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Abstract

Oscillatory flows have gained considerable research attention in the recent decades 

following an interest in transport enhancement in micro-electronic devices. Heat transfer 

enhancement due to flow modulation has an inherent advantage over conventional 

mechanical heat transfer components in terms of reduction in weight and space. The 

present work is aimed at studying fluid flow in oscillating square cavities as a first step 

towards heat transfer enhancement. A commercial CFD code, Fluent, was used to model 

a test case consisting of Stokes’ second problem, with a source code written in the C 

programming language. The simulated results were in good agreement with the analytical 

results found in the literature. Since the description of an oscillatory boundary condition 

in complex geometries would prove to be a difficult exercise because of the presence of 

spanwise walls, Newton’s second law of motion for accelerating reference frames was 

used. This method proved to be an effective one computationally and the results agreed 

well with the analytical results. The cavity problem was analyzed using Fluent with the 

Non-Newtonian formulation described above. Fluid dynamic characteristics were studied 

with respect to dimensionless parameters and they exhibited an explicit dependence on 

these parameters.
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Chapter: 1

i

Introduction and Literature Review:

(1.1) Introduction:
The subject of fluid mechanics continues to offer new challenges to scientists and 

engineers alike; many new independent research frontiers have gelled over centuries and 

many peaks conquered. Fluid mechanics can be assumed to be omnipresent; the 

atmosphere that surrounds us is a huge mass of fluid. The latest in the line of challenges 

offered is the area of microfluidics, where, the equations governing continuum fluid flow 

are sometimes challenged. Fluid-structure interaction is another area where additional 

governing equations (that of the stresses induced in the solid structure) are required to be 

solved along with the equations for fluid flow (continuity and momentum equations) (see

[1] for example).

Oscillations about a mean point are inherent in every aspect of life (even life trends are 

not devoid of such oscillations; highs and lows about a normal point are a part of life!). 

In science and mathematics, oscillations have always imparted gross unsteadiness; they 

exploit the non-linearity in the governing equations and complicate the underlying 

physics. Steadiness in physical phenomena that are controlled by oscillations often 

appears after the passage of time in the form of periodicity; obviously things are still 

changing but these changes occur in a well-defined periodic manner (I can’t help thinking 

of the analogy life offers; it takes time for highs and lows in life to sink in infuse 

equanimity in a person!)

Stokes was one of the first persons to study the effect of oscillations on fluid flow. In his 

1845 paper (see [1]), he studied the effect of an infinitely long oscillating planar wall 

above an expanse of fluid. He derived analytical solutions for this problem (called 

Stokes’ second problem) through the similarity variable technique. Oscillatory flows 

have gained considerable attention in the recent decades following an interest in fluid 

transport enhancement.
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Steady subsonic flow in cavities was found to give rise to self-sustained flow oscillations 

as was first shown by N.K.Ghaddar et al in 1985 at MIT. Oscillating the incoming flow 

in resonance with these self-sustained oscillations was found to enhance heat transfer 

rates. At the outset it should be pointed out that this phenomenon has a great potential for 

cooling in the micro-electronics industry, since mechanical heat transfer devices like fins 

add weight to the device, so that the word “micro” would be a misnomer. Micro 

electronic chips these days have very high power densities; natural convection cooling 

often does not suffice.

How does a fluid respond to a grooved wall oscillating below it? A part of the answer lies 

in Stokes’ second problem. In his paper, Stokes proved that the momentum of the 

oscillating wall diffused up to a thickness that was dependent on the angular velocity of 

the oscillation and the kinematic viscosity of the fluid. This was called the Stokes Layer 

Thickness. (See [1] for example).

The oscillation of a grooved wall with a stationary fluid is a different problem (and has 

been less explored) because of the presence of spanwise walls oscillating in a direction 

perpendicular to the fluid boundary. Fig. 1.1 illustrates this geometry. The problem 

becomes complicated if the spanwise wall starts moving in the streamwise direction. (X is 

the streamwise direction here).

X

Figure 1.1: The cavity problem

The problem shown in Fig. 1.1 is the subject of the present study. On account of strong 

non-linearities associated with this problem, computational methods were employed. The 

original problem actually required moving grids attached to the grooved wall that would
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have complicated the problem further. Newton’s second law of motion for accelerating 

reference frames was used to make the problem setup simpler. A reference frame was 

attached to the wall and fluid motion was viewed from this frame (the wall seems to be at 

rest and the fluid appears to be oscillating). This is explained in detail in Chapter3.

Fluent, a CFD software package, was employed to solve this problem. The problem setup 

employed the use of the non-Newtonian reference frame and a momentum source term. 

This method was found to give accurate solutions to Stokes second problem which was 

used as a bench mark case for all experimentations on grids, computational parameters et 

cetera. Much more information on this is given in Chapter 3 of this work.

The oscillating cavity problem showed a lot of interesting results that might have a 

significant impact on transport rates. Vortex shedding, their growth, fluid sloshing and 

separation were found to differ drastically depending on the dimensionless parameters 

described in chapter 4. These results are described in Chapter 5 and some ideas for future 

developments are given in Chapter 6.

(1.2) Literature Review:
A lot of work has been completed on general oscillatory flows. A survey of literature on 

oscillating walls and fluid flow was carried out. A brief summary of the literature 

consulted is given here. Papers are arranged in a chronological order (except one). The 

first two papers describe general oscillatory problems and their stability. The paper on 

turbulent flows can also be included in this list but its focus was on transition in such 

oscillatory flows. The fourth paper (composed of two parts) is the first we have on 

specific geometries and oscillatory flows in them. Separation is an important 

phenomenon in oscillatory flows and is indicative of the movement of vortices. The 

seventh paper (composed of two parts) treats channel flows and analyses enhancement of 

transport through resonance. Other papers consulted were for general reference in the 

context of vibrating walls and their effects.

Unsteady Cavity flows : Oscillatory Flat box flowsi V.O’Brien, 1975

This paper was supposedly the first attempt at extending previously studied closed

rectangular cavity flows to oscillatory cavity flows. Three numerical parameters were
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sa.d to govern flow, namely, peak Reynolds number, reduced frequency (or Stokes 

number) and the height-to-length ratio of the cavity. The flow fields were obtamed by 

finite difference solutions and analytic solutions of the Navier-Stokes equations.

(In our cavity problem three length seales that could possibly affect the flows were 

identified and these were (1) the Stokes Layer thickness, (2) the displacement amplitude 

of the vibrating wall and (3) the cavity dimensions (only a square cavity was considere ). 

The Stokes layer thickness and the displacement amplitude were dependent on 

other; only two different Reynolds number formulations were possible. These

considerations are explained in chapter 4.)

This paper also discussed the dependence of flow on the shape of the bos and the 

Reynolds number.

An analytical approach was given for flat box flows, wherein, a box with dimensions H 

and L (height of the box and length respectively) was considered. The unsteady voracity 

equations were considered with one wall oscillating back and forth with a normalized 

driving velocity of cos «bt)where & is the driving frequency of the wall. An analytical 

solution to this equation with viscous no-slip conditions at the walls and zero net flux 

over the section as boundary conditions was given. The solution obtained was different 

than the oscillatory Stokes flow problem given that this particular solution considered an 

induced pressure gradient in contrast ,0 the latter that considered a zero pressure gradient. 

Parallel Flow was predicted for H/L < 1 in the central part of the box.

Experiments were in good agreement with the predicted analytical results; photographing 

of a dyeline during the cycle was done. The details of the experiment itself were 

described in a different paper (see additional references [1]). Experiments showed that 

the results agreed more with the “composite theory” (having both the induced pressure 

gradient as well as tangential shear) than the original Stokes’ oscillatory flow.

A finite difference model to solve this problem was also explained in this paper. An 

important observation made was that the accuracy of the numerical solution depended on
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the mesh size. The mesh size, in fact, was governed by the oscillatory Stokes’ layer 

thickness, a fact that was well observed in our test run for Stokes’ problem.

The results of this work can be summarized as follows:

(1) At higher oscillating frequencies of the wall, this paper claimed, all the interesting 

viscous effects were confined to the boundary layers of the walls, a fact that was 

clearly observed with Fluent solutions for Stokes’ second problem in our test runs. 

The amplitude profiles flattened out in the central portion of the box for higher 

driving frequencies.

(2) Experimental setups were modified to vary frequency, fluid viscosity and box height 

H and thus N and Reynolds number were varied. The Reynolds number went from 1 

to 10000, but flow in the central part remained essentially parallel and independent of 

Re for small H/L ratios.

Linear Stability theory of Oscillatory Stokes layers: Kerczek et al 1974:

This paper, published prior to the previous one, dealt with stability theories of oscillatory 

stokes layers under different conditions. Two quasi static linear theories and integration 

of full time-dependent linear disturbance equations were discussed in detail. The 

conditions for stability in each of these theories were discussed.

This paper provided a basis for the non-dimensional groups we used in the fluid 

dynamics part of our work. One is the Reynolds number based on the Stokes length (this 

paper uses a different expression for Stokes’ length (2v /g>)1/2, we have used White’s[l] 

expression for Stokes length as explained in Chapter 3.

The most interesting portion of the whole paper lies in its discussion of dynamic 

stabilization and destabilization due to superposed modulation. Donnelly (1964), through 

experiments in a concentric cylinder found that modulation at small amplitudes caused 

stability in flow because the critical Taylor number for instability was increased. Grosch 

and Salwen (1968) found stability at small modulation amplitudes in plane Poiseuille 

flow and destabilization at higher amplitudes.
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Earlier attempts at establishing energy stability theory on one example of a finite stokes 

layer were summarized briefly and the results given. One theory (linear-theory stability 

analysis by Collins (1963)) assumed a quasi-static state and an instantaneous “frozen 

profile were used. Limitations on this theory were also briefly discussed. Such stability 

theories and modulation provided much insight into the Heat Transfer aspects of the 

cavity problem. It was envisioned that oscillations of a wall with cavities may have 

tremendous potential for heat transfer enhancement.

Another very important discussion in this work bearing relevance to our problem is that 

of the critical Reynolds number for transition to turbulence in oscillatory flows. An 

experimental work done during the mid-60s suggested that the critical Reynolds number 

for transition to turbulence was 566. Although this could not be directly related to our 

work, it proved useful in establishing the range of Reynolds numbers for laminar flow

solutions to work with.

The limitations of various theories were summarized in the concluding part of this paper.

This paper had results for a general time-dependent stability problem, so it help 

generate stable results for the range of Reynolds numbers considered. Transition to 

turbulence is a very interesting digression that is not a part of this work. This is 

mentioned in Chapter 6.

A new approach to oscillatory rough turbulent boundary layers: Jonsson, 1980 

This is a purely experimental work with velocity measurements in an oscillatory turbulent 

layer over a rough wall using a large water tunnel.

The measurements on the oscillatory boundary layer were done previously by oscillating 

the wall and this paper approached the problem by oscillating the fluid. Much theoretical 

work was discussed in this paper which established the existence of certain velocity and 

phase relations in oscillatory rough turbulent boundary layers. The paper formulated 

expressions for friction factor, shear stress and dissipation factor. Reynolds numbers 

based on different length scales were discussed here which had significant relevance to
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Reynolds number formulations for the cavity problem. The expression for shear stress 

provided an insight into the fluid dynamics aspects of our cavity problem.

On Flow through furrowed channels: Parts 1 and 2 Ian Sobey, 1980 

This work studied flow thorough a furrowed channel, steady and unsteady. Part 1 dealt 

with the prediction of the flow structure with numerical solutions of unsteady Navier -  

Stokes equations. This work was motivated by the development of a highly efficient 

membrane oxygenator which achieved very high mass flow rates with furrowed channels. 

(The present work on cavity flows might fortuitously also lead to such life-saving 

applications even though it is currently being studied to achieve high transport rates 

especially in small devices).

Dimensionless parameters that govern the steady flow were described in one section and 

they are: (1) the dimensionless frequency (similar to the expression described later in this 

chapter), (2) the Strouhal number and (3) The peak Reynolds number (based on mean 

flow). The structure of the channel itself was odd; it had periodically arranged furrows 

and all these furrows were shaped in the form of a sine wave.

A numerical code based on the finite difference version of the Navier Stokes equations 

was written and two cases were analyzed. Second order upwind differencing was used for 

the non-linear terms in the governing equations, and a two time-level Dufort-Frankel 

substitution for the time-dependent terms. The cavity problem was first analyzed with a 

first order upwind differencing scheme and then with a second order scheme. A lot of 

information was given in this paper (on flow through furrowed channels) about the mesh 

spacing and the time step sizing. A very fine mesh near the furrow and a coarse mesh 

elsewhere were used.

Firstly steady flow was analyzed through this channel and these results were compared 

with the modem boundary layer theory of Smith. Flow separation at high Reynolds 

numbers was predicted. Reynolds numbers and geometric parameters of the cavity were 

varied and the effect of these quantities on flow was studied. Of particular interest to our 

work on cavity flows is the prediction of the presence of vortices and their location with 

respect to the furrow. The location of these vortices was studied as a function of the
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dimensionless parameters mentioned above. The predicted results through numerical 

analyses were in excellent accord with the analytical results.

The numerical method was then applied to a case of unsteady flow, where a pulsatile 

flow was studied over the furrowed sections. At least five parameters were said to 

characterize the flow, the pulsatile Reynolds number, the Strouhal number, the hollow 

length, depth D and the time history of the flow. Flow patterns were predicted; the 

presence and location of vortices and their motion were studied as a function of the above 

mentioned parameters.

Part 2 of this work dealt extensively with experiments on flows through such furrowed 

channels. Flow patterns were observed to concur with the numerically predicted results in 

Part 1 of this work.

This paper was of a lot of help to us in visualizing vortices in the cavity problem. These 

vortices are very important given that they help enhance transport.

