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C H A P T E R  9

Some Crystallography

I n the previous chapter we saw how to calculate the radii of circular halos from 

the wedge angles (interfacial angles) on a crystal. In the present chapter we will 

see how to calculate the likely wedge angles from crystallographic principles and 

from the c/a ratio of ice. The crystallographic principles together with the c/a 

ratio therefore determine the likely halo radii. Not everyone will find this chapter 

to be easy going. If this applies to you, you can of course skip the work and just 

take the results on faith. There are two of them. First, on a pyramidal crystal 

the angle of inclination x  of the pyramid faces to the crystal axis determines all 

of the wedge angles on the crystal. Second, the most likely value of x  is 28°. The 

first statement should seem plausible, perhaps obvious. But the second statement 

will be hard to swallow—and impossible to appreciate—unless you attempt to 

follow the reasoning of this chapter.

Wedge angles from angle x

It is easy to calculate the wedge 

angle of a wedge if the normal 

vectors to the two wedge faces 

are known. In Figure 9.1, for 

example, the wedge angle is the 

supplement of the angle between 

the outward normal vectors N3 

and N5, or, equivalently, it is the 

angle between –N3 and N5. 

FIGURE 9.1	 Like Figure 8.7 but with the addition 

of N3 and N5, the normal vectors to faces 3  and 5 .  

The wedge angle α  is equal to the angle between 

–N3 and N5.
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In general,

Chapter 9

Some Crystallography

In the previous chapter we saw how to calculate the radii of circular halos from
the wedge angles (interfacial angles) on a crystal. In the present chapter we will
see how to calculate the likely wedge angles from crystallographic principles and
from the c/a ratio of ice. The crystallographic principles together with the c/a
ratio therefore determine the likely halo radii. Not everyone will find this chapter
to be easy going. If this applies to you, you can of course skip the work and just
take the results on faith. There are two of them. First, on a pyramidal crystal
the angle of inclination x of the pyramid faces to the crystal axis determines all
of the wedge angles on the crystal. Second, the most likely value of x is 28◦.
The first statement should seem plausible, perhaps obvious. But the second
statement will be hard to swallow—and impossible to appreciate—unless you
attempt to follow the reasoning of this chapter.

Wedge angles from angle x

It is easy to calculate the wedge angle of a wedge if the normal vectors to the
two wedge faces are known. In Figure 9.1, for example, the wedge angle is the
supplement of the angle between the outward normal vectors N3 and N5, or,
equivalently, it is the angle between −N3 and N5. In general,

cos α = − Ni · Nj

|Ni| |Nj | , (9.1)
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Figure 9.1: Like Figure 8.7 but with
the addition of N3 and N5, the normal
vectors to faces 3 and 5. The wedge
angle α is equal to the angle between
−N3 and N5.
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where α  is the wedge angle for entry and exit faces i  and j , and where N
i
 and 

N
j
 are the outward normal vectors to the two faces.

We said that the inclination angle x  determines all wedge angles on a pyramidal 

crystal. For the wedge 13 14, for example, here is how to calculate its wedge angle 

in terms of x :

With the crystal axis vertical, as in Figure 9.2, angle x  is not only the inclination 

of the pyramid faces to the crystal axis, it is also the inclination of their normal 

vectors to the horizontal plane. The outward normal vector N13 to face 13 can 

therefore be written
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x

Figure 9.2: Pyramidal crystal illustrating angle
x, that is, the angle of inclination of the pyramid
faces to the crystal axis. Angle x determines all
wedge angles of the crystal (Table 9.1). Here
x = 39◦, which turns out to be unrealistic.

where α is the wedge angle for entry and exit faces i and j, and where Ni and
Nj are the outward normal vectors to the two faces.

We said that the inclination angle x determines all wedge angles on a pyramidal
crystal. For the wedge 13 14, for example, here is how to calculate its wedge
angle in terms of x:

With the crystal axis vertical, as in Figure 9.2, angle x is not only the
inclination of the pyramid faces to the crystal axis, it is also the inclination of
their normal vectors to the horizontal plane. The outward normal vector N13

to face 13 can therefore be written

N13 = (cos t cos x, sin t cos x, sin x), (9.2)

where t is the azimuth of the vector. Here we have temporarily assumed the
face normals to have unit length.

