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FIGURE 8.1	 Odd radius circular halos seen from an airplane at 31,000 feet over British 

Columbia. In the photograph the 18°, 22° (or 23°?), and 35° halos are colorful and easy to 

see. Between the 18° and 22° halos the 20° halo is faint but unusually sharp and distinct. 

The 23° and 24° halos are probably present but masked by the bright 22° halo. The 9° halo 

is bright but nearly lost in the glare at the top of the airplane window. The simulation of the 

display was made using randomly oriented crystals shaped like those shown. The pyramidal 

crystals made the odd radius halos in the simulation, and the prismatic crystals made the 22° 

halo. The pyramid faces of the crystals are the { 1 0 1
_
 1 }  faces, the simplest crystallographically 

possible pyramid faces. Tick marks in the simulation are at intervals of one degree.
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Odd Radius Circular Halos

The halo display in Figure 8.1 was seen from a commercial jet flying over 

British Columbia between Seattle and Anchorage in 1999. The display consists 

of several odd radius circular halos and in fact is probably almost identical to 

the display seen by Weickmann nearly six decades earlier (Chapter 1). The 

simulation in the figure shows the circular halos that would be theoretically 

expected from randomly oriented prismatic and pyramidal crystals as shown. 

The pyramid faces of the crystals are the {1 0 ¡ 1} faces, which, as mentioned in 

Chapter 7, are the simplest theoretically possible pyramid faces. The pyramidal 

crystals here can therefore be regarded as the next logical step in complexity 

after the simple prismatic crystals of Chapters 1–6. Using the same ideas that 

guided Steinmetz and Weickmann (Chapter 7), we will see that crystals like 

these should theoretically be able to make as many as eight circular halos, having 

radii of about 9°, 18°, 20°, 22°, 23°, 24°, 35°, and 46°. The radii of the halos in the 

photograph are difficult to measure accurately, but they appear to be at least 

roughly consistent with the theoretically expected values. (Although only five 

halos are seen distinctly in this particular photograph, the 22°, 23°, and 24° halos 

are probably overlapping to give the appearance of a single halo. The 46° halo, 

though seen only faintly here, is stronger in other photographs of the display.) 

These eight halos are by far the most common of the circular halos; any other 

circular halo would be considered highly exotic.

The circular halos arise in (more or less) randomly oriented crystals. Their 

ray paths enter and directly exit the crystal, with internal reflections playing no 

essential role. Each circular halo is associated with such a ray path or, equivalently, 

with a wedge angle, the wedge angle being the angle between the entry and exit 

faces of the ray path. Table 8.1 gives the wedge angles and theoretical halo radii 
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for the eight circular halos mentioned above.

How do the theoretical halo radii in the table square with the radii of real 

halos? The British Columbia display is not a good test, because, as already 

mentioned, the halo radii in the photo are hard to measure. Not only is the sun 

out of the photo, there is also the complication of distortion introduced by the 

airplane window.

The display shown in Figures 8.3 and 8.4 has fewer halos, but it is a very strong 

display nevertheless. Using the methods of Appendix D, we have positioned orange, 

blue, and red dots in the photo at respective angular distances of 18.3°, 22.9°, and 

34.9° from the sun; these are the theoretical radii of the 18°, 23°, and 35° halos 

(Table 8.1). The orange, blue, and red dots do indeed end up on the inner edges 

of three circular halos; apparently the halos are the 18°, 23°, and 35° halos. The 

20° halo may be present as well, blending with the 18° halo. But although ordinary 

22° parhelia are prominent, there is no 22° halo. That is, there is no circular halo 

at the green dots, which are 21.8° from the sun, where the 22° halo would be 

FIGURE 8.2	 Face numbering on a pyramidal crystal.  

The basal faces are numbered 1  and 2 , and the prism 

faces are 3, 4, . . . , 8, the same as for prismatic crystals.  

The pyramid faces are 13, 14, . . . , 18, and 23, 2 4 , . . . , 28.  

The pyramid faces here are the { 1 0 1
_
 1 }  faces, but the 

numbering scheme is standard for any pyramidal 

crystal.

TABLE 8.1	 Wedges (or ray paths), wedge angles, and theoretical halo radii of circular 

halos made by ice crystals having basal, prism, and { 1 0 1
_
 1 }  pyramid faces (Figure 8.2).

Wedge Wedge angle α Halo radius Δmin Halo name

13.6 28.0° 8.9° 9° halo

13.25 52.4 18.3 18° halo

13.16 56.0 19.9 20° halo

3.5 60.0 21.8 22° halo

13.2 62.0 22.9 23° halo

13.5 63.8 23.8 24° halo

13.15 80.2 34.9 35° halo

1.3 90.0 45.7 46° halo
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FIGURE 8.3	 The 18°, 23°, and 35° halos.  Ordinary 22° parhelia are present as well, at left 

and right, clearly closer to the sun than is the 23° halo.  The colored dots are at the indicated 

angular distances from the sun.  The sun, barely more than a grey dot here, is seen through 

a nearly opaque disk made from crossed polarizers.  Fairbanks, January 31, 2005.

