are obtained by correlations given by Pedersen et al. (1991):

\[
\delta_i^L = 7.41 + a_1 (\ln C_N - \ln 7) \tag{7.18}
\]

\[
\delta_i^S = 8.50 + a_2 (\ln C_N - \ln 7) \tag{7.19}
\]

where, \(C_N \) is the carbon number of the component, and \(a_1 \) and \(a_2 \) are equal to 0.5914 \((\text{cal/cm}^3)^{0.5}\) and 5.763 \((\text{cal/cm}^3)^{0.5}\), respectively.

Thus from Equations (7.13-7.14) and (7.16-7.19), all of the parameters required in Equation (7.15) can be obtained, and the activity coefficients for both liquid and solid phases can be calculated. Applying Equation (7.15) to both liquid and solid phases, the ratio of activity coefficients can be expressed as

\[
\frac{\gamma_i^L}{\gamma_i^S} = \exp \left[\frac{v_i}{RT} \left((\bar{\delta} - \delta_i)^2_L - (\bar{\delta} - \delta_i)^2_S \right) \right] \tag{7.20}
\]

From Equation (7.10), (7.20) and neglecting the change in heat capacity after solidification, \(K_i^{SL} \) can be expressed as

\[
K_i^{SL} = \frac{s_i}{x_i} = \exp \left[\frac{\Delta H^f}{RT} \left(1 - \frac{T}{T^f} \right) + \frac{v_i}{RT} \left((\bar{\delta} - \delta_i)^2_L - (\bar{\delta} - \delta_i)^2_S \right) + \frac{\Delta v_{\text{fusion}} \cdot (P - P_{\text{ref}})}{RT} \right] \tag{7.21}
\]

After obtaining \(K_i^{SL} \) values, the Rachford-Rice equation can be used to find the amount of wax precipitated at any given condition. The material balance equations remain the same as explained in section 4.1. The detailed procedure is explained in the next section.
7.3 Procedure for Using Modified Won’s Model

1. The feed composition \((z_i) \), pressure \((P) \) and temperature \((T) \) are known initially. For \(C_{7+} \) components, \(z_{i,old} = z_i \).

2. Estimate the density of n-paraffin \(\rho_i^n \) using Equation (4.29) for each \(C_{7+} \) component.

3. Obtain the wax forming fraction of each \(C_{7+} \) component \((z_{j,wax}^i) \) using (7.2)

4. Calculate the non-wax forming fraction of each \(C_{7+} \) component \((z_{j,non-wax-wax}^i) \) using (7.3) and the values obtained in step 3. From here on, the wax forming fraction and non-wax forming fractions are treated as two different components. These components now form the new feed to the flash vessel. The \(C_{7+} \) components get doubled in this new feed due to the division into these fractions.

5. Determine the initial guess values of \(K_{i,SL} \) using Equation (5.6) for the wax forming fractions. For the non-wax forming components and components \(C_1-C_7 \), \(K_{i,SL} \) are taken to be zero.

6. Solve the Rachford-Rice equation by using the procedure explained in section 5.1 to find out \(S/F, s_i \) and \(x_i \), which are the compositions of solid and liquid streams. Due to the assumption made in step 5, the liquid stream will contain \(C_1-C_7 \), the non-wax forming part of the pseudo-component and a fraction of the potentially wax-forming part of pseudo-component. The solid stream will only contain the wax-forming part of pseudo-components.

7. Calculate \(\delta_{j,wax}^i \) and \(\delta_{j,non-wax-wax}^i \) using Equations (7.18) and (7.19) for all of the components.

8. Estimate the molar volume of each component in the solid \((v_{j,wax}^i) \) and liquid phases \((v_{j,non-wax-wax}^i) \) from Equations (7.13)-(7.14).

9. Determine the volume fractions of each component in the solid \((\varphi_{j,wax}^i) \) and liquid phase \((\varphi_{j,non-wax-wax}^i) \) using Equation (7.17).
10. Calculate $\bar{\delta}$, the average solubility parameter of the mixture, for both liquid and solid phases by appropriately substituting the volume fraction and solubility parameters of each phase in Equation (7.16).

11. Find out T_f^i and ΔH_f^i, the fusion temperatures and heat of fusion, from Equations (4.14) and (4.15), for each component.

12. Using the terms obtained in the above steps, find out K_i^{SL} for each component using Equation (7.21). Again, K_i^{SL} for the non-wax forming fraction of component and C$_1$-C$_7$ are taken as 0.

13. Solve the Rachford-Rice equation by using the procedure explained in section 5.1 and using these newly obtained K_i^{SL} values to determine the solid mole fraction (S/F), the compositions of wax (s_i) and liquid phases (x_i).