You can get N14 by rotating N13 through an angle of 60◦ about the vertical
axis, that is, you increase its azimuth by 60◦, so

N14 = (cos(t + 60) cos x, sin(t + 60) cos x, sin x) (9.3)

Hence from Eqs. (9.1), (9.2), (9.3), the wedge angle α is given by

cos α = −N13 · N14

= −1
2

(cos2 x + 2 sin2 x) (9.4)

=
1
4

(−3 + cos 2x)

The remaining wedge angles are computed similarly and are listed in Table 9.1.

Angle x from crystallography

We now explain how the principles of crystallography limit the possibilities for
x. Proofs and more explanation are given in Appendix E.

Ice is a mineral and is therefore expected to conform to the principles of
crystallography. A crystal of any mineral has an internal 3-dimensional lattice

where t  is the azimuth of the vector. Here we have temporarily assumed the face 

normals to have unit length.

FIGURE 9.2	 (Above) Pyramidal crystal 

illustrating angle x , that is, the angle of 

inclination of the pyramid faces to the 

crystal axis.  Angle x determines all wedge 

angles of the crystal ( Table 9.1).  Here 

x = 39°, which turns out to be unrealistic.

Wedge faces cos α

13 6 cos x

13 25 (3 – cos 2x)/4

13 16 cos 2x

3 5 1/2

13 2 sin x

13 5 (cos x)/2

13 15 (–1 + 3 cos 2x)/4

1 3 0

13 24 –(–1 + 3 cos 2x)/4

13 4 –(cos x)/2

13 1 –sin x

3 4 –1/2

13 23 –cos 2x

13 14 –(3 – cos 2x)/4

13 3 –cos x

x

TABLE 9.1	 (Right)  Wedge angles α 

on a pyramidal crystal having inclination 

angle x (Figure 9.2).  For each wedge the 

table gives cos α  in terms of x.  The last 

seven wedge angles are supplements of the 

first seven but in reverse order.  The wedge 

angle values in Table 8.1 result from this 

table by taking x = 28°.
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You can get N14 by rotating N13 through an angle of 60° about the vertical 

axis, that is, you increase its azimuth by 60°, so
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x

Figure 9.2: Pyramidal crystal illustrating angle
x, that is, the angle of inclination of the pyramid
faces to the crystal axis. Angle x determines all
wedge angles of the crystal (Table 9.1). Here
x = 39◦, which turns out to be unrealistic.

where α is the wedge angle for entry and exit faces i and j, and where Ni and
Nj are the outward normal vectors to the two faces.

We said that the inclination angle x determines all wedge angles on a pyramidal
crystal. For the wedge 13 14, for example, here is how to calculate its wedge
angle in terms of x:

With the crystal axis vertical, as in Figure 9.2, angle x is not only the
inclination of the pyramid faces to the crystal axis, it is also the inclination of
their normal vectors to the horizontal plane. The outward normal vector N13

to face 13 can therefore be written

N13 = (cos t cos x, sin t cos x, sin x), (9.2)

where t is the azimuth of the vector. Here we have temporarily assumed the
face normals to have unit length.

You can get N14 by rotating N13 through an angle of 60◦ about the vertical
axis, that is, you increase its azimuth by 60◦, so

N14 = (cos(t + 60) cos x, sin(t + 60) cos x, sin x) (9.3)

Hence from Eqs. (9.1), (9.2), (9.3), the wedge angle α is given by

cos α = −N13 · N14

= −1
2

(cos2 x + 2 sin2 x) (9.4)

=
1
4

(−3 + cos 2x)

The remaining wedge angles are computed similarly and are listed in Table 9.1.

Angle x from crystallography

We now explain how the principles of crystallography limit the possibilities for
x. Proofs and more explanation are given in Appendix E.