The occurrence of separation in oscillatory flow: Ian J. Sobey, 1983 

This work is concerned with the prediction of separation in oscillatory flow in furrowed 

sections. Flow patterns were studied with small, medium and large Strouhal numbers. 

This work goes on to illustrate the limitations of the quasi-steady theory for unsteady 

flows. Results from the previous paper for steady and unsteady flows were used for 

predicting separation as a function of physical and geometric parameters.

Separation in steady flow was predicted when the Reynolds number for flow was greater 

than a critical Reynolds number for a fixed geometry. Any further increase in Reynolds 

number resulted in the separation region growing as the vortex formed inside the furrow 

kept expanding into the channel fluid column. A separation envelope (a plot of the 

separated region against the Reynolds number) was presented and this was used for 

characterizing separation in unsteady flows also. The quasi-steady flow assumption is 

also shown to be applicable in some unsteady cases. In summary, this paper provided us 

with a good idea of the physics involved in such oscillatory flows. In the cavity problem
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also, vortices and separation regions were encountered. Chapter 5, section 5.1 is 

dedicated solely to physical explanation of the flow patterns that were observed.

Numerical Investigation of incompressible flow in grooved channels: Parts 1 and 2

Ghaddar, et al, 1986.

This work dealt (comprising 2 parts) with the fluid mechanics and heat transfer in 

periodically grooved channels. The first part of this paper deals with flows in grooved 

channels and their linear stability. For a range of Reynolds numbers (based on mean flow 

unlike our problem where there is no mean flow) less than a critical value, flow was 

steady comprising an outer channel flow, a shear layer at the groove lip and a weak 

recirculating vortex in the groove. (A lot of this information was used in our cavity 

problem though it was under different boundary conditions. For example, a weak vortex 

was found inside the cavity too at certain times; this is explained in Chapter 5). The linear 

stability of this flow was then analyzed and resemblance to standard channel waves was 

found. This work put forward a theory for frequency prediction based on the Orr- 

Sommerfield dispersion relation and verified it by varying the geometric parameters of 

the cavity. (It should be mentioned that geometric parameters variation is another 

interesting digression, in fact, flow patterns can also be affected by geometric parameters 

of the cavity; this is not a part of our work). The instabilities were found to give rise to 

“self-sustained oscillations” driven by an unstable groove vortex sheet. The above 

mentioned phenomenon could be very beneficial in transport enhancement.

The numerical method used is of little direct significance in this work but could prove to 

be useful if we attempt writing a computer code for the cavity problem. The meshing 

information in this problem though proved to be very useful since a similar cavity 

geometry and computational domain were used in our cavity problem.

The detection of self-sustained oscillations due to linear instability forms the next section 

of this work. Transition to such oscillatory flow corresponded to a regular Hopf 

bifurcation.
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Part 2 of this work extended subcrictical results to the case of forced flow where it was 

proved that excitation of the flow at its natural frequency of oscillation resulted in 

significant transport enhancement. Heat Transfer characteristics were determined for 

grooved channels and compared with ungrooved channels and it was shown that there 

was significant enhancement in heat transfer.

The thermal boundary condition used was Neumann boundary type; uniform heat flux at 

the grooved bottom wall and an adiabatic top surface. The steady state heat transfer 

characteristics of an unmodulated groove flow were studied as a baseline case to evaluate 

the effects of oscillation on heat transfer. Nusselt number was defined for both of these 

cases and a heat transfer enhancement parameter, which was a ratio of these two Nusselt 

numbers, was defined.

Overall, this paper provided a lot of insight into flow patterns and magnitudes of heat 

transfer enhancements in oscillatory flows.

A spectral collocation method for confined unsteady flows with oscillating 

boundaries: D. Mateescu, et a l , 1994

This work dealt with the development of a spectral collocation method for the study of 

fluid flow with periodically oscillating boundaries. The important fluid dynamic 

parameters were expanded using Chebyshev polynomials and Fourier functions. An 

important feature was the use of complex exponential time and frequency functions for 

time discretization. These were applied to classical test cases and the results were found 

to be in accord with the analytical results.

An introduction to spectral methods was given. A spectral collocation method is a special 

case of the method of weighted residuals in which the test functions are “translated Dirac 

Delta functions centered at the collocation points”. The earlier spectral methods 

collocation used a combination of spectral spatial discretization and finite difference 

based time discretization, making the computation arduous and possible only on a 

supercomputer. The present method though, discretized both space and time by spectral
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expansions by using complex exponential functions thereby making computation very 

simple and possible on any computer.

This paper was consulted only for qualitative comparison with our results. Since a custom 

CFD code Fluent was used for our problem, this paper was of no direct use. In future if a 

code is attempted to solve for fluid dynamics and heat transfer for the cavity problem, 

this paper could come in handy.

Vortex Structure and Fluid Mixing in Pulzatile Flow through Periodically Grooved 

Channels at Low Reynolds Numbers: NISHIMURA, et al, 1997

This work dealt with both experimental and numerical aspects of pulsatile flows in 

channels with rigid top walls and square and rectangular grooves located at regular 

intervals. This work was primarily concerned with vortex structure and fluid mixing 

through grooved channels as a function of Reynolds number (based on mean flow, see 

[10] for example) and Womersly numbers (a frequency based number). The main 

features of this study were the prediction of primary and secondary vortices in the groove 

proper and in the vicinity of the upper wall respectively. Numerical results are predicted 

with visualization plots with stream functions while the experimental results are 

visualized with streaklines.

A flow rate of the fluid comprising a steady part and an oscillatory fraction was 

considered and flow effects due to this were studied through periodically grooved 

channels. The numerical practice here was particularly interesting; the dimensionless 

vorticity transport equation and the stream function equation (see [10] for details) were 

considered and a central difference approximation method was applied to discretize the 

governing equations. A Thomas algorithm was used to solve the algebraic equations with 

the result that the use of upwinding procedures was done away with.

The next part of this paper is a technical description of the activity inside the cavity and 

outside it. Flow separation is observed at the rear edge of each rib at the start of the 

deceleration phase. This produces a clockwise rotating vortex that starts filling the 

groove. Growth of this vortex in the cavity is complete when flow rate is maximum.
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During the deceleration phase the vortex grows and covers the rib while another counter­

clockwise rotating vortex occurs near the top wall. At zero flow rate these two vortices 

fill up the entire domain. The vortex near the upper wall disappears immediately after this 

and the vortex generated inside the cavity remains there for some more time. This process 

is repeated for succeeding cycles.

Experiments were done to validate numerical results and they were found to concur with 

numerical results.

Peristaltically driven channel flows with applications to micromixing: Selverov, 

2001

This work studied flows driven by transverse, small amplitude traveling sinusoidal wave 

along the boundary of a closed rectangular container. Results were studied more closely 

for high frequency waves. This work carried more significance to microfluidic devices 

where internal mechanical elements cannot be accommodated due to restrictions in size. 

One of the walls of a rectangular channel with both ends closed underwent a sinusoidal 

oscillation in the form of a traveling wave. The results for both Eulerian and Lagrangian 

approaches were compared.

An important parameter, non-dimensional frequency a = (<oh2/v)1/2 where a> is the driving 

frequency, h is the height of the channel and v is the kinematic viscosity of the fluid, was 

discussed.

It was found that all quantities exhibited an explicit dependence on dimensionless 

frequency for high frequencies. A detailed description of the boundary layer structure 

both near the oscillating wall and the fixed wall was given. “Reflux” which is net fluid 

flow in a direction opposite to that of the traveling wave, was studied using the 

Lagrangian approach.

The resulting flow was found to have a boundary layer structure with maximum 

“pumping” effect near the boundary of the moving wall. The velocity field was found to 

be dependent on the dimensionless frequency a at different locations across the channel. 

Near the walls, flow was in the direction of the wave and away from the walls, motion
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was in the opposite direction (because of the closed channel configuration). These effects 

were seen both in the Lagrangian and Eulerian descriptions of flow.

Interesting results were found for low frequencies: The net flow near the walls was in a 

direction opposite to that of the traveling wave while away from the walls, fluid motion 

was in the direction of the wave.

Stability of flow in a channel with vibrating walls: Floryan, al, 2002.

This paper dealt with the effects of wall vibrations in the form of traveling waves on the 

stability of flow in a channel. It was found that such vibrations affected flow instability 

only if they consisted of modes with wavelength and frequency close to those of “neutral 

Tollmien-Schlichting” waves. Vibrations in resonance with these waves though initially 

causing instability that increased linearly with time, had the potential to significantly 

reduce the critical Reynolds number.

The growth of small-amplitude disturbances responsible for the transition from laminar to 

turbulent flow was described by a classical linear operator. The stability parameters were 

determined from the Eigenvalues of this operator. Even if all the Eigenvalues were stable, 

the disturbances might undergo an initial transient growth and this growth might “trigger 

a bypass transition”.

Detailed mathematical equations were given and these were solved for vibrations of small 

amplitudes. The stability of flows with different vibration modes was studied.

This paper also served as a caution for transition to turbulence in our problem if any.

Analytical studies of flow effects due to vibrating walls: Carlsson,

Under consideration for publication in the Journal o f Fluid Mechanics (submitted Dec5, 

2002)

This paper presented an analytical approach to the study of flow induced by vibrating 

solid boundaries. Transverse motions in the form of standing waves vibrated at small 

amplitudes were considered. Steady streaming occurred at the second order in the
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perturbation solution. Two dimensionless parameters were found to affect this steady 

flow, the frequency of oscillation and the channel half-width. If the channel was large 

enough, the flow was determined solely by the frequency of the oscillation. The resulting 

cell structure was of three types. If the wavelength and the channel half-width were 

comparable, irrespective of the frequency, full circulatory flow existed in the channel. 

The other two cell structures depended on the frequency of the oscillation.

The flow field generated by flexible walls vibrating transversely in the form of standing 

waves was studied. The flow obtained was symmetric and periodic with respect to a 

given wavelength of the vibrating surface and there was streaming in cellular flow 

patterns. Standing waves produced circular wave patterns that could be used to mix 

viscous liquids.

The theoretical analysis consisted of perturbation methods to investigate the steady 

streaming produced due to the transverse vibrations of the walls. Streaming motions were 

studied for different values of the dimensionless frequency and the channel half-width.

The time averaged second order velocity was determined to study streaming. This was 

repeated for different values of dimensionless frequency (a) and channel half-widths (H). 

In each case it was found that the form of the resulting cellular structure strongly 

depended on both these factors.

If a and H were small, the flow was dominated by viscous effects. If a was increased, 

inertial effects began to dominate, breaking the fluid domain into two layers, the layer 

near the wall governed by viscous effects and the outer inviscid region.

If H was increased, the significance of the opposite wall decreased and solution began to 

resemble that of a semi-infinite domain.

This paper was of no direct use either but it provided a reasonable insight into the flow 

patterns we were to expect in our cavity problem.
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Spatio-temporal dynamics of a periodically driven cavity flow:

Vogel, et al, 2003

This work studied the flow in a rectangular cavity driven by the sinusoidal motion of the 

floor in its own plane, both experimentally and theoretically. The primary interest of this 

paper was in determining the stability limits of time-periodic, two dimensional base state. 

Three flow regimes were found in the parameter space considered: (1) a 2-D time- 

periodic flow (2) a time-periodic 3-D flow with a cellular structure in the span-wise 

direction and (3) a 3-D irregular flow in space and time. The system possessed space­

time symmetry with a reflection about a vertical mid-plane together and a half-period 

translation in time(R-T symmetry). The numerical results computed by solving the 2D 

Navier Stokes equation agreed with the experimental results. Two classes of flows were 

investigated, one with a rigid top and another with a free surface.

The geometry considered was a rectangular cavity with stationary spanwise end walls, 

the floor oscillating sinusoidally and either a free surface or a rigid wall at the top. The 

spanwise sidewalls played a major role in determining the flow pattern. The streamwise 

sidewalls played a major role in setting up another oscillatory flow at the top. The 

streamwise sidewalls rolled up the Stokes layer near the walls like in a lid driven cavity 

flow but in this case the rolling was unsteady.

The Reynolds number based on the amplitude and frequency were formulated and the 

velocity of the floor described by these two scaled parameters. These two dimensionless 

parameters were varied; velocity fields and vorticity were studied for a rigid top as well 

as for a free surface at the top.

This study showed that flow in periodically driven oscillatory cavity could be described 

as 2D in some bounds. This paper also provided us some idea of the flow patterns to be 

expected in oscillatory problems. Vorticity proved to be a very important fluid dynamic 

phenomenon in the cavity problem. Its occurrence and shedding are very critical in all 

transport properties including heat transfer.
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Introduction to Fluent:

(2. D Introduction:
Since the whole problem was run using the CFD code Fluent on ARSC computers, 

this chapter is devoted to a discussion of the modeling and solution process using 

Fluent and its associated software. Fluent comprises the 3-D solver that initializes 

and runs the fluid flow problem. Geometric modeling and grid generation were 

done using the user-friendly, GUI supported software packages Gambit and Tgrid. 

Through Gambit, the user can also set boundary condition types on edges, faces and 

volumes so that a well-defined model is input to Fluent (the actual numbers though 

have to be set in Fluent). Once the grid is generated, it is exported to Fluent and the 

model initialized and run there. This chapter briefly discusses Gambit (T Grid is not 

described here because Tgrid was not used in our problem). The source code for the 

Fluent solver is written in the C++ computer programming language. As a general 

word of caution, the following is only a short summary of the Fluent features used 

in this work, for complete information Fluent’s website, www.fluent.com. can be 

consulted.

(2.2) General Procedure for Numerical Analyses:
Numerical analyses enjoy some advantages over conventional experimental

analyses. Some of them are:

(1) Low Cost

(2) Speed.

