
By

Kendra D. Sticka

RECOMMENDED:

GLUCOSE TRANSPORTER-4 ON PERIPHERAL BLOOD MONONUCLEAR CELLS IN

CONDITIONED VS. SEDENTARY COLLEGE STUDENTS

Advisory Committee Co-Chair

Advisory Committee Co-Chair

reen , CDr. Thomas K. Green, C 
Department of Chemistry and Biochemistry

Dr. Paul W. ]

C. Eicnelberger 
Dean of the Graduate School

Mathematics

APPROVED:





GLUCOSE TRANSPORTER-4 ON PERIPHERAL BLOOD MONONUCLEAR CELLS IN

CONDITIONED VS. SEDENTARY COLLEGE STUDENTS

A DISSERTATION

Presented to the Faculty 

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements 

for the Degree of

DOCTOR OF PHILOSOPHY

By

Kendra D. Sticka, M.S., M.Ed. 

Fairbanks, AK

May 2016



Abstract

Glucose transporter 4 (GLUT-4) plays a key role in the pathophysiology of type 2 

diabetes. GLUT-4 is upregulated in response to exercise, enhancing cellular glucose transport in 

skeletal muscle tissue. This mechanism appears to remain intact in individuals with insulin 

resistance. There is evidence of increased translocation of GLUT-4 and increased transcription of 

SLC2A, the gene which codes for GLUT-4. Details of the mechanism are poorly understood and 

are challenging to study due to the invasive nature of muscle biopsy. Peripheral blood 

mononuclear cells (PBMC) have documented insulin-sensitive GLUT-4 activity and may serve 

as a proxy tissue for studying skeletal muscle GLUT-4. The purpose of this study was to 

investigate whether GLUT-4 on PBMC is affected by exercise in a similar fashion to myocytes. 

Additionally, correlations between PBMC GLUT-4 and common indicators of insulin resistance 

and dietary patterns were examined. The results show a trend toward higher PBMC GLUT-4 

levels in conditioned athletes than in their sedentary counterparts, similar to what has been 

documented in myocytes. Females were shown to have higher PBMC GLUT-4 levels than 

males. SLC2A4 mRNA analysis demonstrates a difference in mean gene expression between the 

conditioned and sedentary participants. Correlations between levels of PBMC GLUT-4 and 

hemoglobin A1c (HbA1c), glucose, insulin, HOMA-IR, BMI, or body fat were not detected. 

Relationships between specific nutrients and GLUT-4 were also not detected. This study 

provides evidence to support exploration of PBMC as a proxy tissue for studying GLUT-4 

response to exercise or other non-insulin factors. This could provide important treatment avenues 

for individuals with insulin resistance and type 2 diabetes.
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1.1 Type 2 Diabetes and Insulin Resistance

Diabetes is a pervasive health problem in the United States affecting an estimated 29.1 

million people, a number which has tripled in the past three decades.1 One in three people will 

develop diabetes in their lifetime. The disease has estimated direct and indirect costs of a 

staggering $245 billion annually.1 Of those diagnosed, over 95% have Type 2 diabetes. The vast 

majority of these individuals with Type 2 diabetes are on antidiabetic medications.1 

Unfortunately, 8.1 million people who have the disease do not even know they have it.1

Central to the pathophysiology of diabetes is insulin resistance whereby the cells, 

particularly muscle and adipose cells, do not utilize insulin efficiently. This leads to elevated 

blood glucose levels, beginning the pathology of diabetes. Prediabetes is the condition where 

blood glucose is elevated above normal levels, but not yet to the threshold for the diagnosis of 

diabetes. Of the 86 million Americans with prediabetes, nine out of ten are undiagnosed and 15­

30% of these individuals will develop Type 2 diabetes within 5 years.1

Type 2 diabetes is a progressive disorder; one goal is early detection of metabolic 

aberrations signifying the beginning of the pathology. Early identification provides an 

opportunity for lifestyle changes that can slow progression, however effective clinical tools for 

that detection are lacking. Insulin resistance is one early indicator, but currently there is not an 

effective clinical diagnostic tool for insulin resistance prior to the individual developing 

prediabetes. When glucose levels reach the diagnostic criteria for prediabetes, it is assumed 

insulin resistance is present.

Chapter 1: Glucose Transporter 4 (GLUT-4) and Glucose Metabolism Disorders
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Impaired glucose transporter 4 (GLUT-4) production and trafficking play a key role in 

the pathophysiology of type 2 diabetes and insulin resistance (IR). GLUT-4 has been a target for 

identification3,4 and treatment5 of glucose metabolism disorders. GLUT-4 resides in intracellular 

pools in membranes of small vesicles and is translocated to the cell membrane in response to 

insulin. Additionally, GLUT-4 has been shown to increase in skeletal muscle in humans and 

animals in response to exercise, independent of insulin.6-16 It is commonly believed the increase 

in GLUT-4 levels is due to increased translocation from an intracellular pool rather than

17increased transcription, however that has not been conclusively determined. Evidence supports 

the hypothesis that exercise stimulates a different mechanism and potentially draws from a 

different intracellular pool of GLUT-4.6 Although individuals with IR or type 2 diabetes have 

diminished GLUT-4 response to insulin, the response to exercise may be uninhibited.6,10,18 This 

is an important physiological consideration, as it provides a potential alternate pathway to 

improve blood glucose control in patients with IR.