FIGURE 8.4	 Slightly later stage of the same display, photographed with a wider angle 

lens and different film.
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expected to be. The significance of the yellow dot, at the 1:30 position and 32° from 

the sun, will be explained in Chapter 11, in connection with Figure 11.4.

Positioning the colored dots at prescribed angular distances from the sun is 

more involved than it may sound, and measuring the radii of daytime halos from 

a photograph is always a tricky business. But a photograph of lunar halos is 

another matter. If the photo contains some stars, then accurate angular distances 

from the moon to the various stars are easily computed, so long as the time and 

place of the photo are known.

Thus, in Figure 8.5 the angular distances from the circled stars to the moon 

are known quite accurately—to better than .05°. The positions of the circled stars 

relative to the moon and the halos are just what you would expect from Table 8.1 if 

the halos in the photo are the 9°, 18°, and 23° circular halos: The position of Saturn, 

9.3° from the moon and about at the inner edge of the inner halo, is just right if 

the halo is the 9° halo (theoretical radius 8.9°). The position of the star d Gem at 

18.1° from the moon and at the inner edge of the intermediate halo, is correct if 

the halo is the 18° halo (theoretical radius 18.3°). The positions of the three outer 

stars suggest that the outer halo is the 23° halo rather than the common 22° halo; 

the halo is just a bit too far from the moon to be the 22° halo.

FIGURE 8.5	 Odd radius lunar halos.  The indicated angular distances from the moon  

to the circled stars can be used to estimate the halo radii.  The most prominent halos  

appear to be the 9°, 18°, and 23° halos.  Fairbanks, Alaska, January 5, 2004, 10:46 p.m.  Moon 

elevation 50°.
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In the next chapter we will see how the wedge angles in Table 8.1 were 

calculated. In doing so, we will also begin to see in what sense the {1 0 ¡ 1} faces 

are simple. In the next two sections of the present chapter we will see how the halo 

radii in Table 8.1 were calculated from the wedge angles. We begin by examining 

the 22° halo; it will serve as a prototype for all circular halos.

The 22° halo as a prototype for all circular halos

The 22° halo normally arises in prismatic crystals, but it can also arise in pyramidal 

crystals like the one in Figure 8.2, since that crystal has the necessary prism faces. 

The crystals should be randomly oriented and the ray path should be 35  (or 46 , 

57 , etc.), so that the wedge angle is 60°. As a crystal takes on all orientations, 

the halo point—the light point of the outgoing ray—traces out the halo. Since 

all orientations are allowed, you might think that the halo point would trace out 

the entire celestial sphere, but in fact the angular deviation ∆ between the sun 

and the halo point ranges not from 0° to 180° but only from ∆min = 21.8° to 

∆max = 50.1°, and the halo point traces out an annular region on the celestial 

sphere (Figure 8.6). The portion of the halo near the outer boundary ∆ = ∆max 

is far too weak to be seen, and normally what you notice in the sky is mainly the 

relatively abrupt change in brightness at the inner boundary ∆ = ∆min. In fact 

we often carelessly refer to the inner boundary as the 22° halo, thus treating the 

halo as a circle rather than as an annular region.

Figure 8.7 illustrates the wedge angle for the 22° halo. The figure also attempts 

to illustrate the idealized wedge that is the source of the term wedge angle. The 

wedge is bounded by planar extensions of faces 3  and 5  and extends indefinitely 

FIGURE 8.6	 Idealized simulation 

of the 22° halo.  The crystals used 

in making the simulation were 

randomly oriented hexagonal prisms.  

Only ray paths 3 5  were allowed, so 

that, for example, there were no 

reflected rays and no 46° halo rays.  

The two circles are the theoretical 

inner and outer boundaries of the 

halo, on which ∆ = ∆
min

 and ∆ = ∆
max

.  

The sun was a point sun, and the 

light rays were all of one wavelength; 

as a result, the inner edge of the halo 

appears unrealistically sharp.

∆ = ∆min

∆ = ∆max
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in both directions perpendicular to the page, and indefinitely in the direction 

toward the bottom of the page as well, so that there are only two faces bounding 

the wedge. We sometimes imagine for simplicity that the 22° halo arises in wedges 

like this one.