(3) Ability to model complex flows

(4) An excellent starting point for an experimental analysis for which a definite 

mathematical solution is non-existent (for example, unsteady recirculating flows).

http://www.fluent.com
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The following paragraph describes, in general, steps that are required for any 

numerical analyses:

(a) Problem Definition: This includes mathematical description of the 

physical phenomena to be studied, i.e., the differential equations and 

boundary conditions that govern the problem.

(b) Discretization: This includes setting up of discrete points in the region(s) 

of interest and calculating various dependent variables through the discretized 

equations. Discretized equations are generally algebraic expressions evolving 

from differential equations governing the physical phenomena. In commercial 

CFD software like Fluent, the user needs to create geometries to represent the 

calculation domain of interest and mesh it to represent discrete points where the 

user wants dependent variables calculated. Since boundary conditions are also 

included in the set of discretized equations to be solved, the user needs to input 

boundary conditions also. In commercial software like Fluent, there are user- 

friendly options that facilitate this process.

(c) Solution: This is a major process in the numerical procedure. For non­

linear differential equations where exact solutions are very difficult to obtain 

(sometimes impossible), numerical methods are the only retreat. Many 

methods employ iterative procedures to obtain solutions for algebraic 

equations, but it must be mentioned that there are also direct solvers for these 

algebraic equations [3]. Gauss-Siedel, Newton-Raphson, Runge-Kutta are 

examples of iterative procedures. These iterative procedures start with an 

initial guess for the values of the variables and improve these with iterations. 

A solution is said to be converged if the values obtained from two successive 

iterations are equal or almost equal. Since a lot of assumptions go into such 

solution procedures, various parameters are studied so that the user makes an 

“educated guess”. These parameters influence the accuracy of the final 

solution and the computational speed. Some of these terms are described 

briefly later in this chapter.



18

(d) Post Processing: This is the final stage in a computational procedure. 

Commercial software codes like Fluent have user-friendly graphics options which 

make interpretation of results easy. Normally, commercial software codes work 

with dimensionless numbers that makes analyses very efficient and elegant.

(2.3) Gambit:
Gambit is a graphics platform where a physical representation of the computational 

domain can be realized by means of user-friendly utilities, each of which is 

described briefly. Gambit consists of the following components:

(2.3.1) The Graphical User Interface (GUI):
The GUI makes the job of drafting basic geometries and in general, visualization 

easier. The advent of the mouse as an input device has made this job an attractive 

one too. Gambit’s GUI has the following components:

(a) The Graphics Window: This is the region where the model drawn by the 

user is displayed. This occupies a major portion of the Gambit screen and has 

many subcomponents. The graphics window is made up of four quadrants for 

viewing in different origin orientations. These quadrants can be customized and 

resized using preset configurations. The mouse can be used in all these 

applications.

(b) The Main Menu Bar: The main menu bar has “Microsoft Windows-Like” 

menu items that assist in the creation, editing and the general solver setup 

of a CFD model. The main menu has an online help menu too which is 

becoming a must in commercial software today.

(c) The Operation Tool Pad: The Operation Tool Pad consists of a group of 

command buttons that actually create and mesh the model. A figure below 

shows how an operation tool pad looks:
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Figure 2.1: The Operation tool pad in Gambit (Source: www.fluent.com)

The topmost on this group is the main pad has different tools that are for creation, 

meshing, boundary condition specification, et cetera. The next layer has subpads 

that are to be used in combination with the main pad. The selection of one main 

pad item leads to the opening of a particular subpad. For example, the selection of 

the Geometry main pad leads to the opening of subpads that create geometries 

like vertices, edges, faces, volumes and groups. Boolean operations between 

different geometric entities are allowed. For the cavity problem, adding different 

edges formed a group called the “lower wall”. This will be explained in detail in 

chapter 4.

Since the meshing process has a great effect on the solution, careful reading and 

thought have to be applied to it. There are different meshing options available in 

Gambit once the basic geometry is drawn. The user can mesh edges, faces and 

volumes depending on the need. The following are the face meshes available in 

Gambit:

(1) Triangular

(2) Quadrilateral

(3) A combination of quadrilateral and triangular meshes.

(All versions of Fluent above v4 support unstructured meshes).

http://www.fluent.com
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The above mentioned meshes can be mapped, submapped, or meshed with a combination 

of both as the need warrants. Gambit automatically determines the combination of the 

meshes and the meshing type according to the node distribution and the geometry. 

Gambit can be programmed to draft geometries and create meshes. The programming 

utility was not used in our present work.

(2.3.2) Boundary Condition and Continuum Element description in Gambit:
The user can set up the continuum and the boundary condition types in Gambit. The third

button in the operation tool pad, when enabled, displays two options; one is for 

continuum element description and one for boundary condition description. Numerous 

boundary condition types are available with Gambit like wall, fan, velocity inlet, pressure 

inlet, to name a few. The user can have either a solid or a fluid continuum.

(2.3.3) Mesh Saving and Exporting:
Once the boundary and continuum types are set, the model can be saved. This saved 

model along with the grid is exported into Fluent through the “File” menu.

(2 .4 ) Fluent:
Fluent is a general purpose 3-D CFD solver that is being used in all of our 

calculations. The following paragraphs are devoted to a brief description of the 

solution procedure using Fluent.

The problem domain was described in Gambit and meshing was done there. This 

physical domain along with the grid is imported into Fluent. This is done with the 

“File” menu in Fluent.

The “File” menu helps the user to read files, save them and export them to other 

platforms. There is an option under “Save” to save files automatically. This 

option was used to track velocities at frequent intervals of time for both the Stokes 

problem and the cavity problem.
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(2.4.1) Grid;
A fairly detailed explanation is needed for grid recognition and usage in Fluent, 

since the grid is one of the most important elements in a CFD model.

(a) Grid terminology: This explains how Fluent reads a grid. The figure (self- 

explanatory) is from www.fluent.com.

n o d e
c e l l  
c e n t e r

□

f a c e

c e l l

s i m p l e  2 D  g r i d

Figure 2. 2:Grid Terminology in Fluent

(b) Grid Check: This is an important step in Fluent and is recommended to be 

done immediately after the grid is read into Fluent. All versions of Fluent above 

Fluent 4 can handle unstructured meshes and this is why grid check is required in 

most of the cases before solving the problem. Grid check performs the following:

(1) Displays the maximum and minimum domain extents

(2) Displays the maximum and minimum volumes in m3. If the minimum cell 

volume is negative, one or more cells have improper connectivity. Fluent 

warns the user about this.

(3) Displays the maximum and minimum face areas in m2.

http://www.fluent.com
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(4) Checks topological information about the grid; checks the number of faces 

and nodes per cell, face handedness for each zone is verified to be right- 

handed, checks element consistency, checks for boundaries cetera.

(5) Simplex counters are verified and compared with corresponding entries in the 

grid header file.

(c) Acceptable grid topologies:

All versions of Fluent above version 4 have the ability to deal with unstructured 

meshes and odd-shaped elements. The grids acceptable to Fluent fall under two 

categories: 2-D cell types like triangular, quadrilateral and 3-D cell types like 

prism/wedge and pyramid. Examples of grids that are valid for Fluent are O-type 

grids, C-type grids, non-conformal grids etc.

(d) Scaling: The default units in Fluent are SI units. The user can change it to the 

unit system he/she wants.

Parallel: A grid can be spilt for parallel-processing to reduce computational time.

(2.4.2) Define-Menu:
This menu contains all the necessary options for specifying solver controls,

material properties, operating conditions, boundary conditions, custom field 

functions, importing user-defined functions, et cetera.

(a) Model: Using this option, the type of solver, equations to be solved (options 

of viscous flow, inviscid flow, turbulent flow, energy, non-Newtonian flow, 

multi-phase flow to name a few, are available) can be selected.

(b) Solver: This allows the user to select the type of solver the user wants. A 

figure (from www.fluent.com) would serve the purpose of depicting these choices 

better. The “Solver” panel appears as shown below in Figure 2.3.

Mathematical details of the solver options are described well in textbooks (see 

for example [3]) documented well in Fluent’s website. They are described in a 

later section (2.5) only briefly. However it must be mentioned that a lot of 

experimentation was done on these solver properties and significant effects were 

found with the use of various parameters. Some of these are results are described

http://www.fluent.com
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in chapter 3 and chapter 4. For example, use of the first order implicit unsteady 

formulation resulted in asymmetry for Stokes second problem over a cycle. The 

use of the second order formulation, however, helped overcome this difficulty.

S o lv e r

Solver
Form ulation

Seep re g a te d  

C ou p led

_S p a c e

V elo city  Form u lation

^  A b so lu te  

v '  R e la tiv e

■
G rad ien t O ption

C e ll-B a s e d

N o d e -B a s e d

Implicit

Tim e

S te a d y  

^  U n ste a d y

U se  F ro z e n  F lu x  Form ulation?' 

U n ste a d y  Form ulation

I s t -O r d e r  Implicit 

2n d -O rd e r Implicit

P o ro u s  Form u lation

^  S u p erficial V elo city  

v  P h y sica l V elocity

OK C a n ce l i   Help 1

Figure 2. 3 : Solver Options in Fluent

(c) Material Properties: Fluent has a huge materials database to choose from 

and the user can assign physical properties to these materials.

(d) Operating conditions: Through this panel, the user can set parameters like 

operating pressure, gravity effects and density parameters for the model.

(e) Boundary Conditions: If the model is created in Gambit and exported into 

Fluent, zones and their boundary types appear in this panel. The user, 

however, can change these boundary conditions. The user can assign values
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for these boundary types and they form the boundary conditions for the 

model to be solved. If a user-defined boundary condition macro is read into 

Fluent, this option also appears in the list of boundary conditions available. 

Altogether, Fluent offers a very comprehensive as well as a very flexible 

boundary condition panel. Use was made of the user-defined macro option in 

all our cases.

(f) Custom field functions: Apart from the usual variables available for 

graphics display, Fluent can also calculate and display user defined variables. 

Use was made of this also for viewing results in the Newtonian reference 

frame.

(g) User-Defined functions: This allows the user to make Fluent read user- 

written macros. UDFs are usually written in the C programming language.

(h) Solve-Menu:

The “Solve” menu is used for setting solution parameters, initializing a solution, 

iterating, et cetera.

(1) Solution Controls Panel: Through this panel, the user can make use 

of the options available for discretizing the convection terms in the equations 

selected for solving, set under-relaxation factors (for convergence. See for 

example [3]). In the cavity problem, initially use was made of the first order 

upwind scheme for the momentum equations and later the second order upwind 

scheme was used.

(2) The user can also set residual criteria for the solutions. Residuals in 

Fluent are “scaled residuals”. Scaling is explained well in Fluent’s website. These 

residuals can be plotted and printed on a Fluent graphics window as iterations 

proceed.

(3) Initialize: An iterative solver needs a starting point (normally an 

educated guess) and this is done through the “Initialize” menu.

(4) Iterate: This is the last step in the solution process. The solver iterates 

till it meets the convergence criteria set by the user.
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(2.4.3) Displav-Menu: This menu is used for visualization of the results obtained. 

Contours and vectors of variables like velocity, temperature, pressure, density, vorticity 

etc can be obtained through this menu. If custom field functions are defined, these can 

also be displayed. Fluent can also animate results so that a sequence of events is nicely 

visualized.

(2.4.4) Plot -Menu:
Plot menu helps in the plotting of various variables with respect to the physical 

dimensions of the domain. If custom field functions are defined by the user, these can 

also be displayed.

(2.5) Governing Equations and the solution process in Fluent:
The purpose of this section is to describe in general, the governing equations considered

for the treatment of fluid flow and heat transfer problems in Fluent, the discretization 

process to convert a group of non-linear governing partial differential equations and 

associated boundary conditions into tractable algebraic equations that can be solved for 

dependent variables, and the linearization process to linearize the equations for 

solvability.

The four general steps that were described in the previous section are all applicable to the 

Fluent solution process also with certain modifications that are explained below.

Fluent is a finite-volume based solver; fluid properties are based on a control volume, i.e., 

conservation equations (mass, momentum and energy) are expressed for a control 

volume.

(2.5.1) Governing equations:
Fluent supports the following models and selects a set of governing equations based on 

the model the user selects. In general, Fluent considers the mass conservation equation 

(continuity equation) and the momentum equations (up to 3, one for each direction) as 

they are required for all problems involving fluid flow. In addition to these equations, the 

energy equation is considered for a heat transfer problem; temperatures in addition to 

velocities are solved for.
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Apart from traditional fluid flow and heat transfer problems, Fluent is capable of solving 

many other problems of engineering interest, for instance, complex turbulent flows, 

swirling and rotating flows in turbomachinery, chemically reacting flows, multiphase 

flows, flows in porous media, combustion phenomena, to mention a few. All of the 

problems mentioned above involve additional scalar transport equations in addition to the 

continuity and the momentum equations. Since the work presented here requires solution 

of the continuity and momentum equations a brief discussion of the solution process 

involving the continuity and the momentum equations is presented here.

(2.5.1.1) Continuity equation (conservation of mass):
The continuity equation is a simple scalar expression involving mass conservation

for a fixed volume. It can be written as:

dp/dt + div (pv) = Sm (2.1)

where p is the density (the first expression in the right hand side is the time rate of 

change of density and is zero in incompressible flows), v is the velocity vector 

and div is the divergence operator, Sm is the source term ( may be the mass added 

by a dispersed secondary phase as an example).

(2.5.1.2) Momentum equation(s):
The momentum equations for fluid flow are applications of Newton’s second law

of motion (relating the forces on a body and the time rate of change of 

momentum) the difference being that they are written with respect to a Eulerian 

reference frame (the use of substantial derivatives in place of ordinary 

derivatives). Solution of the momentum equations gives the velocity field, 

provided, the continuity equation is satisfied.