8,12Chronic exercise elevates basal GLUT-4 levels. ’ A GLUT-4 increase is seen both in 

conditioned athletes and in individuals participating in shorter duration and less intense 

exercise.6,12,15 Minimal strength training has similarly resulted in an increase in GLUT-4 in 

muscle tissue.10 On the other hand, some studies have failed to show this increase in GLUT-4 in 

myocytes after short duration exercise.19,20 As a whole, the data suggest that a variety of type, 

intensity, and duration of physical activity stimulate GLUT-4 translocation in skeletal muscle, 

improving cellular glucose transport.

1.2 Glucose transporter 4 (GLUT-4): Cell Signaling, Trafficking, and Gene Regulation
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The SLC2A4 gene codes for the GLUT-4 protein and multiple transcriptional regulators

21 24are involved in SLC2A4 expression. Exercise increases SLC2A4 transcriptional activity. ' 

Specific regulatory areas in the promoter region SLC2A4 have been analyzed for their response 

to exercise. The myocyte enhancer factor (MEF2) shows increased binding in response to

25-27exercise. ' Histone acetylation/deacetylation also appears to be involved in SLC2A4

27,28expression. ’ Overall, a better understanding of the impact of exercise on SLC2A4 expression, 

GLUT-4 production, and GLUT-4 translocation is needed when considering interventions for 

glucose metabolism disorders.

1.3 Challenges in Researching GLUT-4

GLUT-4 is predominantly found in muscle and adipose tissue. One barrier to studying 

GLUT-4 regulation is the need for a biopsy from these tissues. The invasive nature and expense 

of this procedure has resulted in limited human studies and small sample sizes. Peripheral blood 

mononuclear cells (PBMC) are shown to have insulin-sensitive GLUT-4 activity and could 

potentially serve as a proxy tissue. Monocytes, a sub-population of mononuclear cells, were

29,30originally identified as having the majority of the insulin binding sites ’ as well as GLUT-4

31activity within the mononuclear cell population; therefore, monocytes have been used in many 

insulin sensitivity studies. Lymphocytes have also demonstrated GLUT-4 activity in response to

3,5,32-34insulin. ’ ’ " The research to date on GLUT-4 activity in mononuclear cells suggests these cells 

respond to insulin similar to muscle tissue. What has not been explored is whether they also 

respond to exercise in a similar fashion. Our lab recently reported, for the first time, higher

35GLUT-4 on mononuclear cells of conditioned versus sedentary sled dogs, however similar 

findings have not been reported in humans.
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Another challenge in diabetes prevention and treatment is the lack of early identification 

of those at risk. Early identification of individuals at risk for type 2 diabetes or IR may allow an 

exercise or lifestyle intervention to be implemented prior to disease progression. However, 

current routine diagnostic tools only detect physiological abnormalities once they result in 

inadequate glucose transport.4 Inexpensive, direct, reliable identification of early physiological 

changes that are likely to lead to type 2 diabetes would be beneficial for early intervention.

1.4 Study Purpose

The current study addressed the following research questions:

1) Do conditioned athletes have higher GLUT-4 levels in PBMC than sedentary 

individuals akin to the documented difference in skeletal muscle? Demonstrating an increase in 

PBMC GLUT-4 in conditioned individuals similar to that in myocytes would suggest that PBMC 

could provide a proxy tissue for studying GLUT-4 activity. The current study was designed as an 

initial exploration of this idea to determine whether more extensive studies are warranted.

2) Are there correlations between PBMC GLUT-4 and common indicators of insulin 

resistance? Correlations between PBMC GLUT-4 and common indicators of IR could lead to 

development of an early diagnostic tool for IR, promoting earlier interventions and prevention of 

disease progression.

3) Is there evidence for increased transcription of SLC2A4 in PBMC in conditioned 

athletes versus sedentary individuals? Although much emphasis is placed on GLUT-4 

translocation, SLC2A4 transcription could also be an important molecular mechanism and a 

target for treatment. Again, PBMC may serve as a viable cell type for studying such the impact 

of diet, exercise, or medications on SLC2A4 transcription.

4



4) Does dietary intake affect GLUT-4 or SLC2A4 mRNA levels? Because nutrient intake 

is known to stimulate insulin, and thereby GLUT-4, dietary data was analyzed to assess 

relationships between specific nutrients and food groups and GLUT-4 activity in PBMCs.

5
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Chapter 2: GLUT-4 Regulation in Response to Exercise and Diet

2.1 Glucose Transporter 4 (GLUT-4) Protein

The solute carrier family 2 facilitated glucose transporter member 4 (GLUT-4) is a 

member of a family of facilitative glucose transporters. GLUT-4 is 509 amino acids long, with 

twelve helical transmembrane domains.36 The protein is found in a variety of tissues, but most 

widely recognized in skeletal muscle and adipose tissue. GLUT-4 resides in storage vesicles 

(GSVs) within the cell, primarily in the perinuclear region.37 Cell stimulation causes the GSV to

38translocate to the plasma membrane, delivering GLUT-4. When cellular need for glucose 

diminishes, GLUT-4 is returned to the GSV. Insulin and exercise both have the capacity to

39trigger this process using distinct signaling pathways.

2.1.1 Stimulation of GLUT-4 Activity

Insulin is the most widely understood stimulator for GLUT-4 translocation. Insulin is 

released when there is an increase in nutrient supply, such as following a meal. Insulin binds to 

the insulin receptor on the plasma membrane which stimulates a complex signaling pathway 

involving insulin receptor substrate proteins (IRS), PI 3-kinase, phosphatidylinositol (3,4,5)P3 

(PIP3), and Akt/protein kinase B, among other intermediates.39,40 This series of reactions 

promotes translocation of vesicles containing GLUT-4 to the plasma membrane, where they

37dock and fuse with the assistance of SNARE proteins.