14. Repeat steps 3-13, till constant values of the solid mole fraction (S/F) are obtained.

A program based on the above described algorithm was developed in MATLAB. The results obtained are presented in the next chapter.

7.4 Results and Discussion

Modified Won's model distinguishes between the wax forming and non-wax forming components of a hydrocarbon pseudo-component. The solid phase is assumed to be a non-ideal solution. The Regular Solution Theory is used to describe the non-ideality of both phases.

A program was developed in MATLAB using the procedure explained in section 7.3. The model was tested against the data published by Dauphin et al., (1999). The composition given in Table 6.1 was used as the feed composition for flash calculations. The program was run for various temperatures to find out the amount of wax precipitated at those conditions. The results from the program are shown and compared with the experimental data in Figure 7.1.
From Figure 7.1, it can be seen that the predictions from the modified Won's model are within reasonable accuracy. The general trend is also captured properly. The WAT predicted from the modified model is 306.2K whereas that which was experimentally determined is 308.75K.

Figure 7.2 shows the comparison of predictions from the modified model versus predictions from the other models.
From Figure 7.2, it can be seen that the predictions from the modified Won's model are much closer to the experimental data than those from other models. But the WAT predicted from the original Won's model is much closer to the experimental value than the modified Won's model or Pedersen's model. It should be noted that the modified Won's model has tunable parameters A, B and C, which can be tuned to match the experimental data. Also, it should be understood that Pedersen's model has these tunable parameters, but Pedersen's model is very calculation intensive and due to the complex nature of flash calculations, convergence is not always achieved. Thus, tuning is much more difficult in the case of Pedersen's model. In current study, emphasis was given to match the amount of wax precipitated at various temperatures. The values of A, B and C were obtained to be 0.15, 0, and 0, respectively. Deviation in the WAT prediction is within the acceptable range as other models in literature have reported deviations of up to 15°C. Predictions are better for the modified model compared to Won's model because the modified model distinguishes between n-paraffinic components and other components of hydrocarbon fraction. The melting properties of n-paraffins are assigned only to the wax forming part of carbon fraction. Thus, predictions from the modified
model are lower than the original model and are closer to the experimental value. Pedersen's model assumes the solid phase to be an ideal phase. It is proven that most mixtures behave non-ideally (Prausnitz, 1969); therefore the description of the solid phase as a non-ideal solution in the modified model might be the reason why the modified model's predictions are better. Also, in Won's model, the change in volume during solidification is neglected and such behavior is not observed experimentally. The modified model accounts for the change in the volume when a component in the liquid state is converted into the solid state. All these factors lead to better predictions from the modified Won's model.

The composition given in Table 6.2 was used as the feed composition for flash calculations. At various temperatures, the predictions for the amount of wax precipitated are obtained from the program. The comparison of predictions from the program and the experimental data is shown in Figure 7.3.

![Wax precipitation as function of temperature](Image)

Figure 7.3 % wax precipitated as a function of temperature for system B

From Figure 7.3, it can be observed that predictions from the modified Won's model are quite close to experimental values. The WAT predicted from the modified Won's model is 307.4K, while that determined from experiments is 309.65K. The error is within
acceptable limits when compared with deviations in WAT predictions, as reported in literature.

Figure 7.4 shows the comparison predictions from Won’s model with predictions from other models.

It can be seen once again that the modified Won’s model gives better predictions for the amount of wax precipitated at a given temperature than from other models. The reason is the distinction between the wax forming and non-wax forming components, accounting for volume change during the solidification process and the assumption of the solid phase as a non-ideal solution. Again, the WAT predictions are better with the original Won’s model. The modified Won’s model neglects the difference in heat capacities between solid and liquid states of a component while relating the fugacity of the component in solid phase to fugacity of the component in sub-cooled liquid state at same conditions. This may be the reason why there is a deviation in the WAT from the modified Won’s model.

The composition of system C, as given in **Table 6.3**, was used as a feed to the flash vessel. The amounts of wax precipitated at various temperatures were obtained...
using the program for the modified Won’s model. The predictions were compared with the experimental data in Figure 7.5.

It can be seen from Figure 7.5, that the predictions from the modified model are in agreement with the experimental data. In the region of 280-295K, the model overpredicts the amount of wax precipitated. It should be noted that the model does not describe what type of crystal wax forms. Wax crystals exhibit many kinds of solid habits such as orthorhombic, triclinic etc. The thermophysical properties, such as heat of fusion and fusion temperature, are dependent on the solid habit of the crystal. The properties used in the modified model are reported just for n-paraffins; it is not mentioned which solid habits exhibit those properties. Therefore, the properties used in the modified Won’s model may not depict actual properties of wax crystals. That could be the reason why the model does not describe the behavior exactly.