Halo radii from wedge angles

Other circular halos are like the 22° halo but with different wedge angles α . Both 

∆min and ∆max depend on α  and, hence, so does the annular region occupied by 

the halo. The parameter ∆max is usually unimportant, since the halo is so weak 

near its outer boundary, but ∆min is crucial—it is the halo radius. In the next 

section we will derive the classical expression for the dependence of ∆min on α , 

namely,
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where n = 1.31 is the refractive index for ice. For the 22◦ halo, the wedge angle
α is 60◦ and so ∆min is 21.8◦. For the 46◦ halo, the wedge angle is 90◦ and
∆min is 45.7◦. The other halo radii ∆min in Table 8.1 are calculated similarly,
once their wedge angles are known.

In general, larger wedge angles give larger halo radii. However, there is a
largest wedge angle αmax that will allow light to pass through the wedge. For
a wedge with α > αmax, any light ray that enters the wedge at one face suffers
total internal reflection at the other. We will see that αmax is given by

n sin
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For ice, with n = 1.31, Eq. (8.2) gives αmax = 99.5◦. Equation 8.1 then gives
a largest possible halo radius of ∆min = 80.5◦, but in practice this value is too
generous, and any halo having a radius greater than about 50◦ would probably
be too faint to be seen.

On a hexagonal prism there are three wedge angles, namely, 60◦, 90◦, and
120◦. The wedge angles 60◦ and 90◦ make the 22◦ and 46◦ halos, but the
wedge angle 120◦ is greater than αmax. The 22◦ and 46◦ halos are therefore
the only circular halos that can arise in hexagonal prisms. To make additional
circular halos, you need additional wedge angles and therefore a crystal other
than a simple hexagonal prism. A pyramidal crystal is a natural choice, but to
specify its shape—and hence the wedge angles—you need to know the angle of
inclination between the pyramid faces and the crystal axis, and this is where
halo theorists were for a long time in the dark. Had they known this angle, they
could have found the wedge angles and then calculated the halo radii using Eq.
(8.1), which has long been known. On the other hand, had they known the halo
radii with some precision, they could have worked backwards to get the wedge
angles and perhaps the crystal shape. But they knew neither, at least not with
any certainty.

Today we have many photographs of odd radius halos, and we can measure
the halo radii from the photos. The measurements require care, however, and
even under the best circumstances the measured radii are uncertain by half a
degree or so, the uncertainty being due mainly to the fuzziness of the halo edge.
We also have photographs of pyramidal crystals, and we can measure wedge
angles from the photos, but again the results are not as precise as we would
like. The most precise values for wedge angles are today calculated theoretically
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FIGURE 8.7	 (Left) Wedge angle α  = 60° for the wedge 3 5  on a crystal as in Figure 6.1 

or Figure 8.2.  This wedge gives the 22° halo.  (Right) Wedge 3 5 .  The wedge is determined 

by faces 3 and 5  of the crystal.  The hexagon represents the crystal, and the large triangle 

enclosing the hexagon represents the wedge.  The view is looking directly at face 2  of the 

crystal.
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For ice, with n = 1.31, Eq. (8.2) gives α max = 99.5°. Equation (8.1) then gives 

a largest possible halo radius of ∆min = 80.5°, but in practice this value is too 

generous, and any halo having a radius greater than about 50° would probably 

be too faint to be seen.

On a hexagonal prism there are three wedge angles, namely, 60°, 90°, and 120°. 

The wedge angles 60° and 90° make the 22° and 46° halos, but the wedge angle 120° 

is greater than α max. The 22° and 46° halos are therefore the only circular halos 

that can arise in hexagonal prisms. To make additional circular halos, you need 

additional wedge angles and therefore a crystal other than a simple hexagonal 

prism. A pyramidal crystal is a natural choice, but to specify its shape—and hence 

the wedge angles—you need to know the angle of inclination between the pyramid 

faces and the crystal axis, and this is where halo theorists were for a long time 

in the dark. Had they known this angle, they could have found the wedge angles 

and then calculated the halo radii using Eq. (8.1), which has long been known. 

On the other hand, had they known the halo radii with some precision, they could 

have worked backwards to get the wedge angles and perhaps the crystal shape. 

But they knew neither, at least not with any certainty.

Today we have many photographs of odd radius halos, and we can measure 

the halo radii from the photos. The measurements require care, however, and 

even under the best circumstances the measured radii are uncertain by half a 

degree or so, the uncertainty being due mainly to the fuzziness of the halo edge. 

We also have photographs of pyramidal crystals, and we can measure wedge 

angles from the photos, but again the results are not as precise as we would 

like. The most precise values for wedge angles are today calculated theoretically 

from crystallographic principles. In the next chapter we will show how these 

calculations go.

Topics in the present chapter have been arranged roughly in order of decreasing 

importance. On a first reading, you may wish to skip directly from here to the 

next chapter.