In addition to increased energy supply in the bloodstream from food sources, increased 

cellular energy demand triggers GLUT-4 translocation. Increased energy demand arises from

37stimuli such as muscle contraction or stress. The exercise-stimulated pathway of GLUT-4
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regulation is of interest in terms of a potential target for treatment of glucose metabolism 

disorders. This pathway has been examined as a potential target for ‘exercise mimetic’ 

pharmacological therapies.41

2.1.2 Exercise-Stimulation of GLUT-4 in Skeletal Muscle

Murine models provided early information on GLUT-4 content in skeletal muscle tissue 

in response to exercise. When compared to non-exercised control rats, both chronic and acute 

exercise elicit increases in muscle GLUT-4.13,14,42-44 Exercise training increases GLUT-4 content 

in ranges from 30-95%.13,42 Human studies have also demonstrated increased skeletal muscle 

GLUT-4 with acute9,11,21 and chronic exercise.6,12

Since both acute and chronic exercise impact skeletal muscle GLUT-4 content, the 

amount of time between exercise and tissue sampling is a consideration. In human studies, an

acute bout of exercise has been shown to increase plasma membrane GLUT-4 in as little as three

22hours following exercise while others have shown a non-significant increase at eight hours

leading to a significant increase at 22 hours post-exercise.9 Leick et al., on the other hand, failed

21to detect a change in GLUT-4 at 10, 18, or 24 hours following an acute bout of exercise. More 

regular exercise may increase the duration of GLUT-4 upregulation. When compared to their 

untrained counterparts, trained athletes show 93% higher GLUT-4 levels despite no training in 

the two days prior to muscle biopsy. Following four weeks of cycling with one leg only, young

men experience a 36% increase in GLUT-4 in the conditioned leg vs the non-conditioned leg 18

12hours after the last exercise session. Following two weeks of exercise, skeletal muscle GLUT-4 

in young men has been shown to increase 26% over their pre-training levels when biopsies were 

taken 36-48 hours following the last exercise session. It is difficult to draw clear conclusions

8



about the time frame in which skeletal muscle GLUT-4 begins to increase following exercise, 

how long the acute effect lasts, and how long any effect from regular physical activity persists. It 

does, however, appear that the increases begin fairly rapidly following exercise and persist for at 

least one to two days, particularly with a regular exercise protocol.

The specific fiber type of muscles being sampled may impact outcomes. Daugaard et al. 

demonstrated an increase in GLUT-4 in response to exercise in human muscle however when 

muscle-types were separated into slow-twitch or fast-twitch, only the slow-twitch muscles 

showed a response to exercise.

Studies have demonstrated mixed results on the effects of exercise-stimulated GLUT-4 

regulation in subjects with diabetes. After an acute bout of exercise, Kennedy et al. found similar 

increases in plasma membrane GLUT-4 in both diabetic and non-diabetic subjects.11 Likewise, 

Christ-Roberts et al. showed subjects with and without diabetes had similar increases in both 

total and plasma membrane GLUT-4 following eight weeks of exercise.6 Conversely, diabetic 

subjects undergoing strength training exercise show a 40% increase in GLUT-4 in their trained 

leg versus the non-trained leg whereas non-diabetic subjects show no change.10

2.2 Solute carrier family 2 member 4 (SLC2A4) gene

The human SLC2A4 gene, also known as GLUT-4, is located on chromosome 17p13, is 

6,314 base pairs long and codes for the GLUT-4 protein. SLC2A4 activity is primarily reported 

in cardiac and skeletal muscle and adipocytes, however activity in other tissues and cells such as 

brain, kidney, pancreas, liver, and mononuclear cells have also been documented. The central 

role of GLUT-4 in blood glucose regulation, and therefore prevention and control of IR and type 

2 diabetes, makes expression of SLC2A4 of significant interest.

9



Single nucleotide polymorphisms (SNPs) can impact gene function. This poses the 

question of whether SLC2A4 SNPs are associated with IR and/or type 2 diabetes. Early studies 

did not show differences in SLC2A4 genotypes between individuals with versus without 

diabetes.45-50 More recently, several SNPs have shown possible associations with type 2 diabetes 

and/or HbA1c levels including rs265418551,52, rs541252, rs541851-53, rs5 4 3 5 52,53, and rs5421.53 In

52some cases, multiple SNPs present simultaneously are required to see effects. Despite these 

possible associations, research has primarily focused on SLC2A4 transcription without regard to 

genotype.

2.2.1 SLC2A4 Expression and Regulation

Individuals with type 2 diabetes do not necessarily have impaired SLC2A4 expression or 

diminished levels of GLUT-4 however overexpression of the gene can improve glucose 

transport.40 As such, an understanding of the molecular mechanisms of SLC2A4 expression may 

provide insights for pharmacological or lifestyle interventions to improve glucose control.