The momentum equation(s) can be written as:

pDv/Dt = pg + V. Ty - Vp (2.2) 

where Dv/Dt is the substantial derivative of the velocity vector v given by
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Dv/Dt = dv/dt + (v. V)v 

V is the “del” operator given by d/flx + f>/i3y + d/dz,

Tjj is the stress tensor and p is the pressure.

In their full form , the momentum equations are highly non-linear because of the 

fact that the dependent variables (u,v and w) are expressed as a product of their 

own derivatives ( there can be other non-linearities too, for example an oscillating 

boundary condition can give rise to strong non-linearities)

(2.6) Discretization and Linearization:
The highly non-linear partial differential equations (there are actually 3

momentum equations, one for each direction) are discretized over a control 

volume to produce a system of algebraic equations for the unknown variables in 

each computational cell. These are then linearized so that they can be solved by 

direct or iterative solvers. Discretization is done by integrating the governing 

equations about each control volume; this is called a control-volume method. A 

simple steady state scalar equation concerning the transport of a scalar ® is 

considered here to explain the process of discretization.

j  p O V. dA = <j* D V <D. dA + Js dV (2. 3 )

where V and A are vectors (velocity and surface area vectors respectively), D is 

the diffusion co-efficient for the scalar variable ® and S® is the source term which 

is integrated over a volume. Values of ® are to be calculated at the cell-centers in 

the finite control volume shown below.

A two-dimensional control volume is shown in figure (2.4)
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An example of a finite control 
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cell-centers.

Figure 2. 4: An Example of a finite control volume

where 1,2,3 and 4 represent cell centers where finite values of the scalar O are to 

be stored. Vectors like velocity are calculated at face centers.

The equation for continuity, equation (2.1) when integrated, gives a set of 

algebraic equations that are to be solved for the dependent variable O.

X /  PfVf Of .Af = X /  D (V  <!>)„.Af + S0 (2.4)

where N is the number of faces enclosing the cells, <Df is the value if <I> convected 

through the face f, the term pf Vf .Af represents mass flux through the face f, (V 

<[))„ represents the magnitude of V <D normal to the face f. Equation (2.4) 

represents a system of algebraic equations that can be solved for the scalar 

variable <X>.

(2.7) Calculation of vectors and Upwind schemes:
Vectors, however, are not calculated at cell centers; rather they are calculated

from values of <I> at the faces (interpolated from cell-center values of <1>). This 

interpolation is accomplished using a process called upwinding. Upwinding 

means that the face values of O are approximated from quantities in the cell 

upstream relative to the direction of the normal velocity.
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There are different ways of interpolating (a scientific approximation process) and 

Fluent offers a variety of such upwinding procedures and they are:

(1) First order upwind scheme

(2) Second order upwind scheme

(3) Power-Law scheme

(4) QUICK scheme

(5) The central differencing scheme.

Only the first and the second order schemes are described here briefly; but the 

reader is referred to [2] or Fluent’s website www.fluent.com for a more detailed 

explanation.

A first order scheme assumes that values at cell centers represent cell-average and 

hold throughout the entire cell; the face values are identical to the cell quantities. 

When a first order scheme is selected, the face value Of is set equal to the cell 

center value in the upstream cell.

For better accuracy, a second order scheme is selected. A second order scheme 

interpolates cell values through a Taylor’s series expansion about the cell centroid 

to evaluate face values of the quantities. This method takes into account the 

gradient of the values in the upstream cell unlike the first order upwind and is thus 

more accurate.

Fluent is an iterative solver; it starts with an initial guess for the dependent 

variables and keeps updating their values iteratively until a converged solution is 

obtained. The equations themselves have to be linearized in some way to render 

them viable for a numerical method. The process, as the name indicates, is called 

linearization and is a very critical step in a numerical method. Depending on the 

method used to linearize the system of governing equations, they are classified as 

implicit or explicit.

An explicit method is the easier of the two; the unknown variables are written in a 

form that involves only existing values from neighboring cells.

http://www.fluent.com
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An implicit method is inherently more complex in its formulation; the unknown 

value of a variable is calculated using an equation that involves both known and 

unknown values from neighboring cells, so, such equations have to be solved 

simultaneously to give the values of the variables.

(2.8) Segregated and Coupled solvers:
Fluent offers two types of solvers; segregated and coupled. A segregated solver

solves the continuity, x, y and z momentum and energy equations one by one 

whereas a coupled solver solves all of these equations simultaneously.

(2.9) Temporal (time) Discretization:
Unsteady flow problems have to be discretized in time as well as in space. This is 

done in Fluent in two different ways:

(1) Explicit method: This option is available only when the coupled solver is selected 

in Fluent. This method is based upon the evaluation of variable values at the 

current time level. This method, obviously is very easily formulated because of its 

“explicitness”, and has faster convergence times, but is only conditionally stable 

(depending upon the time-step size, it cannot use large time step sizes).

(2) Implicit method: This option is available in both coupled and segregated 

solvers. An implicit discretization method makes use of past, current and 

future values of variables in time. This is a better approximation method, but 

yields a system of algebraic “implicit” solutions that have to be solved 

simultaneously to yield final values. No doubt, this method takes a longer 

time to converge, but is unconditionally stable. Fluent offers two levels of 

accuracy here; the first-order accurate and the second-order accurate temporal 

discretization methods. The first-order accurate formulation has variable 

values in time based upon the current time and the future time whereas the 

second-order accurate formulation includes all three values in time; the past 

time, the current time and the future time.
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A Bench-mark case: Stokes’s second problem:

(3.1) Introduction:
To validate the use of Fluent for flow problems with wall oscillations, a benchmark case 

with known analytical results was tested. Stokes’ second problem is essentially an 

unsteady, laminar fluid flow problem with oscillating boundaries. An oscillatory 

boundary condition on one of the walls was imposed by utilizing a user-defined macro in 

Fluent. The appropriate computational domain, grid resolution and time step size 

resolution for computational efficiency were experimented with and fixed. Plotting of 

fluid velocities was done and these were compared to analytical results. The results were 

in good agreement with the analytical results.

In order to avoid the use of moving grids and possibly a solution distortion in very 

complex oscillating flow problems, a much “cleaner” method was utilized. Newton’s law 

for non-inertial frames of reference was used in calculating an oscillating source term to 

be added to the x-momentum equation in Fluent. A user-defined macro was used for this 

purpose and the problem was solved in a non-inertial reference frame with the walls 

remaining stationary and the fluid oscillating. This formulation took lesser number of 

iterations to converge as compared to the previous formulation in which the wall was 

oscillating. The results were viewed in the inertial reference frame and compared to the 

analytical case. The accuracy of these results motivated the use of this formulation for the 

cavity problem.

(3.2) Problem description:
An excellent treatment of Stokes’ second problem and its analytical solutions is given in 

White [14]. Stokes’s second problem is essentially a laminar flow problem above an 

infinitely long planar wall which is oscillating steadily (say with U0 sin (cot)). A parallel 

flow assumption is made so that u = u(y, z, t) and v=w=0. Also the no slip condition on
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the wall requires u(0,t)= Uo s in (o t) , no initial motion of the fluid requires u(y,0)=0. The 

unsteady Navier-Stokes equations were solved with these boundary and initial conditions. 

The analytical solution was found to be

u = Uoexp (-}]) sin ((ot-rj) (3.1)

Where

t]=y((o/2v)I/2 (3.2)

These results were plotted in a Microsoft Excel spreadsheet to be compared with Fluent 

results.

(3.3) Modeling the problem with Fluent:
The final model for Stokes’ second problem evolved through a series of experiments on 

grids, solver options, boundary conditions, et cetera. Some of them were found to have a 

great effect on the solution obtained. These effects are described in detail in the following 

paragraphs. Experimentation was done on this simpler problem with known solutions to 

make a more complex oscillatory problem like the cavity problem easy.

(a) Model generation and grid resolution study
The above-described problem was modeled using Fluent (a CFD software which is 

described in detail in the previous chapter). White [14] discusses the characteristics of the 

Stokes layer, a fluid layer with finite thickness from the oscillating wall within which all 

velocity fluctuations are confined, in essence, the problem exhibits a boundary layer 

behavior within the Stokes layer.

The Stokes layer thickness (6) was found to be a function of the angular velocity (co) of 

the wall oscillation and the kinematic viscosity (v) of the fluid and is expressed as:

5 = 6.5*(v/oo)1/2 (3.3)

Outside the Stokes layer, along the cross-streamwise direction (in this case, the y 

direction), velocity gradients are very negligible or zero. Also (3.1) shows that the
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velocities are independent of the streamwise coordinate (in this case x), so not many grid 

points were needed in the streamwise direction. Approximately 10 grid points were used 

in the streamwise direction.

The expression for Stokes layer thickness and its physical meaning provided a basis for 

grid generation. Since almost all velocity fluctuations were confined within the Stokes 

layer, a computational domain of four Stokes layers was thought of as sufficient. 

Additionally, because of the above mentioned reasons, a very fine grid was needed in the 

vicinity of the wall (up to a cross streamwise distance equal to the Stokes layer thickness) 

to capture large velocity gradients, whereas a coarse grid far away from the Stokes layer 

would not affect the solution. An expanding grid from the lower wall was used for this 

purpose and approximately 40 grid points were used from y=0 to y=0.25cm, where 

0.25cm signifies the Stokes layer thickness for our problem (with a kinematic viscosity of 

0.0093cm“/s and an angular velocity of 2n rad/s). A very fine grid approaches a 

continuum calculation but also increases the computation time. For computational 

efficiency, a trade-off was made between accuracy and computation time. The number of 

grid points was increased till any more additions ceased to give appreciably better 

accuracy.

For brevity, a rectangular computational domain (1 cm x 0.5 cm) was chosen. This 

domain was constructed from basic CAD elements in Gambit. Connected edges were 

drawn to form a rectangle and the region inside these four edges was defined as a face. A 

fluid continuum element was tagged to this face. To create expanding grids on the face 

efficiently, expanding nodes were created on these edges first (only in the y direction). A 

sub-mapping scheme was selected by Gambit automatically for face meshing. Since 

Gambit can also prescribe boundary condition types, on edges, boundary conditions that 

were set on the edges are shown in the next page (Figure: 3.1). The longitudinal edges 

were defined as walls and the other 2 edges were defined as pressure inlet and exit 

respectively. A fluid continuum element was defined also for the domain.

This model was exported into Fluent using the mesh export tool provided in Gambit.
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A 10 x 100 grid (10 points in the x direction and 100 in the y direction), yielded an 

average error of 0.25 when the residuals were set to le-03 (this is a very high residual 

limit, used only for fixing the grid size). This took about 300 iterations per time step to 

converge. 100 points probably was the higher limit. A lower limit grid arrangement of 

10x60 was then experimented with. This setup converged much faster per time step but 

the average error was high. Finally 10x80 grid was experimented with and gave 

reasonable accuracy (average error was 0.255, comparable to the higher limit grid set­

up). This 10x80 grid was used in all calculations with regard to the Stokes problem.

(b) Fluent Solution process:
The model is read and standard procedures such as grid check and scaling were done. The 

CGS system of units (cm for distance units and cm/s for velocity units) were used for the 

model.

Water was chosen as the fluid with kinematic viscosity 0.0093cm2/s and density 1000 

kg/m3. These small adjustments in the values of viscosity and density were needed to 

make the Stokes layer thickness 0.25 cm. Figure 3.1 shows the final grid for the Stokes 

problem.
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Figure 3.1: Grid for the Stokes problem
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The next step in the solution process was the assignment of values for the boundary 

conditions. The lower wall had to be prescribed an oscillating velocity which was not a 

boundary condition type in Fluent. A simple user-defined macro, written in the C 

programming language was used to define a sinusoidal oscillating velocity

Vw = Va sin(cot) (3.4)

where Va is the velocity amplitude and t is the current flow time in seconds. The value of 

Va was fixed as lcm/s for simplicity in calculations and visualization. The program used 

is given in the appendix (Al). The upper wall was defined as a zero shear layer 

essentially resulting in a free surface at the upper end of the computational domain. The 

angular velocity was adjusted to be 2rr rad/s so that the time period for the prescribed 

oscillation was Is. However, there was a difficulty encountered when pressure inlet and 

pressure outlet boundary conditions were used at the left and right boundaries of the 

domain (see figure 3.1). The problem under consideration should display velocities 

exactly parallel to the wall; there should be no vertical velocities. When the above- 

mentioned boundary conditions were used, vertical velocities were displayed, even when 

there was no pressure gradient across the domain. A velocity contour plot illustrating this 

phenomenon is shown below. Only straight lines were expected, but the velocity contours 

showed elliptical lines indicative of appreciable y- velocities.
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Figure 3. 2: Velocity contours with pressure inlet and outlet boundary conditions

It was inferred that pressure inlet and exit boundary conditions at the boundary nodes 

interfered with what was actually happening and this conflict gave rise to these erroneous 

vertical velocities. Since the cycle was time-periodic, it was thought that periodic 

boundary conditions at these boundary nodes would be a better representation of the 

reality. Thus, periodic boundary conditions were imposed on these edges and they gave 

better results. A contour plot of this is shown below:
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Figure 3. 3: Velocity contours with periodic boundary conditions

(c) Time step size resolution:
In a numerical method, time-step size has the same effect on the solution as grid spacing 

does. The final result at a particular time is achieved through a sequence of time steps, 

values at each time step having an influence on the next. Ideally, the time step size should 

be as small as possible for better accuracy, but this also increases the computation time.

To achieve a compromise between computational speed and accuracy, the time step size 

was experimented with. A lot of test cases were run with different time step sizes. 

Finally, a time-step size of 0.01s was fixed so that 100 increments completed one cycle. 

The problem was run through 10 cycles of oscillation to allow transients (due to the 

initial conditions) to die down gradually.