How light passes through a wedge

In order to understand circular halos and, in particular, in order to derive Eq. (8.1), 

we need to think about the way light passes through a wedge. How much is the 

light deviated? Is there a minimum value for the deviation? Is there a maximum? 

And so forth. The problem of light passing through a wedge is not so simple, 

since it is spatial. Veterans of Physics 101 may remember something like it, but 

usually what is treated there is the special case where the ray path lies entirely in 

a plane normal to both faces of the wedge. In many books on halos the problem 

is similarly swept under the rug. The general problem, not just the special case, 
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has been treated by Uhler [81] and Tape [75], both of whom approached the 

problem analytically. Our approach here is geometric. You will see the appeal 

of the geometric approach if you glance at one of the analytic treatments for 

comparison.

As usual, we consider a light ray passing through a wedge having refractive 

index n  and wedge angle α . Figure 8.8 shows the light points S, R, and H of the 

entry, internal, and exit rays. The sun point S and the halo point H are on the 

sphere of radius 1, while R is on the sphere of radius n> 1. The law of refraction 

(page 38) tells how to get H from S: you project S to the outer sphere, getting R, 

and then project R back to the inner sphere, getting H. The first projection is 

normal to the entry face, the second is normal to the exit face.

We refer to the V-shaped configuration consisting of the two red line segments 

RS and RH as the vee or the normal vee,1 since its legs—the two line segments—

are the projection directions and hence are normal to their respective wedge faces. 

As the wedge takes on various orientations, the point S in Figure 8.8 stays fixed, 

but R moves on the outer sphere and H moves on the inner sphere, always in 

such a way that the vertex angle of the vee remains equal to the wedge angle α . 

The halo point H traces out the circular halo.

Minimum deviation    In Figure 8.8 the deviation between the points S and H 

is, in radians, the great circle distance between S and H. It is closely related to 

the straight line distance between S and H; the smaller the deviation, the smaller 

the straight line distance. It is clear from the figure that you can’t make S and H 

arbitrarily close together and you can’t make them arbitrarily far apart. So you 

can’t make the deviation arbitrarily small and you can’t make it arbitrarily big. 

What are the normal vees for which the deviation is minimum? What are those 

for which it is maximum?

Figure 8.9 shows how to narrow down the candidates both for minimum and for 

maximum deviation. If you start with a normal vee that is not isosceles, you can 

always find a nearby vee which has smaller deviation: In the top diagram, if you 

start with the vee formed by S, R, and H, you can perturb it to the vee formed by 

S', R and H', always keeping the vertex angle equal to α . Since the segment RH 

was more nearly perpendicular to the inner circle than was RS, the perturbation 

decreases the deviation. (The straight-line distance between S' and H' is less than 

that between S and H.) Continuing this process, you arrive at an isosceles vee 

(middle diagram) which has smaller deviation than the original vee.

A vee is said to be central if the plane of the vee passes through the common 

1 More precisely, points S, R, and H define a normal vee (with parameters n  and α ) if S 
and H are on the inner sphere, R is on the outer sphere, ∠SRH = α , and the line segments 
RS and RH do not penetrate the inner sphere. In this case the corresponding ray path and 
wedge, including the wedge orientation, can be reconstructed from S, R, and H.



C H A P T E R  8  •  O D D  R A D I U S  C I R C U L A R  H A L O S 	 79

FIGURE 8.8	 Light point diagram for the 

circular halo forming in a wedge having 

refractive index n  and wedge angle α . 

The spheres are concentric and have 

radii 1 and n.  As the wedge (not shown) 

changes its orientation, the normal vee 

(red), consisting of the line segments RS 

and RH, changes also; the sun point S is 

fixed on the inner sphere, and the vertex 

angle of the vee remains equal to α , but 

the point R can move on the outer sphere, 

and the halo point H can move on the inner 

sphere, where it traces out the halo.

S

R

H

center O of the two spheres. Among all the isosceles vees SRH with vertex at R 

and with fixed vertex angle α , the ones with smallest deviation are clearly those 

that are central. After all, the isosceles triangles SRH are all similar, and we just 

want the ones with the shortest side SH.

Thus, among all vees associated with the given wedge, the ones that give 

minimum deviation ∆min are those that are isosceles and central. One such vee 

is shown at the top in Figure 8.10. The Law of Sines applied to the lower left 

diagram in the figure gives Eq. (8.1), the fundamental equation for finding halo 

radius in terms of wedge angle.

Historically, any plane that is normal to both faces of the wedge has been 

known as a normal plane. A vee is central when the corresponding ray path lies 

entirely in a normal plane; this is because the plane of any vee SRH is itself a 

normal plane, and because the entry, internal, and exit rays are in the directions 

SO, RO, and HO, respectively. A ray path has minimum deviation when it lies 

in a normal plane and is symmetric (Figure 8.10, lower right).