The promoter region of genes is the primary site for the initiation of transcription. In the 

SLC2A4 gene, several domains within 895 base pairs of the transcription start site have 

demonstrated importance in transcription.54 One of the early regions of focus, that continues to 

be an active area of research, is the myocyte enhancer factor 2 (MEF2) binding region which 

binds multiple isoforms of MEF2.54-65 Additional domains which have regulatory effects include 

an E-box (or hypoxia induced factor 1a, HIF1a) which is involved in MyoD activity,62,65 a 

thyroid response element (TRE) which mediates the effects of thyroid hormones,62,66 the so- 

called Domain I which binds GLUT-4 enhancer factor (GEF),58,63,64 and an NF-kB binding site.67

10



The list of transcription factors and other regulatory molecules interacting with these 

domains continue to grow. MEF2A and MEF2D are essential, but not sufficient for SLC2A4 

transcription.57,68 These two isoforms can exist as a heterodimer. MEF2A is diminished in insulin 

deficiency. A decrease in MEF2A is correlated to a reduction in GLUT-4 protein, pointing to a 

significant role for that particular isoform.68 Despite the importance of MEF2A, other 

biomolecules are necessary for its full functionality. In muscle and cardiac cells, treatment with 

MyoD and TRa1 along with MEF2A dramatically increase transcriptional activity.62 Synergism 

between MEF2A and GEF in SLC2A4 transcription in cultured cells has been demonstrated.56,58 

Weems et al. also note that both MEF2A and GEF are required for full activation of SLC2A4 in 

adipocytes.55 Michael et al. demonstrated that treatment of muscle cells in culture with PGC-1 

proteins (transcriptional coactivators) improve basal glucose transport and increases GLUT-4 

protein both in storage vesicles and on the plasma membrane.59 Mutation of the MEF2 binding 

region ameliorates the increased levels suggesting the effects are a result of increased gene 

expression. Gene-gene interaction may impact SLC2A4 expression. Recently, interaction 

between SLC2A4 and zinc finger protein 407 (Zfp407) has been identified. Knockdown of 

Zfp407 reduces SLC2A4 mRNA, GLUT-4 protein, and insulin-stimulated glucose uptake.

Histones package DNA and play a role in gene expression by mediating chromatin 

remodeling such that transcription factors have more or less ability to bind to a gene. Histones 

can be modified by acetylation, methylation, ubiquitination, sumoylation, phosphorylation, 

glycosylation, and ADP ribosylation, however the most common modifications are acetylation 

and methylation.69 Generally, hyperacetylation causes chromatin to have a more open structure, 

allowing transcription factors access to binding sites and thus increase gene expression; 

hypoacetylation has the opposite effect. There are two primary categories of enzymes involved in

11



histone acetylation: histone deacetylases (HDACs) and histone acetyltransferases (HATs). 

HDACs decrease acetylation and HATs increase acetylation.

The role of histone acetylation has been examined in regard to SLC2A4 transcription. 

There is an inverse relationship between nuclear HDAC5 levels and the expression of GLUT- 

4.55,63 HDAC5 knockdown in mouse and human cell lines increases SLC2A4 expression and

70basal glucose uptake. HDAC5 has been shown to complex with MEF2A and GEF and 

contribute to decreased gene expression even in the presence of these transcription factors, 

supporting a regulatory role for HDAC5.63

Several metabolic signaling systems have been examined for their role in GLUT-4

2+regulation including Ca /calmodulin-dependent protein kinase (CaMK), calcineurin, and 5'

2+AMP-activated protein kinase (AMPK). Calcium (Ca ) release from the sarcoplasmic reticulum

triggers many signaling cascades. Calmodulin is a ubiquitously expressed protein that binds

2+ 2+Ca , allowing it to interact with other molecules. The Ca /calmodulin-dependent protein kinase

II (CaMK II) facilitates phosphate transfer between molecules including from ATP to substrates

and thus is key in energy systems. Calcineurin is also a serine/threonine phosphatase involved in

dephosphorylation which alters a molecule’s activity. 5' AMP activated protein kinase (AMPK)

is a regulator of cellular metabolism and therefore important in muscle tissue. When energy

needs increase, AMPK promotes fatty acid oxidation and glucose mobilization. Therefore

CaMK, AMPK, and calcineurin have potential roles in GLUT-4 regulation.

AICAR is a pharmacological method used in research to stimulate AMPK activity. The

muscle tissues of mice and rats treated with AICAR have increased levels of GLUT-4 protein64

and SLC2A4 mRNA.64,71 These changes may happen in a fiber-dependent manner.64 Zengh et al.

found both the protein and mRNA levels were highest in white fibers of the quadricep (primarily

12



type IIb), elevated in red fibers (primarily IIa), but not elevated in soleus (primarily type I 

fibers).64 It is noteworthy that these changes are time dependent, peaking and returning to normal 

at 13 hours and 24 hours after treatment, respectively.

Evidence supports that the AMPK and CaMK pathways play a role in histone 

deacetylation via HDACs, impacting SLC2A4 regulation. In muscle tissue from the vastus 

lateralis muscle in men, McGee et al. demonstrated AMPK phosphorylates HDAC5 on Ser259 

and Ser498; HDAC5 is subsequently exported from the nucleus allowing increased acetylation of 

the MEF2 binding region triggering increased binding of MEF2A, which results in increased 

SLC2A4 mRNA.54 The authors concluded that HDAC5 is a repressor of SLC2A4 expression via 

HDAC5 phosphorylation by AMPK in skeletal muscle. Mukwevho et al. used caffeine to 

stimulate Ca2+ release in cultured myocytes.60 Stimulation with caffeine causes increased

SLC2A4 mRNA, but that effect is abolished with administration of dantrolene (an inhibitor of

2+calcium release from the sarcoplasmic reticulum), supporting the role of Ca in the signaling 

cascade. Administration of caffeine causes export of HDAC5 from the nucleus, acetylation of 

histone H3, and increased MEF2A binding (no effect on MEF2A quantity), but again, all effects 

are attenuated by dantrolene. In mice, inhibiting the calcineurin, CaMK, or AMPK pathway 

reduces, but does not eliminate, SLC2A4 promoter activity in slow-twitch muscle fibers.61 The 

calcineurin pathway appears to dominate in fast-twitch fibers.61

2.2.2 Exercise-induced SLC2A4 Regulation in Skeletal Muscle

Exercise has been shown not only to increase GLUT-4 translocation to the cell surface of 

myocytes, but also to upregulate SLC2A4 in humans, murine models, and cell culture. In murine