Figure 7.6 shows the comparison of predictions from the modified model with other models. It can be seen that, again, overall predictions are better with the modified model. The reason is the same as seen in earlier cases. The WAT prediction of 308.72K is within the acceptable range of the experimental value of 310.37K. But, again, the WAT prediction from the original Won’s model is much better.
The model was tested against a real reservoir fluid. The composition of the oil is given in Table 6.5. As explained earlier, to get the actual behavior of the oil, the plus fraction must be split into higher carbon number fractions by a plus factor characterization scheme. Due to the large number of components involved and the complexity of flash calculations, however, the convergence is not always achieved. Hence, it is suggested that the components should be lumped. The lumped composition is given in Table 6.6. This composition becomes the feed for flash calculations.

The predictions obtained from the modified model are compared with predictions from other models in Figure 7.7. The predictions from Pedersen’s model and the modified Won’s model are very close and lower than predictions form Won’s model. This is expected because, in the modified model, the number of components which can form wax are lower than those in the original Won’s model. This is due to the distinction made between n-paraffins and other models in the modified model as well as Pedersen’s model. The WAT prediction of 308.32K from the modified model is lower than predictions from the Pedersen’s model and the original Won’s model as seen in all of the previous cases. In this case, however, the original Won’s model severely overpredicts the amount of wax precipitated, and hence, the WAT is also higher for the original Won’s
model. Thus, the WAT prediction from the modified Won’s model is closer to the experimental value.

![Graph showing % wax precipitated for Oil 1](image)

Figure 7.7 % wax precipitated as function of temperature for Oil 1
8.1 Conclusions

Based on the results obtained in the study, the following conclusions were drawn:

- The comparison of Won’s model and Pedersen’s model showed that Won’s model overestimates the amount of wax precipitated, but predicts the WAT in better way than Pedersen’s model. Predictions for the amount of wax precipitated by Pedersen’s model are superior to those from Won’s model.
- The reason for overestimation of the amount of wax precipitated using Won’s model was due to the model not being able to distinguish between wax forming and non-wax forming components in a carbon fraction.
- Limitations of Pedersen’s predictions were due to the description of the wax phase as an ideal solution.
- Won’s model was then modified to distinguish between the wax forming and non-wax forming components. Also, a provision was made to account for change in the volume when a component in the liquid state transforms into a solid state.
- A comparison of the modified Won’s model and the other models indicated that overall predictions from the modified model are better. WAT predictions, though, are superior from the original Won’s model.
- The reason for better predictions from the modified Won’s model is more accurate description of the phases due to consideration of non-ideality, distinction between the wax forming and non-wax forming components, and accounting for the change in volume during the solidification process.
- Another advantage of the modified model is that it is less calculation intensive, hence easy to tune to experimental results when compared to Pedersen’s model.
- The inability of the modified model to account for change in heat capacity during the solidification process and to accurately describe the thermo-physical properties corresponding to solid habits of the wax crystals was the main reason for deviation between the experimental and predicted data.
8.2 Recommendations for Future Work

- More research should be done to study the behavior of wax crystals. Accurate description of wax crystals and their thermo-physical (heat of fusion, temperature of fusion) properties would lead to better predictions from thermodynamic models.

- The model should be modified to account for change in heat capacity during the solidification process while describing the fugacity of solid with the fugacity of liquid in the sub-cooled state.

- A more advanced flash calculation procedure, such as simulated annealing or genetic algorithm, should be used for flash calculations, as the flash calculations often lead to convergence problems and are highly dependent on initial guess value.

- A more powerful optimization routine should be used for tuning the results from the model to the experimental data.
Nomenclature