Ice is a mineral and is therefore expected to conform to the principles of
crystallography. A crystal of any mineral has an internal 3-dimensional lattice

Hence from Eqs. (9.1), (9.2), (9.3), the wedge angle α  is given by
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Figure 9.2: Pyramidal crystal illustrating angle
x, that is, the angle of inclination of the pyramid
faces to the crystal axis. Angle x determines all
wedge angles of the crystal (Table 9.1). Here
x = 39◦, which turns out to be unrealistic.

where α is the wedge angle for entry and exit faces i and j, and where Ni and
Nj are the outward normal vectors to the two faces.

We said that the inclination angle x determines all wedge angles on a pyramidal
crystal. For the wedge 13 14, for example, here is how to calculate its wedge
angle in terms of x:

With the crystal axis vertical, as in Figure 9.2, angle x is not only the
inclination of the pyramid faces to the crystal axis, it is also the inclination of
their normal vectors to the horizontal plane. The outward normal vector N13

to face 13 can therefore be written

N13 = (cos t cos x, sin t cos x, sin x), (9.2)

where t is the azimuth of the vector. Here we have temporarily assumed the
face normals to have unit length.

You can get N14 by rotating N13 through an angle of 60◦ about the vertical
axis, that is, you increase its azimuth by 60◦, so

N14 = (cos(t + 60) cos x, sin(t + 60) cos x, sin x) (9.3)

Hence from Eqs. (9.1), (9.2), (9.3), the wedge angle α is given by

cos α = −N13 · N14

= −1
2

(cos2 x + 2 sin2 x) (9.4)

=
1
4

(−3 + cos 2x)

The remaining wedge angles are computed similarly and are listed in Table 9.1.

Angle x from crystallography

We now explain how the principles of crystallography limit the possibilities for
x. Proofs and more explanation are given in Appendix E.

Ice is a mineral and is therefore expected to conform to the principles of
crystallography. A crystal of any mineral has an internal 3-dimensional lattice

The remaining wedge angles are computed similarly and are listed in Table 9.1. 

Angle x  from crystallography

We now explain how the principles of crystallography limit the possibilities for x . 

Proofs and more explanation are given in Appendix E.

Ice is a mineral and is therefore expected to conform to the principles of 

crystallography. A crystal of any mineral has an internal 3-dimensional lattice 

which, mathematically, consists of all points that are integral linear combinations 

of three independent vectors v1, v2, v3. The three vectors v1, v2, v3 are said to 

be a basis for the lattice. For minerals like ice that have hexagonal symmetry  

the lattice and lattice basis are as shown in Figure 9.3; the vectors v1 and v2 are 

of length a  and make an angle of 120° with each other, and the vector v3 is of 

length c  and is perpendicular to both v1 and v2. The parameters a  and c  depend 

on the mineral.

A fundamental tenet of crystallography is that on a crystal of a given mineral 

only certain crystal faces are possible: For a plane to be a crystal face, it must 

be a lattice plane, that is, it must contain three non-collinear lattice points. 

Furthermore, of all the lattice planes, only a small fraction of them are really 

likely to be crystal faces. How, then, can you recognize a lattice plane, and how 

can you tell when it is likely to be a crystal face?

Associated with the lattice basis v1, v2, v3 is the so-called dual basis w1, w2, w3. 

Whereas the lattice basis is naturally suited to handle lattice points, the dual 

basis is suited to handle lattice planes. Any plane not containing the origin has 

an outward normal vector N which, like any vector, can be expressed as a linear 

combination of the dual basis vectors:
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which, mathematically, consists of all points that are integral linear combina-
tions of three independent vectors v1,v2,v3. The three vectors v1,v2,v3 are
said to be a basis for the lattice. For minerals like ice that have hexagonal
symmetry the lattice and lattice basis are as shown in Figure 9.3; the vectors
v1 and v2 are of length a and make an angle of 120◦ with each other, and the
vector v3 is of length c and is perpendicular to both v1 and v2. The parameters
a and c depend on the mineral.

A fundamental tenet of crystallography is that on a crystal of a given mineral
only certain crystal faces are possible: For a plane to be a crystal face, it must
be a lattice plane, that is, it must contain three non-collinear lattice points.
Furthermore, of all the lattice planes, only a small fraction of them are really
likely to be crystal faces. How, then, can you recognize a lattice plane, and how
can you tell when it is likely to be a crystal face?