25,26,42,72-74 27,43models, both acute exercise , , , - and chronic training , have increased SLC2A4 mRNA.
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Other markers of transcription have shown similar results. The upregulation appears to be 

rapid, with mRNA increasing within the first six hours upon cessation of exercise25,26,75 and

25-27,42,72,73maintaining elevation for at least 12 hours following exercise. It is noteworthy that the

exercise protocol of many of these animal studies consists of six hours of exercise on a single

43,72,73,76 43day43,72,73,76 however six hours per day for five days43 or a more modest 60 minutes per day for

28 days27 all resulted in increases in SLC2A4 mRNA.

Human studies have shown increased SLC2A4 mRNA immediately following a single,

22,23,77 22-24hour-long bout of exercise ’ ’ and three hours following such exercise. ' Ninety minutes of

21exercise results in elevated mRNA at ten hours following cessation of exercise, however at

21 15,21eighteen to twenty-four ’ hours following either sixty or ninety minutes of acute exercise, no 

significant changes from baseline are detected. Continuing the sixty minutes per day of exercise 

for seven days also does not cause mRNA to be elevated at 24 hours following completion of the 

final exercise session.15

The transcription factors and signaling pathways involved in SLC2A4 regulation in 

response to exercise continue to be investigated. Murine models have demonstrated increased

25-27MEF2A binding in response to exercise. ' Some studies demonstrate an increase in total 

MEF2A protein43 or MEF2A mRNA74 while others show increased binding, but no increase in 

total protein content25,26 suggesting exercise increases translocation rather than gene 

upregulation. Similarly, in humans, both MEF2A and MEF2D show increased binding 

immediately following a single bout of exercise and nuclear MEF2A, but not MEF2D, increase

78 25following the exercise. In murine models, CaMK II increases immediately following exercise 

and blocking CaMK II activity abolishes the increased MEF2A binding.26 In mice, 

overexpression of AMPK2a increases MEF2A binding; knockout of AMPK2a reduces, but does

75
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27not eliminate binding. Another study in mice with a mutated AMPK a-subunit did not show

73any difference in SLC2A4 mRNA following exercise compared to wild-type mice. Inhibiting 

calcineurin also has no effect on MEF2A protein content in rats.43 Human data also suggest that

77the calcineurin pathway is not responsible for SLC2A4 activation in response to exercise. These 

data support that exercise increases MEF2A binding to the promoter region of the SLC2A4 gene; 

CaMK II is involved in the signaling for binding and AMPK2a may play a role, but is not 

exclusively responsible. It is noteworthy, however that there may be some variability in

79pathways depending on predominant muscle fiber type in tissues sampled.

A more general look at binding sites and transcripts in murine models have shown

74increased MEF2A, MEF2D, HIF1a mRNA in response to contraction. Additionally, increased

74 80binding activity has been observed at the MEF2 (AT rich element), E-box (HIF1-a), ’ and 

TRa80 sites on the gene. Although NF-kB appears to have a role in insulin-stimulated SLC2A4

74regulation, exercise does not increase NF-kB binding in rat skeletal muscle. Human studies

78demonstrate an immediate increase in GEF binding and MyoD, myogenin, and MRF4

28upregulation in response to a single bout of exercise.

Histone acetylation has been examined for its relationship with SLC2A4 expression. 

Following sixty minutes of cycling, male subjects show no change in total HDAC5 in skeletal

77muscle, but a decrease in nuclear HDAC5 and MEF2 associated HDAC5. Increased

28phosphorylation of HDAC5 at Ser498 is seen after 90 minutes of cycling. Similarly, mice show

27decreased nuclear, but not total, HDAC5 following 28 days of an exercise protocol. It appears

that, in skeletal muscle, exercise stimulates phosphorylation of HDAC5 causing it to translocate

from the nucleus, creating exposure of the MEF2 binding site on the SLC2A4 gene, allowing

binding of transcription factors.
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Most human studies on GLUT-4 in skeletal tissue in response to exercise have utilized 

young, healthy participants, primarily male. This may or may not impact outcomes however 

caution should be used when applying these results to other populations. Conditioning level may 

impact SLC2A4 transcription and GLUT-4 activity. A study of 98 twin pairs showed a positive 

correlation between VO2 max and SLC2A4 mRNA.81 Hussey et al. failed to detect differences in

23SLC2A4 mRNA response to exercise in patients with and without type 2 diabetes. Limited

studies have assessed the role of sex in SLC2A4 gene expression; however, Storgaard et al.

81observed elevated SLC2A4 mRNA in men compared to women. Vissing et al. noted differences

in MEF2A and MEF2D expression in men and women, but other regulatory factors were similar

28between sexes.