Maximum deviation    Figure 8.9 shows that the maximum deviation ∆max can 

only occur when the vee is tangential, that is, when at least one of its legs is 

tangent to the sphere. It turns out that, depending on n  and α , the maximum 

occurs either when the vee is tangential and central, or when the vee is tangential 

and isosceles. For ice, with n = 1.31, the former configuration gives the maximum 

deviation if α ≤ 46.9°, and the latter gives it if α ≥ 46.9°. The result is
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Maximum deviation

Figure 8.9 shows that the maximum deviation ∆max can only occur when the
vee is tangential, that is, when at least one of its legs is tangent to the sphere.
It turns out that, depending on n and α, the maximum occurs either when the
vee is tangential and central, or when the vee is tangential and isosceles. For
ice, with n = 1.31, the former configuration gives the maximum deviation if
α ≤ 46.9◦, and the latter gives it if α ≥ 46.9◦. The result is

∆max =




−α + cos−1

(
cos α −√

n2 − 1 sin α
)

if α ≤ 46.9◦

2 sin−1
(√

n2 − 1 sin α
2

)
if α ≥ 46.9◦

(8.3)

For example, the outer boundary of the 22◦ halo is at ∆max = 50.1◦, since
α = 60◦ > 46.9◦. For more on both minimum and maximum deviation see the
article by Tape [74].

Maximum wedge angle

The wedge angle is maximum when a central isosceles vee is also tangential.
Then � OSR in Figure 8.10 becomes a right angle, giving Eq. (8.2).

Fine tuning the halo radii

One can argue that the theoretical halo radii ∆min in Table 8.1 should be refined.
Even if the wedge angles in the table are exactly right—which we assume for the
moment—there are many factors that might cause small perturbations in halo
radii. Some of the perturbations can be predicted quantitatively, but others are
elusive. Let’s again consider the 22◦ halo as an example.

Dependence of halo radius on sun size

We have been treating halos as if the light source were a point, but of course the
sun has a positive angular diameter—about half a degree. Each point on the
sun’s disk can be thought of as making its own 22◦ halo, and what we normally
call the 22◦ halo is really a superposition of all these halos (annular regions). A
small subtraction δ from our value ∆min = 21.8◦ (Table 8.1) should therefore
be made in computing the radius of the 22◦ halo. You might think at first that
δ should be equal to the angular radius the sun, but Figure 8.11 suggests that
it should be less, perhaps 0.15◦ or so. (We are just guessing.) Halo simulations
made both with and without a point sun barely differ from each other, thus
suggesting that δ might be even less.

Dependence on temperature and pressure

It is clear from Eq. (8.1) that ∆min depends on the refractive index n of ice
as well as on the wedge angle α. But n depends slightly on temperature and

For example, the outer boundary of the 22° halo is at ∆max = 50.1°, since 

α  = 60° > 46.9°. For more on both minimum and maximum deviation see the 

article by Tape [74].
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FIGURE 8.9	 Several normal vees, all in the same plane, showing that isosceles vees are 

the only candidates for minimum deviation, and tangential vees are the only candidates for 

maximum deviation.  The situation is similar to that in Figure 8.8 except that here R is fixed, 

rather than S.  At the left in each diagram the points S and H are on the sphere of radius 1.  

The point R is on the sphere of radius n (not shown).  The plane of the vee intersects the 

sphere of radius 1 in the circle C
1
 (red).  At the right is the section in the plane of the vee, 

with circle C
1
 as before and with circle C

2
 being the intersection of the plane of the vee 

with the sphere of radius n. Note that the point O', which is the common center of the two 

circles, is not the center of the sphere.  (Top) An arbitrary vee.  Also shown is a perturbation 

of the vee (dashed) having the same vertex angle and lying in the same plane.  Perturbing 

the vee so as to make it more nearly isosceles, as here, decreases the deviation.  Perturbing 

it so as to make it more nearly tangential increases the deviation.  (Middle) Isosceles vee.  

(Bottom) Tangential vee.
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FIGURE 8.10	 C a l c u l a t i n g 

the minimum deviation ∆
min

 

[Eq. (8.1)].  (Top left) Light points 

S , R , H in minimum deviation 

configuration.  The vee formed 

by S, R, and H is isosceles and 

central.  (Top right) Same but 

showing only the section in the 

plane of the vee.  Since the vee 

is central, the plane contains 

the center O  of the sphere.  

(Bottom left) The triangle SRO, 

which gives Eq. (8.1) via the 

Law of Sines.  (Bottom right) The 

corresponding wedge and ray 

path.  The entry, internal, and 

exit rays are in the directions SO, 
RO, and HO, respectively.  The ray 

path is symmetric and lies in a 

plane normal to both faces of the 

wedge.