(d) Solver Controls:
Proper choice of solver properties may have a phenomenal influence on the solution 

process (accuracy, convergence etc). A segregated, unsteady solver was used for our 

problem. There was a problem however with the choice of the unsteady formulation to be 

used. There are 3 choices available to a user in Fluent for unsteady formulations: (1) the
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explicit formulation (with an inherent disadvantage of a limited range of “grid Fourier 

numbers”), (2) the first order implicit formulation and (3) the second order implicit 

formulation. The first order formulation was used initially and it was found to give 

asymmetric results over a cycle in a symmetric problem. The second order formulation 

was used and this difficulty was overcome to an extent. It was inferred here that the 

problem lay with the discretization process in Fluent, the time values each of these 

formulations took into consideration. Since the user-defined macro uses the current time 

as one of its input, the Fluent solver has to pass the current time to macro every time, 

calculate the wall velocity at a particular instant and return it to the solver. It was found 

out that the second order implicit formulation returned a value of velocity that was very 

close to the correct velocity at that particular instant.

(e) Residual Criteria:
Fluent allows the user to set up accuracies based on decimal places in the residual criteria 

menu. Figure 3.4 is a comparison between error values obtained using different residual 

criteria.

Comparison of accuracies. Chart clearly shows decreasing errors as number of decimal 
places in residual criteria. The "spread" is due to insufficient number of simulation cycles.

0 0.5  1 1.5 2 2.5  3 3.5 4 4.5  5

eta

Figure 3. 4: Comparison of accuracies with different residual criteria
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(f) Post Processing:
Velocities were plotted at regular intervals versus the vertical distance from the 

oscillating wall and these were compared to the analytical results from [1], Only some of 

those plots are shown below, but accordance with analytical results was found in all of 

these plots. All the velocities were computed along a vertical line running through the 

center of the domain.

comparison of Fluent and analytical results

Similarity Variable ETA

Figure 3. 5: Comparison between Fluent and analytical results for time = 10.1 s

Figure 3.5 shows a comparison of Fluent and analytical results for time equal to 10.1s. 

An average error of 0.001% (in terms of the wall velocity amplitude) was calculated 

between the values given by Fluent and the analytical results. The similarity variable eta 

used for this graph is just a dimensionless distance, so it can be seen that all velocity 

fluctuations are confined inside a distance of 0.25 cm( the value for the similarity 

variable being 4 for this value of y) which is the Stokes layer thickness for this problem.
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comparison of Fluent and analytical results

Similarity Variable ETA

Figure 3. 6: Comparison between Fluent and analytical results for time = 10.6s

(3.4) Newton’s second law of motion for non-inertial reference frames:
Reference frames that accelerate with respect to any other fixed reference frame are

called non-inertial reference frames. Newton’s second law of motion (in its simplest 

form, F=ma) must be modified for bodies when studied with respect to accelerating 

reference frames. The relative acceleration has to be accounted for in such cases. The 

following analysis is from [15].

Consider two frames of reference in which the acceleration of a particle (say A) of mass 

m is calculated, let one of these frames be stationary and the other reference frame 

accelerating. The diagram is identical to the one found in [15] except that this one is a 

two-dimensional simplification.

XOY denotes the fixed reference frame and xoy is the frame that is accelerating. If we 

observe the particle A of mass m from both of these reference frames, we can write an
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Figure 3. 7: Newton’s second law for non-inertial frames of reference

expression for the absolute acceleration of the particle A (as seen from O) in terms of the 

relative acceleration (as seen from o).

where 3 a is the absolute acceleration of the particle, <J0/O is the acceleration of the

moving reference frame with respect to the fixed reference frame and Ha/o is the

acceleration of the particle with respect to the moving reference frame. Thus Newton’s 

second law of motion for this accelerating reference frame can be written as

Where IF  is the total force acting on the particle. Equation (3.6) is Newton’s second law 

of motion for accelerating reference frames (and such reference frames will be called 

non-inertial reference frames henceforth).

The Navier-Stokes equation describing fluid flow has a form similar to Newton’s second 

law of motion and, fortunately, this fact can be exploited in writing equations for a non- 

inertial reference frame concerning fluid flow. Such a formulation was found to increase 

the speed of the solver, possibly because there are no moving grids involved. To explain

aA = 3o/0 + 3a/o (3.5)

£F = mAaA = mA (a0/o + aA/„) (3.6)
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how Equations (3.5) and (3.6) could be applied to our problem, the following analysis is 

to be considered. Please refer to Figure 3.8 and let XOY be the stationary (absolute) 

reference frame and xoy be the accelerating reference frame as shown in the figure 

above. In the first formulation, fluid velocities were observed from the absolute reference 

frame with the wall actually oscillating. This might prove to be a difficult exercise when 

vertical walls like those in a square cavity, are encountered. Newton’s law for non- 

inertial reference frames can be used to circumvent this problem.

v=vsiii(w t) 
A ccelerating R eferen ce  Fram e

o  x
S ta tio n a ry  R e fe r e n c e  Fram e

Figure 3. 8: Application of Newton’s second law for non-inertial frames

Let the wall itself become the frame of reference from which the velocities and 

accelerations are observed (the wall velocity would become zero to the observer sitting 

on the wall). Let a//0 be the acceleration of the fluid with respect to the accelerating 

reference frame xoy and a//0 be the acceleration of the fluid with respect to the absolute 

reference frame XOY. Let a0/o be the acceleration of the wall with respect to the absolute 

reference frame. Then by Equation (3.6), we get

a//o = %)/o+ a//o (3.7)



43

The acceleration terms in Equation (3.7) are vectors and they are to be applied with a 

sense of direction to them.

For a person sitting on the wall, the top-most fluid layer which is actually at rest appears 

to have a negative acceleration (as described by equation (3.6)). The fluid layers near the 

wall have some motion because of the momentum transport from the moving wall. If the 

acceleration described by Equation(3.8) is input as a source term to the momentum 

equations, one only needs Equation(3.5) to calculate the velocity field in the Newtonian 

reference frame (absolute reference frame).

a f/0 = - a o/o(3*8)

(3.8) allows us to calculate a “force” term.

LF = mfaf = mf (af/o) (3.9)

where mf represents the mass of the fluid and af is the absolute acceleration of the fluid.

A source term having the acceleration term equal to the wall acceleration was added to 

the momentum equations and the wall held fixed. A user-defined macro was written in 

the C language for this purpose and this was added to the x-momentum equation in 

Fluent. This program is listed in appendix A2.

(3.4.1) Source Term addition to Fluent solver:
Fluent allows addition of source terms to its solver, through user-defined macros written 

in the C programming language. Such source terms have to be balanced for units in the 

equations they are added to, for example if a source term is added to one of the
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momentum equations, it should have a force unit per volume (i.e, 

mass*acceleration/volume).

In the present problem, the lower wall oscillation is driving the otherwise stationary flow, 

and it is imparting acceleration to the fluid layers above it. Since the wall velocity is 

defined, fluid acceleration with respect to the wall and the force term that produces this 

apparent acceleration can be calculated.

V0/o = -Vwsin(cot)

ao/O = - VWG) COS (OX)

af/o = - ao/o = Vwco cos (tot)

F = mVwG) cos (cot)

F/v = (m/v) Vwco cos (cot)

F* = pVwco cos (cot) (3.10)

where F is the force per unit volume is the volume, Vw is the wall velocity, co is the 

angular velocity of the oscillation t is the instantaneous time, and p is the density of the 

fluid. Equation (3.10) is the source term to be input into Fluent. The program is included 

in the appendix.

Velocity plots from Fluent utilizing the source term technique, were compared to the 

analytical solutions obtained from [1] and they were in good agreement with each other. 

Some velocity plots are shown here. The results shown here are in the absolute reference 

frame (using equation (3.5)).
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Comparison with source term addition

ETA

Figure 3. 9: Comparison of Fluent and Analytical results with a source term 

addition for time t=10.4 s,

Figures 3.8 and 3.9 are comparisons between Fluent and analytical solutions for time t = 

10.4 s and t =10.9 s respectively. An average error of 0.002cm/s was observed. 

Considering the reduction in the number of iterations (120 as compared to 230 in the 

Newtonian formulation), this error was considered reasonable.
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Comparison with source term addition

ETA

Figure 3. 10: Comparison of Fluent and Analytical results with a source term 

addition for time t = 10.9s

(3.5) Conclusion:
The main aim of this chapter was to use Fluent to benchmark a simple case with known 

analytical solutions so that it could be used for more complex problems. Fluent responded 

well to the challenge and this motivated us to use the same user-defined macros for the 

cavity problem. This problem also gave us an idea about the grid spacing that is needed 

or more correctly, the concentration of these grid points at the correct places, the correct 

time step size resolution, the number of cycles the problem needed to be run for transients 

to vanish, et cetera. The source term addition to the solver made the problem set-up 

simpler; the problem modeled using the non-Newtonian frame of reference required 

fewer iterations to converge (120 iterations per time step as compared to 230 for a
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Newtonian model, for a residual size of le-06). It also avoided the use of moving grids 

and possibly solution distortion.
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Fluid Flow in Oscillating Cavities:

(4.1) Introduction:
Two dimensional channel flows with rectangular cavities have been a subject of several 

previous studies, some of which were discussed in the literature review part of this work. 

The most interesting work pertinent to our present problem considerations is being 

discussed here. Ian Sobey [4] dealt with sinusoidally furrowed channels and predicts 

separation at extremely high Reynolds numbers, vortex generation in pulzatile flow and 

transport enhancement due to the movement of these vortices. N.K.Ghaddar et al, 

References [7], [8] worked extensively on incompressible flow through periodically 

grooved channels and they describe transport enhancement due to resonance. Work on 3- 

D oscillatory cavity flows by M.J.Vogel et al, Reference[13] is yet to be published. The 

common feature of all work discussed so far is a “channel flow” with rigid top walls. 

Almost all of the work mentioned so far depended on mean flow. References [7] and [8], 

for example, discuss a flow rate that is oscillating sinusoidally in resonance with the 

frequency of the self-sustained fluid oscillations inside the cavity. In comparison, to our 

knowledge, little work has been done on flow effects due to oscillations of a wall with 

cavities. The essential difference in the flow pattern between Stokes’ second problem and 

the cavity problem is the presence of vertical velocities (because of the presence of the 

cavity itself) in the form of vortices.

Flow is investigated in a two-dimensional cavity oscillating back and forth sinusoidally, 

with the commercial CFD software Fluent. Two dimensionless parameters affecting flow 

were identified and these were varied to understand their effects on the flow field. As 

with Stokes’ second problem, the use of moving grids was done away with to make the 

problem set-up simpler. Newton’s second law of motion for non-inertial reference frames 

was used and the problem was solved with respect to a non-inertial reference frame. A 

user-defined macro written in the C programming language was added to the X-
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momentum equation for this purpose. A detailed explanation of this was given in Chapter 

3.

The cavity problem may not have practical import in the near future but presents a very 

interesting general study. Such a study was initially directed at transport enhancement, 

especially heat transfer enhancement. Heat Transfer depends on the flow field; therefore 

the problem has to be solved for flow before any heat transfer analysis can be attempted. 

Work with the flow field showed a lot of interesting results which may have a great 

impact on heat transfer. As mentioned in Chapter 1, this problem may have unforeseen 

applications in other fields too.

(4.2) Problem Description:
As mentioned before, the only variation in this problem is the presence of a cavity in an 

infinitely long plane wall. The wall is made to oscillate sinusoidally with a velocity V 

defined by

Vw = Va sin (cot) (4.1)

Where Vw is the velocity at any instant of time t, Va is the velocity amplitude of the 

oscillation, co is the angular velocity. The continuity equation and the x and y momentum 

equations are to be solved with the above mentioned boundary condition and the initial 

condition that the velocity is zero at time t=0. The problem can be easily understood by 

examining Figure 4.1.
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Figure 4.1: The cavity problem

The presence of the convective acceleration terms in the momentum equations makes this 

problem highly non-linear and the task of attempting an analytical solution (for instance 

by using a similarity variable) is a very challenging one. Instead it was decided to make 

use of numerical methods to solve the problem. Also, only a square cavity was 

considered because of its simplicity. The above-mentioned problem was modeled and 

solved using Fluent.

Any numerical procedure starts with a good “scientific” intuition of the physical 

occurrences in the problem. Since it was envisioned that the presence of a cavity would 

influence the flow field, our interest in this problem primarily lay in the vicinity of the 

cavity.

(4.3) Dimensionless Parameters for Flow:
In general, fluid flow depends on many parameters like velocity, length, viscosity, 

cetera, it is very inconvenient to examine the effect of each of these parameters 

individually on flow. For this reason, dimensionless numbers (all of these parameters 

combined in some way) are used in Fluid Mechanics to characterize fluid flow. The most 

prominent among these numbers is the Reynolds number, a ratio of the inertial and 

viscous effects in a flow field. In its simplest form, Reynolds number can be defined as:
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Re = (a reference velocity) * (a reference length)/ (kinematic viscosity of the 

fluid)

Normally the length term would signify the size influence on the flow, for instance, in 

tube flows, the length term would be the diameter of the tube. The cavity problem has a 

free surface and there is no formal “entry” length scale like the tube flow problem. 

However, three different length scales were identified with the oscillating cavity and they 

were:

(1) The cavity dimensions (since a square cavity was considered, its length was considered)

(2) The displacement amplitude of the oscillation.

(3) The Stokes layer thickness, given by Equation (3. 3)

As mentioned in Chapter 1, all of these length scales were not independent of each other 

since the displacement amplitude and the Stokes length could not be independently 

controlled.

To resolve this problem, we resorted to the use of Buckingham’s Pi theorem. This 

theorem was formulated to identify sets of dimensionless numbers from fundamental 

parameters affecting physical processes.