Associated with the lattice basis v1,v2,v3 is the so-called dual basis w1,w2,w3.
Whereas the lattice basis is naturally suited to handle lattice points, the dual
basis is suited to handle lattice planes. Any plane not containing the origin has
an outward normal vector N which, like any vector, can be expressed as a linear
combination of the dual basis vectors:

N = hw1 + kw2 + lw3 (9.5)

for some real numbers h, k, l. If the plane is a lattice plane—and hence a possible
crystal face—it turns out that h, k, l are relatively prime integers, that is, whole
numbers with no common factors.1 And although there is a lattice plane for
each triple of relatively prime integers h, k, l, that is, there is a lattice plane with
normal vector N given by Eq. (9.5), only the lattice planes with h, k, l small
are at all likely to be crystal faces. The integers h, k, l are the Miller indices of
the face. They are usually written without commas, and with negative integers
indicated by overbars instead of minuses, so that, for example, the Miller indices
1, 2,−2 would be written 122̄.

To get some geometric feeling for Miller indices, you need to know that the
plane containing the three points (1/h)v1, (1/k)v2, and (1/l)v3 is a lattice plane
with Miller indices hkl. Three examples are shown in Figure 9.4.

For minerals like ice that have hexagonal symmetry there are good geomet-
rical reasons for replacing the triple of Miller indices hkl with the 4-tuple hkil,
where i = −(h + k). We will usually do so, as in Figure 9.4. This corresponds
to introducing another axis, the a3-axis, as shown in the figure. The a1, a2, and
c-axes are in the directions of v1,v2,v3, while the a3-axis is in the direction of
−(v1 + v2).

Each crystal face is part of what is known as a crystallographic form. The
form is the collection of faces related to the given face by the internal symmetries
of the crystal.2 Curly brackets distinguish the form from the face. That is,
{hkil} is the form containing the face hkil. In Figure 9.5 the {0001} form

1More correctly, the length of N can be adjusted so that h, k, l become relatively prime
integers.

2For ice there are 24 such symmetries. With the c-axis vertical, there are six rotations
about the vertical axis, six reflections in vertical planes, and then each of the preceding twelve
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FIGURE 9.3	 (Top) Lattice basis v1, v2, v3 for ice.  The a1, a2, a3, and c-axes are in the 

directions of v1, v2, –(v1+v2), and v3, respectively; thus it is the c-axis, rather than the  

a3-axis, that is in the direction of v3.  (Middle) Same but showing the lattice as well as the 

lattice basis.  The lattice consists of the lattice points (heavy dots), which are understood 

to extend indefinitely in all directions.  (Bottom) The bottom section of the middle diagram 

but as seen from directly above, looking down the c-axis.
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for some real numbers h, k, l. If the plane is a lattice plane—and hence a possible 

crystal face—it turns out that h, k, l are relatively prime integers, that is, whole 

numbers with no common factors.1 And although there is a lattice plane for 

each triple of relatively prime integers h, k, l, that is, there is a lattice plane with  

normal vector N given by Eq. (9.5), only the lattice planes with h, k, l small are at 

all likely to be crystal faces. The integers h, k, l are the Miller indices of the face. 

They are usually written without commas, and with negative integers indicated 

by overbars instead of minuses, so that, for example, the Miller indices 1, 2, –2 

would be written 1 2 ™.

To get some geometric feeling for Miller indices, you need to know that the 

plane containing the three points (1/h)v1, (1/k)v2, and (1/l)v3 is a lattice plane 

with Miller indices h k l. Three examples are shown in Figure 9.4.

FIGURE 9.4	 Lattice planes with Miller indices 11
–

00, 1
–

101, and 011
–

2.  The 011
–

2 plane, 

for example, is parallel to the a1-axis and intersects the a2, a3, and c-axes at a/1, a/(–1), and 

c/2, the denominators of these fractions being the Miller indices.  In all of Figures 9.3–9.10, 

the c/a ratio is 1.63; this is the modern c/a value for ice, the same as that found by Barnes 

(Chapter 7).