- a_1,a_2: Constants in Equations (4.21) and (4.22)
- A: Constant
- A_m: PR EOS parameter for mixture
- $A_{i,\text{pure}}$: PR EOS parameter for single component i
- b: PR EOS parameter of a component
- b_m: PR EOS parameter of a mixture
- B: Constant
- B_m: PR EOS parameter for mixture
- $B_{i,\text{pure}}$: PR EOS parameter for single component i
- C: Constant
- d_{25}^L: Density of a component in liquid phase at $25^\circ C$
- f_i^L: Fugacity of component i in liquid phase mixture
- f_i^S: Fugacity of component i in solid phase mixture
- f_i^V: Fugacity of component i in vapor phase mixture
- $f_i^{\alpha L}$: Fugacity of pure component i in liquid phase
- $f_i^{\alpha S}$: Fugacity of pure component i in solid phase
- F: Total moles of feed
- $K_{i,\text{SL}}$: Equilibrium ratio between mole fractions of component i in solid and liquid phases
- $K_{i,\text{VL}}$: Equilibrium ratio between mole fractions of component i in vapor and liquid phases
- L: Total moles of liquid stream
- MW_i: Molecular weight of component i
- P_{ci}^S: Critical pressure of wax forming part of component i
- $P_{ci}^{\text{no-S}}$: Critical pressure of non-wax forming part of component i
- R: Universal gas constant
- S_i: Molar composition of solid stream
\(S\) Total moles of solid stream
\(T_i^f\) Temperature of fusion of component \(i\)
\(v_i^L\) Molar volume of component \(i\) in liquid state
\(v_i^S\) Molar volume of component \(i\) in solid state
\(V\) Total moles of vapor stream
\(x_i\) Molar composition of liquid stream
\(y_i\) Molar composition of vapor stream
\(z_i\) Molar composition of feed
\(z_i^S\) Mole fraction of wax forming part of component \(i\) in feed
\(z_i^{no-S}\) Mole fraction of non-wax forming part of component \(i\) in feed
\(z_i^{old}\) Mole fraction of component \(i\) in feed before splitting into wax forming and non-wax forming parts
\(Z_i^L\) Compressibility factor of component \(i\) in liquid phase mixture
\(Z_i^{\text{pure}}\) Compressibility factor of pure component \(i\) in liquid phase
\(Z_i^V\) Compressibility factor of component \(i\) in vapor phase mixture
\(\Delta C_p\) Heat capacity difference between liquid and solid state of a component
\(\bar{\delta}\) Average solubility parameter of a mixture
\(\delta_i^L\) Solubility parameter of component \(i\) in liquid phase
\(\delta_i^S\) Solubility parameter of component \(i\) in solid phase
\(\varepsilon\) criterion for convergence
\(\gamma_i^L\) Activity coefficient of component \(i\) in liquid phase mixture
\(\gamma_i^S\) Activity coefficient of component \(i\) in solid phase mixture
\(\Delta H^f\) Enthalpy of fusion
\(\Delta H^v\) Heat of vaporization
\(\varphi_i\) Volume fraction of component \(i\) in corresponding phase
\(\phi_i^L\) Fugacity coefficient of component \(i\) in liquid phase mixture
\(\phi_i^V\) Fugacity coefficient of component \(i\) in vapor phase mixture
\(\phi_{il} \) Fugacity coefficient of pure component i in liquid phase

\(\phi_{is} \) Fugacity coefficient of pure component i in solid phase

\(\rho_i \) Density of component i at standard conditions

\(\rho_{i}^p \) Density of paraffinic component i at standard conditions

\(\psi_i \) PR EOS parameter of component i

\(\psi \) PR EOS parameter of mixture

\(\omega \) Acentric factor of a component
References:

- Dandekar, A.Y., Petroleum Reservoir Rock and Fluid Properties, Taylor and Francis Group, 410-418, 2006

• Pedersen, K.S. and Michelsen, M., Letters to Editor, AIChE Journal, 43, no. 5, 1997

• Pedersen, K.S. and Christensen, P., Phase Behavior of Petroleum Reservoir Fluids, Taylor & Francis Group, 246-250, 2007

• Prausnitz, J.M., Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall Inc., 183-184, 1969

• Riazi, M., Characterization and Properties of Petroleum Fractions, ASTM, 2005

Appendix A
Solid State Fugacity Calculations

The standard state fugacities at temperature T and pressure P of component i in the liquid and wax phases can be expressed as,

$$\Delta G = RT \ln \left(\frac{f^o_S}{f^o_L} \right)$$ \hspace{1cm} (A-I)

where ΔG is the change in the molar Gibbs free energy is associated with the transition of component i from liquid to solid form at temperature T and pressure P. Change in Gibb’s free energy can be expressed as,

$$\Delta G = \Delta H - T \Delta S$$ \hspace{1cm} (A-II)

Change in enthalpy (ΔH) can be expressed as,

$$\Delta H = -\Delta H^f + \int_{T^f}^{T} (C^L_P - C^S_P) dT$$ \hspace{1cm} (A-III)

And change in entropy (ΔS) can be expressed as,

$$\Delta S = -\frac{\Delta H^f}{T^f} + \int_{T}^{T^f} \frac{(C^L_P - C^S_P)}{T} dT$$ \hspace{1cm} (A-IV)