2.3 Relationship of Nutrition and GLUT-4 Regulation

The impact of various nutritional factors on GLUT-4 regulation in a wide range of cells

82 83 84 85including cardiac, renal, adipose, and skeletal muscle cells have been investigated. A 

“Western diet” which is high in saturated fat and simple carbohydrates is known to have negative 

metabolic effects. Mice given a Western diet for 16 weeks have no difference in total cellular 

GLUT-4 in cardiac cells than control mice receiving a standard diet, but have decreased plasma 

membrane GLUT-4.82 This suggests decreased translocation and therefore inefficiency of 

GLUT-4. The macronutrient distribution of the diet could potentially impact GLUT-4 

expression. Most human studies on skeletal muscle GLUT-4 changes in response to exercise 

have failed to account for diet. Studies which have provided a standardized diet have varied from

15,22a very high carbohydrate diet (~75% carbohydrates, 15% protein, and 10% fat) ’ to a modest

21carbohydrate diet (53% carbohydrate, 17% protein, 30% fat). These studies yielded different
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results despite similar participant demographics and exercise protocols. However the time 

interval following exercise that muscle samples were collected were different, therefore it is 

difficult to assess whether the time factor accounts for different results or whether there is 

another contributing factor, such as carbohydrate intake.

Dietary fat intake, and specifically the type of fat, has been investigated for its 

relationship to insulin resistance. Adipocytes incubated with arachidonic acid (AA), an omega-6 

polyunsaturated fatty acid, show increased GLUT-4 protein on the cell membrane without an

84increase in total cell GLUT-4 protein suggesting that AA stimulates GLUT-4 translocation.

This increased GLUT-4 corresponds with increased cellular glucose uptake. Human podocytes in 

cell culture show decreased GLUT-4 translocation in response to insulin and glucose when the

83cells are incubated with palmitate, a saturated fatty acid. Human cultured skeletal muscle cells 

show increased SLC2A4 gene expression when conjugated linoleic acid (CLA), an omega-6 fatty 

acid, or a combination of the omega-3 fatty acids eicosapentaenoic acid (EPA) and

85docosahexaenoic acid (DHA) are given. There was increased glycolytic capacity specifically 

with the omega-3 combination treatment. Cultured skeletal cells incubated with either oleic acid 

(an omega-9 monounsaturated fatty acid) or linoleic acid (an omega-6 polyunsaturated fatty acid) 

show a decrease in both SLC2A4 mRNA and GLUT-4 protein compared to untreated cells.86

Bioactive compounds, often in the form of dietary supplements, have been of interest due 

to availability, consumer interest, and potential potency. Creatine is one such supplement that has 

been heavily researched for its role in exercise. Female rats given creatine, in addition to their 

regular chow, have increased GLUT-4 protein and SLC2A4 mRNA in skeletal muscle compared

87to rats receiving a placebo. The creatine group also exhibit increased nuclear MEF2A and 

MEF2D as well as MEF2 binding. Extracts from Momordica charntia, a plant native to semi-
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tropical climates, given to myocytes in cell culture increases SLC2A4 mRNA 3.6-fold which is

88similar to effects by insulin and rosiglitazone. Blocking protein synthesis negates the effects, 

supporting a role of additional protein production as necessary for upregulation. Resveratrol is 

another bioactive, found in the skin of grapes among other sources, which has been studied for 

its antioxidant and other health-related properties. Chinese men with type 2 diabetes, taking a 

500 mg daily resveratrol supplement for 12 weeks show a trend toward increased expression of

89GLUT-4 in muscle cells compared to controls taking a placebo. The sample size of five per 

group may have been too small to detect significant changes. The activity level of those taking 

the resveratrol was also lower (by chance, not design) which could have modestly attenuated a 

potential effect of the treatment on GLUT-4 levels. It is nonetheless a noteworthy trend for such 

a small sample. These data give reason to consider both food intake and dietary supplements as a 

potential mediator of GLUT-4.

Maternal prenatal diet is known to impact gene expression in offspring, potentially 

affecting multiple generations. Animal models are necessarily used for much of this type of 

research. Female rats born to mothers who were restricted calories during pregnancy to induce 

intrauterine growth retardation (IUGR) have decreased SLC2A4 mRNA in skeletal muscle as 

adults; this is not seen in male offspring.90 The offspring of IUGR dams also have decreased 

MEF2 binding (without a change in MEF2 protein quantity), decreased MyoD binding, and 

decreased histone H3 acetylation. Zheng et al. assessed the impacts of maternal protein 

restriction on GLUT-4 expression and found female offspring have decreased GLUT-4 protein 

and SLC2A4 mRNA, but there no difference in male offspring. Additionally, the female 

offspring have increased MEF2 protein and H3 and H4 acetylation and, again, no change in 

males.91 Increased glucocorticoid exposure during pregnancy in rats has elicited a 15-fold
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increase in SLC2A4 mRNA in skeletal muscle of the offspring. This results in an increase in 

intracellular GLUT-4 protein, however no increase in plasma membrane GLUT-4. A high 

omega-3 fatty acid diet was provided in an attempt to attenuate the effects of the glucocorticoids, 

but no difference was seen. These studies support, not only that prenatal nutrition and 

environment may be an important regulator of GLUT-4 expression, but this may occur in a sex- 

specific manner.

The upregulation of SLC2A4 in response to exercise may be attenuated by dietary factors, 

specifically carbohydrates. Human, male subjects undergoing an acute bout of exercise show 

increased SLC2A4 mRNA in skeletal muscle cells as would be expected, however when they 

ingested a high glucose beverage during exercise and recovery there is a non-significant, but

24noteworthy attenuation of this exercise-stimulated upregulation. Rats subjected to six days of 

exercise training show increased GLUT-4 protein, increased MEF2A binding to SLC2A4, 

increased histone H3 acetylation, decreased nuclear HDAC5, and increased pAMPK/AMPK in

93skeletal muscle cells, all of which are consistent with other exercise studies. However, some 

groups of rats in this study were provided access to either a high fructose beverage, a high 

maltodextrin beverage, or plain water (in addition to standard rat chow). Both of the sugar 

beverages attenuated the exercise-induced increases in GLUT-4, MEF2A binding, and histone 

H3 acetylation; the fructose beverage attenuated the phosphorylation of AMPK and the decrease 

in HDAC5. These studies suggest that simple sugars may negate some of the beneficial effects of 

exercise in terms of GLUT-4 regulation.