1 More correctly, the length of N can be adjusted so that h, k, l become relatively prime 
integers.
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a1- axis
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FIGURE 9.5	 (Left) Standard pyramidal ice crystal as hypothesized by Steinmetz and 

Weickmann (same as Figure 8.2).  The crystal has prism, basal, and {101
–

1} pyramid faces.  

The angle x is 28° [Eq.  (9.6) with c/a = 1.63 and h = l = 1].  ( Right) Same crystal but with the 

faces identified by their Miller indices.  

FIGURE 9.6	 Like Figure 9.5 but with {101
–

2} faces instead of {101
–

1} faces.  The angle x is 

now 46.7°.

x

FIGURE 9.8	 Crystal easily mistaken for that in Figure 9.5.  The crystal has basal faces, 

{112
–

0} prism faces, and {112
–

2} pyramid faces.  Angle x is 31.5°.  In all figures on this page the 

crystallographic axes are oriented the same; here each a-axis is perpendicular to a (second 

order) prism face.

FIGURE 9.7	 Like Figure 9.5 but with the addition of {112
–

1} faces, the simplest second 

order pyramid faces.

x

a2 

- axis

c - axis

a1- axis
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For minerals like ice that have hexagonal symmetry there are good geometrical 

reasons for replacing the triple of Miller indices h k l with the 4-tuple h k i l, 

where i=-(h+k). We will usually do so, as in Figure 9.4. This corresponds to 

introducing another axis, the a3-axis, as shown in the figure. The a1, a2, and 

c -axes are in the directions of v1, v2, v3, while the a3-axis is in the direction 

of –(v1+v2).

Each crystal face is part of what is known as a crystallographic form. The form 

is the collection of faces related to the given face by the internal symmetries of 

the crystal.2 Curly brackets distinguish the form from the face. That is, {h k i l} is 

the form containing the face h k i l. In Figure 9.5 the {0 0 0 1} form consists of 

the two basal faces, and the {1 0 ¡ 0} form consists of the six prism faces. The 

{1 0 ¡ 1} form consists of the twelve inclined faces. Technically the {1 0 ¡ 1} form 

is a hexagonal dipyramid, but we nevertheless refer to its faces as pyramid faces. 

(The crystal at the right in Figure 7.1 consists of a single dipyramid.)

The faces {h 0 Â l} and {h h ™Â l} are known as first order and second order 

faces, respectively. They are prism faces if l = 0 and they are (di-)pyramid faces  

otherwise. The crystals in Figures 9.5 and 9.6 have first order prism and pyramid 

faces, and the crystal in Figure 9.8 has second order prism and pyramid faces. 

The crystal in Figure 9.7 has first order prism faces, and it has both first and 

second order pyramid faces. Perhaps from Figures 9.9 and 9.10 you can see the 

somewhat subtle difference between first and second order faces. It is a difference 

that has plagued halo theory historically.

There has been a lot to absorb here. The main point is that crystallography gives 

us an idea of what crystal faces to expect—they are the lattice planes with small 

Miller indices.

What, then, can we expect for the faces on a real ice crystal? That is, what 

might their Miller indices be? All else being equal, we would expect the most 

common faces to be the {0 0 0 1}, {1 0 ¡ 0}, and {1 0 ¡ 1} faces. The {0 0 0 1} 

and {1 0 ¡ 0} faces are of course the familiar basal and prism faces, and they are 

indeed common. The {1 0 ¡ 1} faces have to be our tentative first choice for the 

inclined faces. Other top candidates for the inclined faces would be the {1 0 ¡ 2} 

and {1 1 ™ 1} faces. Again see Figures 9.5–9.7.

We are now close to being able to guess the wedge angles on a real pyramidal 

ice crystal.