Maximum wedge angle    The wedge angle is maximum when a central isosceles 

vee is also tangential. Then ∠OSR in Figure 8.10 becomes a right angle, giving 

Eq. (8.2).

Fine tuning the halo radii

One can argue that the theoretical halo radii ∆min in Table 8.1 should be refined. 

Even if the wedge angles in the table are exactly right—which we assume for the 

moment—there are many factors that might cause small perturbations in halo 

radii. Some of the perturbations can be predicted quantitatively, but others are 

elusive. Let’s again consider the 22° halo as an example.

Dependence of halo radius on sun size    We have been treating halos as if the 

light source were a point, but of course the sun has a positive angular diameter—

about half a degree. Each point on the sun’s disk can be thought of as making its 

own 22° halo, and what we normally call the 22° halo is really a superposition of all 

these halos (annular regions). A small subtraction δ  from our value ∆min = 21.8° 

(Table 8.1) should therefore be made in computing the radius of the 22° halo. 

You might think at first that δ  should be equal to the angular radius of the sun, 

but Figure 8.11 suggests that it should be less, perhaps 0.15° or so. (We are just 
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guessing.) Halo simulations made both with and without a point sun barely differ 

from each other, thus suggesting that δ  might be even less.

Dependence on temperature and pressure    It is clear from Eq. (8.1) that ∆min 

depends on the refractive index n of ice as well as on the wedge angle α . But n 

depends slightly on temperature and pressure, and hence so does ∆min. A crude 

approximation for the dependence of n  is

87

pressure, and hence so does ∆min. A crude approximation for the dependence
of n is

n(T, P ) ≈ 1.31 − 3.82 × 10−5(T + 3) − .035 × 10−5 P, (8.4)

where n(T, P ) is the refractive index of ice in air at temperature T (degrees
Celsius) and pressure P (hectopascals). The base value n = 1.31, which appears
in Eq. (8.4) and which is what was used in calculating the ∆min-values in Table
8.1, is for T = −3 and P = 0. Using Eqs. (8.1) and (8.4), you can estimate
the impact of temperature and pressure changes on halo radius. You will find
that the pressure is negligible but that temperature matters, though barely: the
radius of the 22◦ halo at −55◦C is about 0.15◦ larger than that at −3◦C. The
temperature here of course refers to the temperature where the ice crystals are
located, so −55◦C is not unreasonable when the halos are forming in high cloud.
For such halos the increase in halo radius due to the low temperature should
therefore about balance the decrease due to positive sun size. For a halo display
forming at warmer temperatures, say −25◦C, the change due to temperature
would be less, and the temperature and sun size corrections together would give
a net decrease of about 0.1◦ in the theoretical halo radius—not much.

Dependence on wavelength

The refractive index also depends on the wavelength (color) of the light under
consideration, and hence so does ∆min. Both n and ∆min are smallest for red
light, largest for violet. Thus the 22◦ halo is a superposition of many concentric
circular halos, one for each wavelength, with the red halos being the smallest
and the violet halos being the largest. The resulting superposition tends to look
reddish on its inner edge; this is where only the red halos are seen, with no
overlap from the other colors.

Table 8.2 gives ∆min both for red light (n = 1.307) and for yellow light
(n = 1.31). When we speak of “the” value of ∆min for a halo, we generally
mean ∆min for yellow light; this is what was given in Table 8.1. But if you
are interested in the red, i.e., innermost, part of a halo, then you should use
the slightly smaller ∆min-value for red light, especially in the case of the larger
halos, where the difference between red and yellow becomes substantial.

Are the theoretical halo radii correct?

Using the methods of Appendix D, we have positioned the four yellow dots in
Figure 8.12 so that their angular distances from the sun are 21.8◦; this is the
∆min-value of the 22◦ halo for yellow light. The red dots are at 21.6◦, the ∆min-
value for red light. The locations of the dots look about right with respect to
the halo, with the red dots ending up on the inner edge of the halo and the
yellow dots being just a bit farther out. Here no corrections would be expected
for sun size and temperature, since the display occurred in high cloud, where
the temperature was probably low, so that the two corrections would cancel
each other.

where n(T, P ) is the refractive index of ice in air at temperature T (degrees 

Celsius) and pressure P (hectopascals). The base value n = 1.31, which appears in 

Eq. (8.4) and which is the value that was used in calculating the ∆ min-values in 

Table 8.1, is for T = –3 and P = 0. Using Eqs. (8.1) and (8.4), you can estimate 

the impact of temperature and pressure changes on halo radius. You will find that 