(4.3.1) Buckingham’s Pi theorem:
Physical parameters are made up of fundamental dimensions: mass designated as M, 

length designated as L and time by T. Buckingham’s Pi theorem states that in a physical 

situation controlled by ‘n’ physical quantities made up of ‘m’ basic dimensions, the 

quantities can be arranged to form ‘n-m’ independent dimensionless parameters [4].

(4.3.2) Dimensionless parameters for the cavity problem:
The physical quantities that affected the cavity problem were identified to be (1) the 

cavity size (say d), (2) the velocity amplitude Va, (3) the kinematic viscosity of the fluid v 

and (4) the angular velocity of oscillation oo. Following (4.3.1), n=4. The fundamental
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dimensions for all these quantities are either L or T or both L and T. so m=2. The number 

of independent dimensionless parameters that could be formulated for this problem is n- 

m=4-2=2.

Based on a thorough search of literature available for oscillatory problems, two 

dimensionless parameters were arrived at:

(1) Reynolds number based on the cavity size and velocity amplitude.

Red = (Va * d)/v (4.2)

(2) The ratio of the Stokes layer thickness and the amplitude of oscillation

(incidentally, a ratio of the Reynolds numbers based on the stokes layer thickness and the 

displacement amplitude would yield the same result since the velocity term and the 

viscosity term are the same), or the Ratio of the Stokes layer thickness and the cavity size 

d. Only one of these terms could be the second dimensionless parameter; assigning a

value to one of these numbers fixes the other one.

Armed with this knowledge of dimensionless numbers, we set out to explore the cavity 

problem.

Fluid flow patterns were studied by varying the Reynolds number based on the cavity 

size and the ratio of the Stokes layer thickness and the cavity size (automatically fixing 

the ratio of the Stokes layer thickness and the displacement amplitude). This process is

described in detail in Section 4.5.

(4.3.2.1) A relation between cavity-size-based Re and displacement- 
amplitude-based Re:
White [14] and other authors cited in Chapter 1 of this work discuss a conventional 

dimensionless frequency (called the Strouhal number) and its importance in oscillatory 

flow phenomena. The present work on oscillatory flow does not discuss the effect of 

Strouhal number on flow separately; but it can be shown that the conventional Strouhal 

number is hidden in our description of the cavity-size-based Reynolds number. In fact, it
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reduces to a product of the Strouhal number and the displacement amplitude-based 

Reynolds number. The derivation is as follows:

Red = Va* d/v

Where d is the cavity size, Va is the velocity amplitude of oscillation and v is the 

kinematic viscosity of the fluid. Va = (to*a) where ‘o ’ is the angular velocity and ‘a’ is 

the displacement amplitude of the oscillation. Also the frequency of oscillation f is 

(co/2n).

The above expression after some modifications will look like

Red = (2n) (f*d/va) (va*a/v)

Red = 2n*St*Rea (4.2.1)

Where St is the conventional Strouhal number defined by St = f*d/va

(4.4) Modeling the oscillating cavity problem with Fluent:
Gambit was used for initially drafting the computational domain. A good initial intuition

was required even in the drafting stage because of the complexity of the problem. 

References [5], [6], [7], and [8] describe flow separation and vortex generation in flow 

through furrowed sections. All these papers discuss marked changes near the “lip” of the 

furrow which necessitates proper mesh arrangement and distribution in this zone. The 

other zone of importance, of course, was the cavity proper (see for example references [7] 

and [8]). In addition, results from the benchmark case (Stokes’ second problem) helped in 

the general understanding of the mesh spacing and distribution near oscillating solid 

boundaries (A reference frame fixed to the moving wall was used; the fluid appears 

oscillating and the wall appears stationary).
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Initially, a cavity size equal to the Stokes layer thickness (0.25 cm for a kinematic 

viscosity of 0.0093 cm7s and an angular velocity of 2n rad/s) was considered ( a square 

cavity with dimensions 0.25 cm). Figure 4.2 shows the general arrangement of the 

computational domain.

O
■ >

X

Figure 4. 2: Preliminary modeling considerations

In Figure 4.2, XOY and xoy are the fixed (non-accelerating) and accelerating reference 

frames, respectively. The lower wall with the cavity is oscillating sinusoidally, zone 1 is 

identified easily with the discussion in the previous paragraph; it represents the cavity 

and its immediate vicinity. Zone 2 has an interesting significance that is explained in the 

later part of this chapter. The top wall is a zero shear layer indicating the upper end of 

the computational domain. It had to be placed far away from the lower wall to have no 

effect on the solution. A height of 3 cm from the lower wall (about 12 times the Stokes 

layer thickness) was considered to be sufficient because of experimentations with the 

computation domain size. The Stokes layer thickness was the most critical factor in
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finalizing the size. It was seen that velocity fluctuations occurred up to a distance that 

was only a little larger than the Stokes layer thickness.

(4.4.1) Meshing considerations:
As in the Stokes problem, meshing proved to be a very critical factor in determining the 

solution. Also, the final grid for the cavity problem evolved through a series of 

experiments for well-converged solutions. From the initial considerations explained in 

the previous section, the cavity was very closely meshed using Gambit. Uniformly spaced 

quadrilateral elements were used to mesh the cavity section and it contained 2500 node 

points.

Outside the cavity though, a little more consideration was needed. Only zone 1 in Figure 

4.2 needed very fine meshing, a coarser mesh sufficed for places away from this zone. An 

expanding grid was used in Gambit for the above-mentioned purpose. The same applied 

for meshing along the cross-streamwise direction too, so that only zone 1 remained finely 

meshed. The entire domain contained roughly 26,000 grid points

(4.4.1.1) Effect of mesh density:
To test the effect of a very fine mesh on the solution a lower limit of fineness had to be 

reached. As mentioned before, a finer grid has a lot more grid points and tends to the 

continuum calculation but also increases the computation time as variables have to be 

determined for so many grid points. For example, the finest grid with 2500 grid points 

inside the cavity and roughly 62,000 grid points outside it, took 10 hours to run through a 

complete cycle.
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Figure 4. 3: A Very Fine Grid

Figure 4.3 depicts the finest mesh that was used. As for the Stokes problem, the problem 

required at least 10 complete oscillation cycles for minimization of transients and 

generation of stable results. The time taken for computation for this fine mesh though, 

was thought of as unacceptable. The necessity for computational efficiency also forced us 

to look for a coarser mesh that was still able to capture many of the important details 

without utilizing a lot of computation time.

Many such grids were treated with the basic mesh considerations (described earlier in 

sections 4.4 and 4.4.1) in mind. Finally, a mesh design having roughly 2500 grid points 

inside the cavity and 22,000 points outside it was decided as a good tradeoff between 

computation time and accuracy and the results with these meshes showed no major 

difference with respect to the finer mesh results. Figure 4.4 shows the final mesh in the 

vicinity of the cavity. All cases were treated with this mesh. One interesting point with 

regard to the meshing arrangement worth adding at this stage is the way the mesh 

arrangement was made just outside the cavity. The distance between the nodes just 

outside the cavity was adjusted to be a third of the distance between nodes inside the 

cavity. This arrangement was supposed to capture all the subtle occurrences (see 

references [5], [6], [7], [8]), if any, just outside the cavity. It was found later that this
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arrangement was indeed efficient in capturing subtle effects. Figure 4.5 shows this 

arrangement.

Figure 4. 4: Final Grid

— — i—
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Grfd (Tlme-'1.0000e + 01) Oct 02. 2003FLUENT 6.0 (2d. dp. segregated, lam. unsteady)

Figure 4. 5: Meshing in the vicinity of the lip of the cavity
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(4.4.2) Boundary condition types:
The boundary condition types were set for different edges in Gambit. The lower wall, as 

mentioned before, was made by logically adding different edges, so that these edges 

constituted one single geometrical element as shown in Figure 4.1. Apart from this 

logical manipulation of the lower wall, the boundary conditions types were identical to 

those for the Stokes problem. Edges 3 and 4 in Figure 4.2 were assigned pressure inlet 

and outlet boundary condition types in Gambit. , Edges 1 and 2 were defined as solid 

walls and fluid continuum elements were defined for the computational domain.

(4.4.3) Fluent Solution Process:
The mesh thus defined in Gambit was imported into Fluent using the mesh import/export 

capability provided in Fluent. Standard procedures such as grid check and scaling were 

done in Fluent. Units of cm for length scales, cm/s for velocities and cm2/s for 

acceleration were used.

As mentioned before, the actual numerical values for boundary conditions have to be 

specified in Fluent. The lower wall was defined as a “no-slip” solid surface (it must be 

remembered here that the problem is being solved in the accelerating reference frame 

which makes the lower wall stationary and it is actually oscillating in the Newtonian 

reference frame) and the upper wall was assigned a “zero shear” solid surface (meaning a 

free surface). It was decided to follow the Stokes problem for boundary condition 

definitions for edges 3 and 4 (spanwise edges), so periodic boundary conditions were 

imposed on these edges.

Water with kinematic viscosity 0.0093cm2/s and density 1000 kg/m3 was used as the fluid 

for all computational purposes. As described in the previous chapter, a momentum source 

term macro written in the C programming language was added to the X-momentum 

equation in Fluent. This program is included in the appendix. With our experience in 

symmetry issues, we used a second order unsteady formulation for numerical solutions. 

The above-described model was initialized and run for 10 cycles of complete oscillations. 

Apart from the decisions on the grid, there were other parameters that needed to be
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refined based on the solutions for this particular model. They are described briefly, one 

by one.

(4.4.3.1) Solver Controls:
As mentioned in Chapter 2, solver controls can have a very significant effect on the 

solutions obtained. Sobey et al [4] mentions the use of second order upwind differencing 

for accurate solutions in oscillatory flows. Use was made of both the first order and the 

second order formulations and it was found that second order upwind differencing 

captured more effects than first order upwind differencing. Thus it was decided to use 

second order upwind differencing in all future calculations. The above mentioned fact 

also helped in reducing the grid size as much better accuracy was acquired with fewer 

number of grid points and the overall computation time was reduced.

(4.4.3.2) Residual Criteria:
As mentioned before, an iterative process is said to have attained a converged solution if 

it meets the residual criteria set by the user. Fluent provides the user with an editable 

menu of residual criteria for continuity, each of the momentum equations (x, y, and z) 

and energy (if enabled). The residuals in Fluent are calculated based on a reference value, 

in other words, they are scaled residuals. The user has to set values for these residuals; 

lesser the values, more is the convergence time and vice versa. More stringent (lesser) 

values of these residuals were found to have a profound effect on the solutions obtained. 

Zone 2 (Figure 4.2) was defined as a zero shear layer; with a residual criteria of le-03 for 

continuity, and the x and y momentum equations, appreciable (non-zero) perpendicular 

velocities were found in zone 2 which was out of place for the present problem 

considerations which should result in only horizontal velocity vectors in this zone. This 

contradiction is shown in figure 4.6
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Figure 4. 6: Perpendicular velocities due to insufficient residuals.

Reducing the residual criteria though showed excellent improvement in that these 

perpendicular velocities gradually disappeared and became exactly parallel to the upper 

wall. These residual criteria were decreased until there were no appreciable perpendicular 

velocities near the upper wall, and in the end, were fixed at le-06. Thus the initial model 

was refined continuously by adjusting various parameters and solution controls until it 

yielded a stable, accurate solution. With this final refined model in hand, a parametric 

study was undertaken. Fluid flow patterns were studied by varying the cavity size-based 

Reynolds number and the length ratio of the cavity and the Stokes layer thickness. These 

variations are explained in Section 4.5.

(4.5) Parametric Study of Fluid Flow in an oscillating cavity:
Section 4.3 of this work described in brief, the dimensionless parameters affecting flow.

An effort was made to study the effects of these parameters on flow in an oscillating 

cavity. Three different cases were identified and they can easily be understood from the 

matrix in the next page, ‘a’ denotes the displacement amplitude of oscillation, “cavity” 

denotes the size of the cavity, and ‘5’ denotes the Stokes layer thickness.
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Table 4.1: Cases considered for analyses:

Parameters Case 1 Case 2 Case 3

Red 42 42 42

6/d 1 0.5 2

a/d 1 2 1

(4.6) Results and Post Processing:
Contours of stream function were plotted through a complete cycle for each of these three 

cases. They are shown below. Discussion of these results is done in Chapter 5 of this 

work.

It was decided to use an instantaneous cycle time t* that goes from 0 to 1 instead of the 

actual time that varied for each case.

Since the angular velocity was varied in each case, the time period values varied in each 

case. The following were the time period values for each case:

Case 1: T = Is

Case 2: T = 0.25s

Case 3: T = 4s

Base Case:

This was the case used for refining the grid; setting control parameters and other 

computational issues. So no further explanation was required for this case, but for 

consistency, the following computational parameters should be borne in mind. The 

angular velocity of oscillation was 2n rad/s and the time period of the oscillation was 1 

second. Proper choice of time step sizes was also described as an important numerical 

tool; since the time period was Is, a hundredth of this value, i.e., 0.01 was thought of as 

an appropriate time step size. Figures 4.7 through 4.15 show velocity vector and stream 

function plots at different instants in time during a cycle.
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Case 1:

Figures 4.7 through 4.15 show velocity vectors and stream function plots for Casel. 

Casel had a Stokes layer thickness that was between those for Cases 2 and 3. It can be 

seen that as time progresses, fluid is being sloshed out and entrained and a vortex is being 

shed. This is explained in detail in Chapter 5.

Case 2 : Figures 4.16 through 4.24 show velocity vector plots and stream function plots 

for Case 2.1t can be seen that as the Stokes layer thickness is decreased, the primary and 

secondary vortex are being shed at different locations. The whole process of fluid 

sloshing and entrainment is also changed.