2 For ice there are 24 such symmetries. With the c -axis vertical, there are six rotations 
about the vertical axis, six reflections in vertical planes, and then each of the preceding twelve 
operations followed by reflection in the horizontal plane. The group of these 24 symmetries 
is often denoted by its Hermann–Maugin symbol 6/m  2/m  2/m .
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Angle x from Miller indices   The inclination angle x between the {h k i l} faces 

(h+k+i =0) and the crystal axis is given by

101

consists of the two basal faces, and the {101̄0} form consists of the six prism
faces. The {101̄1} form consists of the twelve inclined faces. Technically the
{101̄1} form is a hexagonal dipyramid, but we nevertheless refer to its faces
as pyramid faces. (The crystal at the right in Figure 7.1 consists of a single
dipyramid.)

The faces {h 0 h l} and {hh 2h l} are known as first order and second order
faces, respectively. They are prism faces if l = 0 and they are (di-)pyramid
faces otherwise. The crystals in Figures 9.5 and 9.6 have first order prism and
pyramid faces, and the crystal in Figure 9.8 has second order prism and pyramid
faces. The crystal in Figure 9.7 has first order prism faces, and it has both first
and second order pyramid faces. Perhaps from Figures 9.9 and 9.10 you can
see the somewhat subtle difference between first and second order faces. It is a
difference that has plagued halo theory historically.

There has been a lot to absorb here. The main point is that crystallography
gives us an idea of what crystal faces to expect—they are the lattice planes with
small Miller indices.

What, then, can we expect for the faces on a real ice crystal? That is, what
might their Miller indices be? All else being equal, we would expect the most
common faces to be the {0001}, {101̄0}, and {101̄1} faces. The {0001} and
{101̄0} faces are of course the familiar basal and prism faces, and they are
indeed common. The {101̄1} faces have to be our tentative first choice for the
inclined faces. Other top candidates for the inclined faces would be the {101̄2}
and {112̄1} faces. Again see Figures 9.5–9.7.

We are now close to being able to guess the wedge angles on a real pyramidal
ice crystal.

Angle x from Miller indices The inclination angle x between the {hkil}
faces (h + k + i = 0) and the crystal axis is given by

tanx =
√

3
2

a

c

∣∣∣∣
l

h

∣∣∣∣ if k = 0 (first order faces) (9.6)

tanx =
1
2

a

c

∣∣∣∣
l

h

∣∣∣∣ if h = k (second order faces) (9.7)

See Figures 9.9 and 9.10.

Bravais, who was one of the pioneers of crystallography, knew all of this a
century and a half ago. That is, he was aware of something like our Table 9.1
and Eqs. (9.6) and (9.7). But to calculate the wedge angles on a pyramidal
ice crystal, he still needed to know x, or he needed to know c/a together with
the Miller indices of the pyramid faces. Not knowing c/a, he used a value of
x inferred from Clarke’s observation of rhombohedral crystals (Chapters 7 and
11). We now think this was a mistake. Much later, Steinmetz and Weickmann

operations followed by reflection in the horizontal plane. The group of these 24 symmetries is
often denoted by its Hermann–Maugin symbol 6/m 2/m 2/m.

See Figures 9.9 and 9.10.

Bravais, who was one of the pioneers of crystallography, knew all of this a 

century and a half ago. That is, he was aware of something like our Table 9.1 and 

Eqs. (9.6) and (9.7). But to calculate the wedge angles on a pyramidal ice crystal, 

he still needed to know x, or he needed to know c/a together with the Miller 

indices of the pyramid faces. Not knowing c/a, he used a value of x inferred from 

Clarke’s observation of rhombohedral crystals (Chapters 7 and 11). We now think 

this was a mistake. Much later, Steinmetz and Weickmann calculated the wedge 

angles differently. Using Barnes’ c / a= 1.63 and taking h=l=1  in Eq. (9.6), 

they calculated x= 28°. In conjunction with Table 9.1, this then gives the wedge 

angle values listed in Table 8.1. This is our approach as well. In short, the wedge 

angles in Table 8.1 are calculated from the c/a ratio of ice by assuming that the 

pyramid faces are the {1 0 ¡ 1} faces.