Nutritional intake may indeed impact GLUT-4 regulation in a variety of cell types 

independently, or more likely, interacting with other modulating mechanisms. Specific types of

92
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fats, sugars, and other bioactive compounds as well as overall dietary patterns warrant 

investigation.

2.4 GLUT-4 in Peripheral Blood Mononuclear Cells (PBMC)

As long as four decades ago, it was recognized that human PBMCs contain insulin 

receptors and bind insulin in a quantity relative to the number of monocytes.94 Monocytes were 

found to be the major subpopulation of PBMCs to bind insulin, accounting for approximately

2980% of insulin binding activity within PBMCs. More recently, lymphocytes have shown to be 

responsive to insulin as well.34 GLUT-4 is present in PBMCs.17 Similar to insulin binding 

activity, monocytes appear to have the most GLUT-4 activity among PBMCs.31,34,95 Monocytes 

treated with insulin increase GLUT-4 on the plasma membrane from 24-54%.96-98

The impact of obesity and insulin resistance disorders such as type 2 diabetes appear to 

decrease insulin binding to monocytes similar to what is observed in myocytes and 

adipocytes.99,100 As would be predicted based on activity in other cell types, glucose clearance is 

increased with increased insulin binding.100 A reduced quantity of GLUT-4 has been seen in 

monocytes of diabetic patients compared to healthy controls however the SLC2A4 mRNA is no 

different between the groups.101 Lymphocytes also show GLUT-4 activity similar to myocytes 

and adipocytes. Subjects with pre-diabetes have decreased lymphocyte GLUT-4 levels compared 

to their euglycemic peers. Interestingly, the GLUT-4 levels of euglycemic subjects with a 

family history of type 2 diabetes mimic their pre-diabetic counterparts. This pattern would fit 

with the pathophysiology of diabetes whereby insulin levels increase in the early stages 

attempting to compensate for slight elevations in blood glucose. The increased insulin stimulates
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increased GLUT-4 activity. The interesting finding is that this pattern is observed in PBMCs 

similar to other insulin-sensitive tissues.

Despite decades of data demonstrating that mononuclear cells express insulin-stimulated 

GLUT-4 activity, research has not focused on exercise-stimulated GLUT-4 activity in this cell 

population. PBMCs are an attractive cell type for such research due to their ease of accessibility 

for study as well as their role in immunity and inflammation, which is now a well-understood 

component of metabolic disorders.
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Chapter 3: Materials and Methods

3.1 Study Design

This study used a cross-sectional design of participants who were students at the 

University of Alaska Fairbanks (UAF) at the time of the study.

3.1.1 IRB and Consent

The study protocol was approved by the Institutional Review Board of the University of 

Alaska Fairbanks (#492213-4) and acknowledged by the Institutional Review Board of the 

University of Alaska Anchorage (Appendix A). Written consent was obtained prior to beginning 

data collection.

3.1.2 Participants

All participants were students at UAF, between 18 and 25 years of age, non-pregnant, 

and non-diabetic. The sample consisted of two groups: conditioned athletes and sedentary 

students. Conditioned participants were recruited through the UAF cross-country skiing and 

cross-country running teams. This group consisted of endurance athletes who had been training 

for ten to twenty hours per week for three months prior to sample collection. Exercise training 

involved both team and individual plans, but was designed to prepare athletes for competition in 

cross-country running and/or cross-country skiing between September and March. Sedentary 

participants were recruited through a variety of ways including speaking to introductory level 

science classes, posting flyers around campus, and through social media such as UAF’s 

Facebook and Pinterest pages. Sedentary students did not participate in regular moderate
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physical activity (defined to participants as “physical activity that takes moderate effort and 

makes you breathe somewhat harder than normal”) for more than 20 minutes one time per week 

over the past three months. Sedentary students were pre-screened using a questionnaire created 

and administered through google forms.

Participants completed a health history questionnaire which included demographic 

information such as age, sex, and ethnicity (Appendix B). The health history confirmed there 

was no known history of diabetes. Participants were 90% white.

3.2 Dietary, Physical Activity, and Biometric Assessment

Dietary and physical activity data and body measurements were collected at one time 

during the study. Participants were instructed to record their dietary intake as described below 

and complete the physical activity questionnaire prior to presenting to the clinic for the biometric 

assessment and blood draw. Participants presented to the clinic in the morning following an 

overnight fast.

3.2.1 Dietary Assessment

Dietary data was collected using the ASA24 Automated Self-Administered 24-hour 

Recall system from the National Cancer Institute. The ASA24 is a computer-based system 

modeled after the USDA Automated Multiple Pass Method (AMPM) which is used in the 

National Health and Nutrition Examination Survey (NHANES). The ASA24 has been shown to 

have acceptable performance in measuring true intake and is comparable to an interviewer-

102 103administered 24-hour recall in populations such as the one sampled for this study. ’

Participants were instructed on the tool following informed consent. They were asked to record
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one typical weekend day and one typical weekday of food intake. Dietary data was reviewed and 

cleaned according to ASA24 recommendations. Specific nutrients and food groups were 

analyzed for similarities between the two groups and for any association with GLUT-4 protein or 

SLC2A4 gene expression. Fruit and vegetable intake, total calories, macronutrient distribution, 

sugar, fiber, saturated fat, arachidonic acid, palmitate, oleic acid, and linoleic acid were analyzed.