Using Equations (A-I)-(A-IV), and calculating the fugacity of pure component in liquid phase from EOS, fugacity of pure component in solid phase can be calculated (Pedersen et al, 1991).
Appendix B

Liquid and Vapor Fugacity Calculations (Dandekar, 2006)

It is convenient to do the fugacity calculations in the terms of fugacity coefficient \(\Phi \), which is the ratio of fugacity to the system pressure. Fugacity coefficient as given by PR EOS is

\[
\ln \Phi = Z - 1 - \ln(Z - B) + \frac{A}{2\sqrt{2B}} \cdot \ln \left[\frac{Z + (1 - \sqrt{2})B}{Z + (1 + \sqrt{2})B} \right]
\]

(B-I)

In these equations, \(Z \) is the compressibility factor. The A and B are given by following equations.

\[
A = \frac{\frac{\alpha}{\beta}}{\left(\frac{RT}{P_c}\right)^2} \quad \text{and} \quad B = \frac{\beta P}{RT}
\]

(B-II)

and \(\alpha \) and \(\beta \) are given by following equations

\[
a = \Omega_a \frac{R^2T_c^2}{P_c} \quad \text{and} \quad b = \Omega_b \frac{RT_c}{P_c} \quad \text{where} \quad \Omega_a = 0.45724 \quad \text{and} \quad \Omega_b = 0.07780
\]

(B-III)

\(\alpha \) is given by

\[
\alpha = [1 + m(1 - T_r^{0.5})]^2
\]

(B-IV)

where, \(T_r \) is the reduced temperature and \(m \) is given for PR EOS respectively as follows

\[
m = 0.48 + 1.574\omega - 0.176\omega^2 \quad \text{for SRK}
\]

(B-V)

and

\[
m = 0.379642 + 1.48503\omega - 0.1644\omega^2 + 0.016667\omega^3 \quad \text{for PR}
\]

(B-VI)

\(\omega \) is the acentric factor. It was introduced to account for the deviation from the corresponding states principle.

It should be noted that Equation B-I is for pure components.

Extension of EOS models to mixtures

All EOS models are developed for pure components and are extended to mixtures by employing mixing rules. These mixing rules are simply the means of calculating the mixture parameters equivalent to those of pure components. The mixture parameters are given by,

\[
(a\alpha)_m = \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j (a_i a_j \alpha_i \alpha_j)^{0.5} (1 - k_y)
\]

(B-VII)
and \(b_m = \sum_{i=1}^{n} y_i b_i \) \hspace{1cm} (B-VIII)

where, \((\alpha a)_m\) represents the product of constant \(a\) and \(\alpha\) for a given mixture, \(y_i\) and \(y_j\) are the mole fraction of component \(i\) and \(j\) in the mixture, \(a_i\) and \(a_j\) the constant \(a\) for component \(i\) an \(j\) the mixture, \(\alpha_i\) and \(\alpha_j\) the parameter \(\alpha\) for component \(i\) and \(j\) in the mixture, \(k_{ij}\) or \(k_{ji}\) the binary interaction parameter, \(b_m\) a constant \(b\) for the mixture; and \(b_i\) a constant \(b\) for component \(i\) in the mixture. The binary interaction parameter (BIP) is an empirically determined correction factor that characterizes the binary formed by components \(i\) and \(j\) in the mixture. The fugacity of component in mixture in liquid phase or vapor phase is found out by following equation.

\[
\ln(\phi^V_i) = \frac{b_i}{b_m} (Z_V - 1) - \ln(Z_V - B) - \frac{A}{B(\delta_2 - \delta_1)} \left[\frac{2 \psi_j}{\psi - \frac{b_i}{b_m}} \right] \ln\left[\frac{Z_V + \delta_2 B}{Z_V + \delta_1 B} \right] \hspace{1cm} (B-IX)
\]

\(A\) and \(B\) are found out from Equation (B-II), \(a\alpha\) and \(b_m\) obtained from Equations (B-VII) and (B-VIII) should be used. \(\delta_1 = 1 + \sqrt{2}\) and \(\delta_2 = 1 + \sqrt{2}\) for PR EOS and \(\psi_i\) and \(\psi\) are given by,

\[
\psi_i = \sum_{j=1}^{n} \left[y_j (a_j \alpha_i \alpha_j)^0.5 (1 - k_{ij}) \right] \hspace{1cm} (B-X)
\]

\[
\psi = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[y_i y_j (a_i a_j \alpha_i \alpha_j)^0.5 (1 - k_{ij}) \right] \hspace{1cm} (B-XI)
\]

\(Z_L\), which is found out from cubic equation of state can be substituted in Equation (B-IX) and the liquid phase fugacity coefficient can be found out.