What about some of the other crystallographically likely faces? We will see in 

the next chapter that the Steinmetz–Weickmann value x= 28° looks about right 

for most real ice crystals. The {1 0 ¡ 2} faces and the {1 1 ™ 1} faces, mentioned 

above as being candidates for the inclined faces, have x= 46.7° and x=17.1°, 

respectively, and neither gives a crystal shape resembling the shape of real 

ice crystals. In fact, as can be seen from Table E.2 of Appendix E, the only 

plausible alternatives to the {1 0 ¡ 1} faces of Steinmetz and Weickmann are the 

{1 1 ™ 2} faces, for which x= 31.5°. These Miller indices are small enough to 

deserve consideration, and the resulting crystal shape (Figure 9.8) and halos are 

not so different from those for the {1 0 ¡ 1} faces. Careful observations, however, 

will distinguish the two possibilities, and the observations favor the {1 0 ¡ 1} faces, 

especially if one looks at the halos arising in preferentially oriented crystals.

So we believe that Steinmetz and Weickmann were right and that the pyramid 

faces on ice crystals are normally the {1 0 ¡ 1} faces. If so, then the situation is 

complicated enough. But consider what it might have been. There seems to be 

no a priori reason why ice crystals should not exhibit other faces. Conceivably 

we could have had ice crystals like the one in Figure 9.7, for example, which has 

{1 0 ¡ 1} and {1 1 ™ 1} pyramid faces in addition to the usual prism and basal 
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FIGURE 9.10	 Derivation of Eq.  (9.7), which gives x for second order faces.  The grey triangle 

is the h h 2h
—

l  face; it intercepts the a1, a2, a3, and c-axes at a/h, a/h, a/(–2h), and c/l.  Thus 

|OA| = a/h and  |OC| = c/l, the same as in Figure 9.9, but now ∠OAB = 30°. 
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FIGURE 9.9	 Derivation of Eq. (9.6), which gives the inclination angle x for first order faces.  

The grey triangle is the h 0h
–

l  face; it is parallel to the a2-axis and intercepts the a1, a3, and 

c-axes at a/h, a/(–h), and c/l, the denominators of the fractions being given by the Miller 

indices as usual.  Thus |OA| = a/h and |OC| = c/l.  Since ∠OAB = 60°, the derivation proceeds 

as at the right.
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Figure 9.9: Derivation of Eq. (9.6), which gives the inclination angle x for first
order faces. The grey triangle is the h 0 h l face; it is parallel to the a2-axis and
intercepts the a1, a3, and c-axes at a/h, a/(−h), and c/l, the denominators of
the fractions being given by the Miller indices as usual. Thus |OA| = a/h and
|OC| = c/l. Since � OAB = 60◦, the derivation proceeds as at the right.
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intercepts the a1, a3, and c-axes at a/h, a/(−h), and c/l, the denominators of
the fractions being given by the Miller indices as usual. Thus |OA| = a/h and
|OC| = c/l. Since � OAB = 60◦, the derivation proceeds as at the right.
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Figure 9.9, but now � OAB = 30◦.
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faces. Most halo theorists have never worried about such crystals, and indeed no 

such ice crystals have been recognized unequivocally, at least not among crystals 

formed in the open atmosphere. But some depth hoar crystals, which grow within 

the snowpack, have been reported to have highly exotic faces [16]. And there are 

other minerals, such as beryl, which have hexagonal symmetry similar to that of 

ice, and which sometimes come in complicated crystals. It could have been the 

same for the ice crystals that make halos.

Incidentally, if it had been the same, you could still have computed the wedge 

angles on the crystals, so long as you knew the Miller indices of the faces. [Use 

Eqs. (9.1), (9.5), and (E.11).] And once you have the wedge angles, you have the 

halo radii.

Before moving on, we invite you to look again at the figures from this chapter, 

if you are not yet comfortable with Miller indices. In all of Figures 9.4–9.8 the 

crystallographic axes are oriented identically and the c/a ratios are the same, so 

that faces with the same Miller indices are oriented identically when they appear 

in different figures. Thus the ¡ 1 0 1 face, which is face 15 in Figures 9.5 and 9.7, 

looks the same both in those figures and in Figure 9.4. The 0 1 ¡ 2 face, which is 

face 14 in Figure 9.6, looks the same there and in Figure 9.4.
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