Case 3 : Figures 4.25 through 4.38 show velocity vector plots and stream function plots 

for Case 3 when the Stokes layer thickness was increased. It can be seen here that the 

vortices are being shed very far away from the cavity because the viscous layers extend 

much more into the computational domain than the other two cases.

All three cases exhibited an explicit dependence on the Stokes layer thickness. 

Perturbation in the boundary layer was seen in all the three cases. These are summed up 

in Chapter 5 of this work.

It should be mentioned here that a couple of test cases were run by varying the cavity- 

size-based Reynolds number but since no dramatic changes in the results were seen, these 

are discussed here in detail.
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Figure 4. 7:Stream function (a) and Velocity vector plots (b) at t* = 0. 

A counter-clockwise vortex being shed when the cavity comes to rest.
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(a)

(b)

Figure 4. 8 : Stream function (a) and Velocity vector plots (b) at t* = T/20:

As the cavity starts translating to the right, fluid sloshes out and is sucked in from 

the other end.
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Figure 4. 9 : Stream function (a) and Velocity vector plots (b) at t* = T/10
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Figure 4.10: Stream function (a) and Velocity vector plots (b) at t* = T/5.

Plug flow fills up almost the entire cavity. The vortex sheet has moved a little to 
the right.
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(a)

Figure 4.11: Stream function (a) and Velocity vector plots (b) at t* = T/4

The cavity has its maximum velocity here. Plug flow fills up the entire cavity.



(b)

Figure 4.12: Stream function (a) and Velocity vector plots (b) at t* = 3T/10

The cavity is in its deceleration phase. A secondary vortex is in its formative 
phase.
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(b)

Figure 4.13: Stream function (a) and Velocity vector plots (b) at t* = 2T/5

The cavity approaches rest at this instant. The vortex away from the cavity is

stronger now.



(b)

Figure 4.14: Stream function (a) and Velocity vector plots (b) at t* = 9T/20
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Figure 4.15: Stream function (a) and Velocity vector plots (b) at t* = T/2

At half-time, the cavity has come to rest. A clockwise vortex is being shed.



CASE 2: Red = 42, 8/d = 0.5, co= 25.1472 rad/s
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Figure 4 .16:Stream function (a) and Velocity vector plots (b) at t*= 0
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Figure 4.17: Stream function (a) and Velocity vector plots (b) at t* = T/20
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(a)
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Figure 4.18: Stream function (a) and Velocity vector plots (b) at t*= T/10
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Figure 4.19: Stream function (a) and Velocity vector plots (b) at t*= T/5
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Figure 4. 20: Stream function (a) and Velocity vector plots (b) at t* = T/4



(a)

(b)

Figure 4. 21: Stream function (a) and Velocity vector plots (b) at t* = 3T/10
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(a)

Figure 4. 22: Stream function (a) and Velocity vector plots (b) at t* = 2T/5
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(a)

Figure 4. 23: Stream function (a) and Velocity vector plots (b) at t* = 9T/20
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Figure 4. 24: Stream function (a) and Velocity vector plots (b) at t* = T/2
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Figure 4. 25 CASE 3 Stream function Plots at t* = 0
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Figure 4. 26 : Velocity Vector plot at t* = 0
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Figure 4. 27: Stream Function Contours at t* = T/10
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Figure 4. 28:Velocity vectors at t* = T/10
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Figure 4. 29:Stream function Contours at t* = T/5



Figure 4. 30: Velocity Vector Plots at t* = T/5
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Figure 4. 31:Stream function Contours at t*= T/4



Figure 4. 32:Velocity Vector Plots at t* = T/4
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Figure 4. 33: Stream Function Plots at t* = 3T/10



Figure 4. 34: Velocity Vector Plots at t* = 3T/10
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Figure 4. 35: Stream Function Plot at t* = 2T/5
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Figure 4. 36:Velocity Vectors at t* = 2T/5
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Figure 4. 37:Stream Function plot for t* = T/2



Figure 4. 38: Velocity Vector plots for t* = T/2
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Results and Discussion:

(5.1) Introduction:
The commercial CFD software Fluent was used for visualizing all data and the

flow field in general. Stream function lines are those that are tangent to the local 

velocity vector at all points in the flow field. They are very useful in visualizing 

flow lines. Mathematically, the stream function, if integrated along the x or y 

directions, is defined by:

\|/ =  j u  dy(5 .1 )

or alternatively

\|/ =  -  J v r f x  ( 5 .2 )

where vj/ is the stream function, u is the streamwise velocity, dy is a differential 

change in the cross streamwise coordinate (assumed to be y in this case), v is the 

cross streamwise velocity and dx is the differential change in the streamwise 

coordinate (assumed to be x here).

Fluent uses equations (5.1) and (5.2) to calculate and plot stream function values 

throughout the domain. Since these values were easier to analyze the flow field 

with, they were chosen for the discussion of results. There was one difficulty 

however, with the use of stream function values as generated by Fluent. In the 

present problem, an oscillating velocity was imposed on the fluid initially at rest. 

There is one positive and one negative half cycle for each complete cycle of 

oscillation. During the positive half cycle, stream function values calculated using 

equations (5.1) and (5.2) would all be positive and thus one would expect values 

during the negative half cycle to be negative. On the contrary, as is the convention 

with most CFD software, the minimum of the stream function values is taken as 

zero and all other values throughout the domain are calculated based on this value 

with the result that there are no negative values for stream function at any instant.
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It is worth remembering at this point the dimensionless parameters that were used 

to characterize flow. The matrix that was used to run the three different cases 

relied mainly on changing the length ratios and keeping the cavity based Reynolds 

number a constant. Subtle differences were seen in all these cases but it must be 

mentioned that vortex development depended mainly upon the length ratios (ratio 

of the stokes layer thickness to the cavity size) rather than the cavity size-based 

Reynolds number. Response of the fluid to an increase in Reynolds number based 

on the geometric parameters of the cavity is an interesting digression and may 

lead to characterization of transition of laminar oscillatory flows to turbulence. 

(This is currently under investigation at MIT, albeit for a different problem). Each 

case (Cases 1 to 3) is explained in detail below: The problem is quite different 

under the Newtonian and non-Newtonian reference frames; a program to calculate 

velocities and stream functions in the Newtonian reference frame was written in 

FORTRAN. This is included in the appendix A3. In the non-Newtonian reference 

frame, the problem is very similar to work mentioned in the literature, most 

oscillatory flows deal with a sinusoidally oscillating flow rate; here, we may 

consider a fixed quantity of fluid that is oscillating. Incidentally, this might 

actually prove to be a very interesting case too (fortuitously) though this is not 

being described in this work.

CASE 1:
Red=42

8/d = 1 

a/d =1  

to = 2n rad/s

v = 0.0093 cm2/s. 8 (Stokes layer thickness) =0.25 cm

This was taken as the base case for comparison. The Stokes layer thickness was 

set equal to the cavity size (both being equal to 0.25 cm). It is worth remembering 

at this point that the Stokes layer thickness is the region where almost all velocity 

fluctuations are confined. It is also worth comparing the cavity problem with
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Stokes’ second problem; one can actually see perturbations creeping into the 

Stokes layer because of the presence of the cavity. Vortices are shed (unlike in the 

Stokes problem) and the flow separated at regular intervals.

Figure 4.7 shows velocity vectors and stream function plots at time t =0 where t* 

is the instantaneous cycle time as a function of the time period of oscillation T.( In 

fact, the exact cycle time was t = 11s). t*=0 is the instant when the cavity has just 

come to rest; the wall velocity and acceleration are given by:

Vw = -Va sin (cat) I t=11.0s = 0

= - Va co cos (cot) I t=l 1.0s = - Va o>

The acceleration is a maximum here and the wall is about to begin translation to 

the left. Since the wall velocity is zero, the layers very near the wall have near­

zero velocities (shown by the short tails on the velocity vectors), whereas this zero 

velocity has not penetrated deep enough away from the vicinity of the wall, so 

they still have some residual positive velocities (from the previous cycle). This 

can be seen in a direction change in the velocity vectors as one goes away from 

the wall into the Stokes layer and the stream function values increase from the 

wall into the Stokes layer.

Inside the cavity however, one can see zero velocity vectors filling up almost the 

entire cavity except at the entrance of the cavity where there are appreciable 

velocities; remnants of the previous cycle. Since the cavity walls have come to 

rest, these vectors are forced to follow a path up being restricted by the cavity 

walls. As the fluid at the “lip” of the cavity is being forced up, one can actually 

see a weak clockwise vortex being generated away from the cavity. Far away 

from the vicinity of the cavity, flow resembles a Stokes flow solution; the 

presence of a cavity does not affect flow there.
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Figure 4.8 shows the velocity vectors and stream function plots at t* = T/20 where 

T is the time period of oscillation (the actual time t = 11.05s), when the cavity has 

started translating to the left with non-zero velocity and acceleration. One can 

actually see fluid being thrown out at the right entrance of the cavity because of 

the motion of the cavity walls. This can also be realized from the big “plume” out 

of the cavity in the stream function plot. About a third of the cavity is filled with 

“plug” flow due to the momentum imparted by the moving wall. The cavity 

“sucks” in fluid from the right entrance. The weak recirculating vortex is 

disturbed because of the wall motion.

The wall momentum away from the cavity diffuses into the Stokes layer through 

only a small distance, but remnants of the positive velocities from the previous 

cycle give rise to a shear layer away from the cavity.

Figure 4.9 shows velocity vectors and stream function plots at t = 11.10 s, t* = 

T/10; one can actually see the momentum of the wall diffusing deeper into the 

Stokes layer. Inside the cavity, the “plug” flow traveled to a distance that is 

almost half of the cavity height. There is still some ejection of the fluid at one 

end and entrainment at the other end going on in the cavity. It can actually be seen 

that the “plume” has slightly shifted towards the right.

Away from the cavity, since the momentum of the wall diffuses deeper into the 

cavity, the shear layer gets displaced away from the wall into the Stokes layer. A 

separation zone can be seen at both ends away from the cavity.

Figure 4.10 shows velocity vectors and stream function values at t=l 1.20s; the 

momentum of the wall has penetrated further, the separation zone has traveled far 

away from the boundary and the “plug” flow fills almost the entire cavity. The 

plume has shifted further toward the right (in a direction opposing the flow 

direction).

Figure 4.11 shows velocity vectors and stream function at t =11.25 s, when the 

velocity of the wall is a maximum in the leftward direction and the acceleration is
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zero. The entire cavity is filled by the “plug” flow. At this point, the wall is 

beginning to decelerate.

Figure 4.12 shows velocity vectors and stream function at t = 11.30s. This is the 

period when the wall is actually decelerating; the velocity is slowly decreasing, 

the plume gets displaced further to the right and the momentum of the wall has 

diffused enough into the Stokes layer. During this deceleration phase, it can be 

seen that the effects inside the cavity get reversed to those found during 

acceleration. The flow outside the cavity tries to get inside the cavity as the wall is 

approaching zero velocity (at half time). This can be seen in Figures 4.13 and 

4.14. Figure 4.13 (a and b) shows stream function and velocity vector plots at t = 

11.40s). As the main flow (outside the cavity) tries to “bend” inside the cavity, 

there is a vortex sheet being shed, although this can be seen very clearly only in 

Figure 4.14 at (t = 11.45s) that is spinning counter-clockwise. Figure 4.15 is at 

cycle half-time (at t = 11.5s), with the flow “bending” nicely into the cavity and a 

counter-clockwise spinning vortex sheet away from the cavity. Deep inside the 

cavity, near the walls, there are only negligible velocities, these velocities being 

aligned with the wall.

The other half of the cycle comprises the same processes, in the opposite 

direction.

CASE 2:
Red = 42

5/d = 0.5

a/d = 2

It can be seen that the Stokes layer thickness for this case is 0.125 cm, half of the 

cavity size. Interesting results were seen when the Stokes layer thickness was 

halved. Entirely different vortex structure is seen when the cavity comes to a halt. 

Inside the cavity, since the Stokes layer thickness is only half of the cavity size, 

flow separation occurs. This can be seen in Figures 4.16 and 4.24. It can also be
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noticed that the shedding of the vortices at these instants in time is different from 

those in Case 1, which can be easily explained by the difference in their Stokes 

layer thicknesses. There is no visible difference in the flow pattern (shear layer 

displacement, flow separation away from the cavity, the “plug” flow 

phenomenon, sloshing from the cavity and entrainment of fluid) during the 

acceleration phase (Figures 4.17 to 4.20) as compared to the acceleration phase in 

Casel; however during the deceleration phase, a secondary vortex is being 

generated farther away from the cavity which grows, gets displaced from the wall 

into the Stokes layer and moves towards the plume (Figures 4.21 to 4.24). When 

the oscillation reaches half-time, the wall comes to a halt (Figure 4.24), flow 

separation occurs inside the cavity itself. The next half of the cycle resembles the 

first half, with a change in direction.

CASE 3: 
Rea = 42

5/d = 2 

a/d = 1

Interesting physical phenomena were seen in this case when the Stokes layer 

thickness was twice the cavity size. Sloshing and entrainment of fluid from and 

into the cavity occurs when it comes to a halt, (cycle start time and half-time, 

Figures 4.25 and 4.31 respectively). Much of the activity, such as flow separation 

and vortex generation happens outside the cavity and flow inside the cavity is 

almost entirely “plug” flow.

During the acceleration phase (Figures 4.26 to 4.28), the cavity is filled up by the 

plug flow. When the cavity starts translating to the left (Figure 4.26), the fluid 

sloshing out of the cavity forces the steady flow and separation occurs. The 

momentum of the wall keeps diffusing away from the wall into the Stokes layer 

and the separated zone keeps moving up too (Figures 4.27 and 4.28). The weak 

remnant vortex moves, to the right. During the deceleration phase (Figures 4.29 to 

4.31), the weak recirculating vortex moves up and father away to the right and the
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wall momentum diffuses much deeper into the Stokes layer. Near half time, the 

wall velocities are much smaller as the wall is coming to rest. This causes the 

flow outside the cavity to bend down into the cavity, although not very deep. At 

half-time, (Figure 4.31), it can be seen that there is ejection of the fluid out of the 

cavity and sucking in from the other side.