FIGURE 8.11	 The effect of the positive angular size of the sun on halo radius.  (Top) Sun 

and point H at a distance ∆
min

 = 21.8° (for 22° halo) from the center of the sun.  Arc AB is 

part of the circle of radius ∆
min

 centered at the center of the sun.  Arc CD is part of the circle 

of radius ∆
min

 centered at H.  Points on the white part of the sun’s disk can light the point H 

via 22° halo ray paths, since they are ∆
min

 or a bit more from H.  (Middle) Same except that H 

has been replaced by H’ at a distance δ = 0.1° to the left of H, and arc CD has been replaced 

accordingly by arc C’D’.  Points on the white part of the sun’s disk can light H’.  (Bottom) 

Same but for δ = 0°, 0.15°, 0.2°, 0.25°.  With δ = 0.2° the white fraction of the sun’s disk is 

perhaps too small to be significant.  Thus the correction in halo radius due to the positive 

angular size of the sun should be 0.15° or so.
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the pressure is negligible but that temperature matters, though barely: the radius 

of the 22° halo at –55°C is about 0.15° larger than that at –3°C. The temperature 

here of course refers to the temperature where the ice crystals are located, so 

–55°C is not unreasonable when the halos are forming in high cloud. For such 

halos the increase in halo radius due to the low temperature should therefore 

about balance the decrease due to positive sun size. For a halo display forming at 

warmer temperatures, say –25°C, the change due to temperature would be less, 

and the temperature and sun size corrections together would give a net decrease 

of about 0.1° in the theoretical halo radius—not much.

Dependence on wavelength    The refractive index also depends on the wavelength 

(color) of the light under consideration, and hence so does ∆min. Both n  and ∆min 

are smallest for red light, largest for violet. Thus the 22° halo is a superposition of 

many concentric circular halos, one for each wavelength, with the red halos being 

the smallest and the violet halos being the largest. The resulting superposition 

tends to look reddish on its inner edge; this is where only the red halos are seen, 

with no overlap from the other colors.

Table 8.2 gives ∆min both for red light (n = 1.307) and for yellow light 

(n = 1.31). When we speak of “the” value of ∆min for a halo, we generally mean 

∆min for yellow light; this is what was given in Table 8.1. But if you are interested 

in the red, i.e., innermost, part of a halo, then you should use the slightly smaller 

∆min-value for red light, especially in the case of the larger halos, where the 

difference between red and yellow becomes substantial.

Are the theoretical halo radii correct?    Using the methods of Appendix D, we 

have positioned the four yellow dots in Figure 8.12 so that their angular distances 

TABLE 8.2	 Same as Table 8.1 but with halo radii computed for red as well as for yellow 

light.  The 77° halo (bottom line of the table), which in principle exists for red light but not 

for yellow, would be far too weak to be seen.

Wedge Wedge angle α Halo radius Δmin

(red, n = 1.307)
Halo radius Δmin

(yellow, n = 1.31)
Halo name

13.6 28.0° 8.9° 8.9° 9° halo

13.25 52.4 18.1 18.3 18° halo

13.16 56.0 19.7 19.9 20° halo

3.5 60.0 21.6 21.8 22° halo

13.2 62.0 22.6 22.9 23° halo

13.5 63.8 23.6 23.8 24° halo

13.15 80.2 34.5 34.9 35° halo

1.3 90.0 45.1 45.7 46° halo

13.24 99.8 76.9 … 77° halo
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from the sun are 21.8°; this is the ∆min-value of the 22° halo for yellow light. The 

red dots are at 21.6°, the ∆min-value for red light. The locations of the dots look 

about right with respect to the halo, with the red dots ending up on the inner edge 

of the halo and the yellow dots being just a bit farther out. Here no corrections 

would be expected for sun size and temperature, since the display occurred in 

high cloud, where the temperature was probably low, so that the two corrections 

would cancel each other.

Figure 8.13 is another example, the yellow and red dots having the same 

meaning as before. To our eye the red and yellow dots in the 12:00 position look 

about right, but the ones at 3:00 and 9:00 look just a hair too close to the sun. 

(The ones at 6:00 are in an overexposed region and are irrelevant.) Correcting 

for sun size and temperature would make the discrepancy worse, though ever 

so slightly. Perhaps we have a bug in our measurement of angular distances, 

or perhaps we are still forgetting some adjustment to n . (Or perhaps the whole 

theory is fundamentally flawed, though of course we do not think so.) But it 

may also be that the 22° halo here is in fact not perfectly circular. It is easy to 

see how this might happen if the crystals are not required to have completely 

random orientations.

In any case, if Figures 8.12 and 8.13 are any indication, the ∆min-values in 

Table 8.1 need very little refinement, if any. If desired, small corrections can be 

made for sun size, temperature, and color. But usually we will not do so; when 

we speak of the theoretical radius of a halo, we generally mean the ∆min-value 

from Table 8.1, uncorrected.