(6.2) Summary:
The cavity problem showed interesting results as dimensionless numbers were 

varied. Of all these parameters, the Stokes layer thickness influenced fluid 

dynamic phenomena to the largest extent. If the Stokes layer thickness was large, 

the momentum of the cavity walls diffused faster and deeper into the fluid as was 

seen in Case3. Also the sloshing and the entrainment of the fluid occurred earlier. 

This might have a very significant impact on transport modulation. If the Stokes 

layer thickness was small, as it was in Case 2, separation could be seen even 

inside the cavity. A secondary vortex was also seen during the deceleration 

phase.

Altogether, the cavity problem paved the way for a very interesting general study 

and the cases discussed had a lot of significant differences in their physical nature. 

The study of fluid flow pattern and vortex structure, and sloshing are very 

important in transport problems and this work can be construed as a starting point 

for a detailed work on transport phenomena of engineering interest.
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Chapter 6

Scope fo r  future work:

Ever since the cavity problem was envisioned, the temptation to digress was huge 

since there were many potential independent areas waiting in the wings to be 

explored. The present work was only an initial analysis aimed at understanding 

and characterizing oscillatory flow phenomena. Based on this work, much more 

work could potentially be done .

The foremost in this line of thinking would be the extension of 2 dimensional 

analyses into 3-d analyses. The development of modem software has aided in 3-D 

flow visualizations a great deal and it is only proper to have a 3-D analysis for 

technically flawless, stringent design. Fluent is capable of doing 3-D analysis very 

efficiently.

When the fluid flow problem is accurately solved, heat transfer can be solved for 

easily. This is the present focus in academia and the industry alike as far as 

building efficient new cooling techniques for microdevices is concerned. 

Oscillatory heat transfer modulation will prove to be an excellent solution in 

places where bulk mechanical heat transfer components cannot be accommodated. 

A 3-D flow analysis coupled with heat transfer analysis is the next station for the 

cavity problem!

Transition to turbulence and stability in oscillatory flows are other areas of 

research that would delight a Fluid dynamics purist. Turbulence in flow brings 

about a great degree of unpredictability; flow phenomena become much more 

complex and in most cases, intractable. Prediction of the onset of turbulence is 

very critical in flow phenomena; one should be very comfortable with the idea of 

using laminar flow equations for the flow parameters one selects. Prediction of 

turbulence in oscillatory flows as functions of geometric and oscillation
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parameters are very useful and they are being studied in many academic 

institutions.

Only the simplest of geometries, a square geometry was studied in this work. The 

choice of a square geometry was because of its inherent simplicity. The natural 

extension of this square geometry would be the analysis in much more complex 

geometries starting with a rectangular geometry. Vortex generation, spreading, 

residence times and their ejection would probably vary significantly with more 

complex geometries.

The problem could “mathematically” be advanced too with the definition of time- 

dependent velocity amplitude for oscillation. This, in fact, increases the non- 

linearity associated with the problem and could possibly have a very significant 

impact on transport rates, especially if we could identify amplitude decay and 

growth rates as functions of fluid dynamic parameters. It would help too in this 

regard to build local expertise in writing custom computer codes and visualization 

environments.

Since momentum, heat and mass transfer are analogous concepts; a careful study 

of mass transfer rates in oscillating cavities would be of significant importance 

especially in drug delivery applications. A careful follow-up on Ian Sobey’s work

[4] would probably reveal a lot of interesting applications oscillatory flows have 

on mass transfer rates. Oscillatory flows could potentially also aid in particle 

transport. One would probably need an Arbitrary Eulerian Lagrangian (ALE) 

formulation to solve for discrete particle transport; nevertheless fluid flow 

patterns described in this work would prove to be a significant basic study.

The assumption of “no-slip” flow near the oscillating walls fails when the 

molecular mean free path becomes comparable to the characteristic flow 

dimensions(Knudsen number =1). The validity of the “no-slip” assumption is 

being researched in microchannel flows. This offers yet another rich arena for 

future research in oscillating cavities (probably microcavities).
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Since there is a lot of sloshing and entrainment in and out of the cavity, a study of 

pressure oscillations could also prove useful.

The concept of flow modulation could successfully be applied to micro-electronic 

device cooling if Knudsen numbers work out to be in the continuum range which 

is the case for most devices now.

Development of experimental expertise is another area that holds much promise 

for future development.
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APPENDICES:

A1 C Program for an oscillating velocity boundary condition:

#include<udf.h>
DEFINE_PROFILE(unsteady_velocity,thread,position)
{
face_t f;
begin_f_loop(f,thread)
{
real t = RP_Get_Real("flow-time");
F_PROFILE(f,thread,position) = 0.01 *sin(6.2831853*t); 
}
end_f_loop(f,thread)
}

A2 C Program that inputs an oscillating source terms to the x-momentum equation:

#include<udf.h>
#include<mem.h>
DEFINE_SOURCE(cell_x_source, cell, thread, dS, eqn)

{
real cons = 6283.1853; 
real source;
real t = RP_Get_Real("flow-time"); 
source = cons*0.01*cos(6.2831853*t); 
dS[eqn]=0; 
return source;
}
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A3 Fortran program that calculates Newtonian velocities and stream functions 
from Fluent results.

PROGRAM cavityplot
PARAMETER (nnmax=30000,nconx=80,ncony=60)
REAL x(nnmax),y(nnmax),psinn(nnmax),psin(nnmax),unn(nnmax)

REAL v(nnmax),un(nnmax),vmag(nnmax),t,w,vwamp,vw,wo(nnmax) 
real zmat(nconx,ncony),imat(nconx,ncony),wmat(nconx,ncony) 
integer ixp(ll),iyp(ll)

character*80 fname,cjunk

open(unit=8,file='c3410.dat',status='old') 
c print*,'easel,case2,case3,case4 ? (5,6,7,8)' 
c read*, ipickcase

c Set number of nodes in data file
c

print*,'velocity vector, stream function,vorticity? (3,4,5)' 
read*, ipickplot

nnodes = 26266 
ymax = 0.045 
psimax = -100.0 
psimin = 100.0 
vmax = 0.0 
veclmax = 0.05 

print*,'enter current time' 
read*, t
print*,'enter angular velocity' 
read*,w
print*,'wall velocity amplitude' 
read*,vwamp 
vw = - vwamp * sin(w*t) 

print*,vw

c
c Read in data from plotting file
c first read title then x,y,unn,v,psinn data; subscript nn means non-newtonian,
c



read(8,*) cjunk

do i=l,nnodes
read(8,*) nn,x(i),y(i),unn(i),v(i),psinn(i),wo(i) 

psin(i) = (1000*vw*y(i))+psinn(i) 
psin(i) = psin(i)/(1000*vwamp*0.0025) 

psin(i) = psin(i)
un(i) = vw + unn(i) 
un(i) = unn(i) 

vmag(i)= (un(i)**2+v(i)**2)**0.5 
if(y(i).eq.ymax) psinO = psin(i) 
if(vmag(i).gt.vmax) vmax = vmag(i) 

psinzero = psin(i)
end if

end do 
print*, psinO 
do i=l,nnodes

x(i)=x(i)* 100.0 
y(i)=y(i)*100.0 
psin(i)=psin(i)-psinO 

psin(i) = psin(i)/(1000*vwamp*0.0025)
if(psimax.lt.psin(i)) psimax = psin(i) 
if(psimin.gt.psin(i)) psimin = psin(i)

end do

print*,'wmf, xwin, ps or cgm output? (0,1,2,3)' 
read*, ipick
if(ipick.eq.O) call metafl('wmf) 
if(ipick.eq.l) call metafl('xwin') 
if(ipick.eq.2) call metafl('post') 
if(ipick.eq.3) call metafl('cgm')

CALL SETPAG('DA4r)
CALL PAGE(2800,3000)
CALL SETPAG('DA3P')

CALL DISINI

call triplx 
call pagera 
call axslen(1900,2500) 
call center
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c
c Set up user coordinate system but don't plot axes
c

call nograf
c CALL GRAF(3.0,4.25,0.,1.0,1.0,2.0,0.,5.0)
c CALL GRAF(0.0,6.75,0.,1.,0.,5.,0.,5.0)

call graf(3.25,4.00,3.25,1.0,1.25,2.25,1.25,0.5)

c
c Display time 
c

c call rlmess('Time=',0.,22.)
c call number(time,-1,999,999)

c
c Plot wall and cavity boarders
c

call linwid(4)

c call rlstrt(0.5,1.5)
call rlstrt(3.25,1.5) 

call rlconn(3.5,1.5) 
call rlconn(3.5,1.25) 
call rlconn(3.75,1.25) 
call rlconn(3.75,1.5) 
call rlconn(4.0,1.5) 

c call rlconn(6.75,1.5)

call linwid(l)

  +1* <!> <!> ^  *1* *1# *2* *2* *2* kG vG %2# »,G &G «G ̂ G «G »G **> *2* »G kG kG %G kG kG kG kG «G kG *1* *2* kGV *r 4* v v v 4* 4* v v  4* 4* v *1* v v  v v 4* *c 4* V 4* v 4* V V 4̂  4* ^  4* 4* 4* Jy* rjv 4* Jji v  v  v v v V *r v *x* •’p 4* 4*

c
c The following is for mesh plotting

c do i=l,nelem
c call rline(x(no(i,l)),y(no(i,l)),x(no(i,2)),y(no(i,2)))
c call rline(x(no(i,2)),y(no(i,2)),x(no(i,3)),y(no(i,3)))
c call rline(x(no(i,l)),y(no(i,l)),x(no(i,3)),y(no(i,3)))
c end do

4> 4> 4> *2* ̂  ^  kG <G »G 4? *G *G 4? ?G *G *G 4? 4* 4? 4> 4* 4» 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* kG 4* 4# 4# kG 4* 4# kG 4# 4# kG 4« 4* 4» 4# 4* 4* 4» 4* 4* 4* 4# kGv 4* 4* 4* 4̂ 4* 4* 4* 4* 4* 4* 4* 4* 'G 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4> 4* 4* 4* 4* 4̂ 4̂  4̂  4* 4* 4* 4S 4S 4S 4* 4̂ 4̂  4̂  4> 4> 4* 4* 4* 4* 4* 4* 4* 4̂  4̂  4̂  4S



Contouring starts here.

Set up shielding for contour plotting

ixp(l)=nxposn(0.5)
ixp(2)=nxposn(3.5)
ixp(3)=nxposn(3.5)
ixp(4)=nxposn(3.75)
ixp(5)=nxposn(3.75)
ixp(6)=nxposn(6.75)
ixp(7)=nxposn(6.75)
ixp(8)=nxposn(0.5)
ixp(9)=nxposn(10.)
ixp(10)=nxposn(0.)
ixp(l l)=nxposn(0.)

iyp(l)=nyposn(1.5)
iyp(2)=nyposn(1.5)
iyp(3)=nyposn(l .25)
iyp(4)=nyposn(1.25)
iyp(5)=nyposn(1.5)
iyp(6)=nyposn(1.5)
iyp(7)=nyposn(1.0)
iyp(8)=nyposn(1.0)
iyp(9)=nyposn(23.)
iyp(10)=nyposn(23.)
iyp(ll)=nyposn(0.)

call frame(O) 
call shlpol(ixp,iyp,8)

Produce contours and then plot

call getmat(x,y,psin,nnodes,zmat,nconx,ncony,0.0,imat,wmat)

call labelsC'float'/contur') 
call labdig(3,'contur')



c call congap(l.O)
c call conmod(1.0,1.5)
c call labdis(2000,'contur')

call height(30) 
call thkcrv(l) 
call penwid(4) 

if(ipickplot.eq.3) goto 400 
if(ipickplot.eq.5) goto 450 

c if(ipickplot.eq.4) goto sfplot.

do i=-100,100
IF(MOD(I+100,3).EQ.l) THEN 

CALL SOLID 
CALL THKCRV(2)

ELSE IF(MOD(I+100,3).EQ.2) THEN 
CALL chndsh 
CALL THKCRV(l)

ELSE 
CALL dash 
CALL THKCRV(l)

END IF
call conmat(zmat,nconx,ncony,float(i)/800)

end do

goto 500

c velocity vector plots

400 scale = veclmax/vmax

do i=l,nnodes,20 
if(vmag(i).gt.0.00005) then 

xto=x(i)+un(i)*sca!e 
yto=y(i)+v(i)*scale 

c xto=x(i)+un(i)*veclmax/vmag(i)
c yto=y(i)+v(i)*veclmax/vmag(i)

call rlvec(x(i),y(i),xto,yto,1201) 
end if 

end do 
goto 500

c vorticity plot
450 call getmat(x,y,wo,nnodes,zmat,nconx,ncony,0.0,imat,wmat)



c call labelsOfloatYcontur1) 
call labdig(3,'contur') 
call congap(l.O) 
call conmod(1.0,1.5) 
call labdis(2000,'contur') 
call height(lOO) 
call thkcrv(l) 
call penwid(4)

do i=-100,100
IF(MOD(I+100,3).EQ.l) THEN 

CALL SOLID 
CALL THKCRV(2)

ELSE IF(MOD(I+100,3).EQ.2) THEN 
CALL chndsh 
CALL THKCRV(l)

ELSE 
CALL dash 
CALL THKCRV(l)

END IF
call conmat(zmat,nconx,ncony,float(i)/2500)

end do

goto 500

500 continue

CALL DISFIN 
END