The inner edge of a halo is always fuzzy to some extent, which makes it difficult 

to measure the radius. Because the inner edges of halos are so hard to pinpoint, 

we have ducked the problem by not attempting to mark them in our photographs. 

Thus in Figures 8.12, rather than trying to indicate the inner edge of the halo, we 

have been content to position the red and yellow dots at the angular distances 

given by the ∆min-values for red and yellow light. We then leave it to you to 

decide whether the edge of the halo is consistent with the dot locations.

Three more caveats    Although the analyses in Figures 8.12 and 8.13 are 

reassuring, we have no reason to be complacent. We can think of at least three more 

factors that complicate the treatment of halo radii: halo brightness, atmospheric 

refraction, and diffraction.

In Figure 3.7 the bright lower tangent arc is slightly closer to the moon than is 

the much dimmer 22° halo—an impossibility, according to theory (Figure 12.2). 

But that theory ignores the role of the eye and the brain, it ignores the role of 

the camera and all of the attendant issues involving exposures, processing, and 

possible electronic manipulation of the photo, and it ignores forward scattering 

of light, the same forward scattering that creates the aureole around the sun and 
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FIGURE 8.12	 Ordinary 22° halo.  Yellow dots are 21.8° from the sun, red dots are at 21.6° 

(Table 8.2).  Fairbanks, July 9, 2004.

FIGURE 8.13	 Another display with 22° halo.  South Pole, December 19, 1997.
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makes the sun look far bigger than its half-degree diameter. We can imagine that 

those things matter, but we have no idea of their relative importance. Anyway, 

halos look slightly bigger when they are very bright than when they are dim—

bigger in the sense that they expand in all directions. That means that the radius 

of a circular halo will appear to decrease slightly as the halo brightens.

A light ray that is nearly horizontal can sometimes be bent downward slightly 

by atmospheric refraction, thus raising the light point of the ray by a few tenths 

of a degree. A ray that is more oblique to the horizon, however, will be nearly 

straight. The detailed ramifications of this are beyond us, but we can see that 

atmospheric refraction might introduce an uncertainty of a few tenths of a degree 

in a halo radius that has one (but not both) of its endpoints near the horizon. 

One of the endpoints is of course the sun, the other is on the halo.

Finally, diffraction. When the halo-making crystals are small, diffraction 

broadens the halos and decreases their apparent radii. The decrease can be 

substantial. (If the crystals are very small, diffraction will wipe out the halos 

entirely.) We do not know how to incorporate diffraction rigorously into halo 

simulations. Luckily, halo displays in which diffraction plays a role are easy 

to spot, due to their diffuse and poorly defined halos (Figure 8.14). Moreover, 

although diffraction can decrease halo radii, it cannot increase them; an observed 

FIGURE 8.14	 Odd radius halos forming in very small crystals.  Due to diffraction, the halos 

are so diffuse that their inner edges are impossible to locate with any precision.  The halos 

here are virtually indistinguishable from each other.  Fairbanks, January 19, 1996.
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FIGURE 8.15	 Odd radius halos.  We believe that the halo identifications are correct, but 

we have not measured the radii.  Kustavi, Finland, May 14, 1988.  Σ = 44°.  Photo © Pekka 

Parviainen, Polar Image.

radius that is smaller than ∆min can sometimes be attributed to diffraction, but 

an observed radius that is larger than ∆min cannot.

More on the problem of measuring halo radii can be found in an article by 

Können and Tinbergen [39].

Circular halos are rare

If we insist that circular halos arise in truly random crystal orientations, then circular 

halos are rare. The halos in the British Columbia display (Figure 8.1) may indeed 

be circular, but many of the other halos shown in this chapter exhibit intensity 

variations that are inconsistent with perfectly random orientations. Figures 8.5, 

8.15, and 8.16 are examples. Look for weakness or absence of the 18° halo in the 

12:00 position, enhancement of the 23° halo in the 12:00 position, or enhancement 

of the 9° halo in the 6:00 position; these are signs that the crystal orientations have 

some tendency toward plate orientations rather than being truly random. One can 

argue about whether the halos in those figures should be called poorly defined plate 

arcs rather than circular halos. There is no hard and fast line that separates plate 

arcs (or column arcs) from circular halos. Instead there is a continuum of halos 

between well-defined plate arcs on one end and truly circular halos on the other.
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FIGURE 8.16	 Odd radius halos, mainly the 18° and 23° halos.  The colored dots are 

positioned at the indicated angular distances from the sun (Table 8.1).  Fairbanks, March 3, 

1999.  Σ = 12°.
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FIGURE 8.17	 Odd radius halos, Vaala, Finland, May 13, 2002.  For reasons that are not 

understood, the 20° halo is not common.  Here it is unusually bright and distinct.  Σ = 44°.
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