3.2.2 Physical Activity Assessment

Participants completed the International Physical Activity Questionnaire (IPAQ) Short 

Form with instructions from a researcher (Appendix C). The IPAQ has been assessed for validity 

and reliability in multiple populations.104 The data in the questionnaires were analyzed and 

cleaned according to the IPAQ Guidelines for Data Processing and Analysis. MET-minute/week 

scores were calculated and participants were classified categorically according to the protocol as 

low, moderate, or high physical activity levels.

3.2.3 Biometric Assessment

A Registered Nurse with the Center for Alaska Native Health Research performed 

anthropometric measurements. Height was measured to the nearest 1/8 inch. Weight in pounds 

and percent body fat were measured with a TANITA TBF-300A (Tanita Corporation of America 

Inc., Arlington Hills, Illinois); shoes, socks, and heavy clothing were removed. The “standard” 

setting on the TANITA was utilized regardless of physical activity level for consistency in 

measurements. Waist circumference was measured with the Gulick II 150 cm anthropometric 

tape. Two measurements to the nearest 0.2 cm were obtained and the average was utilized in the 

analysis. If measurements differed by more than two cm an additional measurement was taken.
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3.3 Laboratory Assessment

Participants were instructed to fast for 12 hours prior to the blood draw with nothing 

consumed except water. Blood was obtained by venipuncture into one 8-ml BD separation tube, 

one 4-ml EDTA tube, and one 2-ml heparinized tube. Samples not immediately used were 

refrigerated or centrifuged within two hours of sample collection. Plasma from heparinized tubes 

was frozen at -80° C for future measurement of insulin.

3.3.1 Metabolic Parameters

Blood lipids, glucose, and HbA1c were measured immediately following each blood 

draw utilizing blood from the heparinized tube at UAF’s Center for Alaska Native Health 

Research clinic. The Cholestech LDX system measured total cholesterol, LDL, HDL, 

triglycerides, and glucose; the Bayer DCA 2000+ Analyzer measured HbA1c.

Plasma insulin was measured using a commercially available ELISA kit. Tests were run 

in duplicate. The Insulin ELISA (ALPCO Immunoassays, United States) kit was used according 

to manufacturer’s instructions; absorbance was read at 450 nm. Absorbance readings were 

collected using a Synergy HT multi-mode microplate reader (BioTek, United States).

The homeostasis model assessment of insulin resistance (HOMA-IR) has been widely 

used as a surrogate for assessing insulin resistance however universal cut-off values have not 

been defined.105-108 HOMA-IR was calculated with the equation (fasting plasma insulin * fasting 

plasma glucose)/22.5.105-108
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3.3.2 GLUT-4 Protein

The BD separation tubes were centrifuged at 3600 RPM for 15 minutes at room 

temperature. The mononuclear cell layer was then collected and transferred to a 15-mL conical 

vial. The sample was re-suspended in 15 mL RPMI 1640. Tubes were centrifuged for 15 minutes 

at 1500 RPM. Samples were washed 2 times and centrifuged for 15 minutes at 1500 RPM after 

each wash. The final sample was re-suspended with RPMI 1640 to a final volume of 8 mL from 

which the sample for the GLUT-4 protein analysis was drawn.

The GLUT-4 protein was measured using a commercially available ELISA kit. Tests 

were run in duplicate. The Glucose Transporter 4 (GLUT-4) kit (USCN Life Sciences, Inc., 

United States) kit was used according to manufacturer’s instructions; absorbance was read at 450 

nm. Absorbance readings were collected using a Synergy HT multi-mode microplate reader 

(BioTek, United States).

3.3.3 Genomic Labs

The genomic lab experiments were designed to assess differences in MEF2 and HDAC5 

binding to the SLC2A4 promoter region and relative quantities of SLC2A4 mRNA between the 

conditioned and sedentary groups. The goal was to determine whether patterns were similar to 

what has been observed in myocytes.

Chromatin Immunoprecipitation. Chromatin was isolated from the mononuclear cells 

with a commercial chromatin extraction kit (Abcam Episeeker Chromatin Extraction Kit). The 

cells from approximately 3 ml of whole blood were utilized. The BD separation tubes yield 

approximately 1.3 million PBMCs per 1 ml whole blood. This value was used to estimate cell 

quantity for experiments. The manufacturer’s protocol for suspension cells was followed
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assuming approximately 3 x 106 cells. The protocol estimated a yield of 4 |ig of chromatin per 

106 cells, therefore it was estimated that the current chromatin extraction yielded approximately 

12 ^g of chromatin.

The estimated 12 |ig of chromatin was utilized for chromatin immunoprecipitation with a 

commercial ChIP kit (AbCam EpiSeeker ChIP Kit -  One Step). MEF2 and HDAC5 were 

immunoprecipitated using commercially available antibodies (Santa Cruz Biotechnolog, Inc). 

The manufacturer’s protocol was followed for the ChIP reaction using RNA polymerase II as a 

positive control and IgG as a negative control. Concentrations were quantified with a nanodrop 

machine to move forward with real time RT-PCR. Unfortunately, there were undetectable 

quantities of DNA in the samples, therefore the subsequent planned experiment to analyze 

quantities of MEF2 and HDAC5 binding to the promoter region of SLC2A4 was not carried out.

SLC2A4 mRNA. RNA was extracted from the mononuclear cells from approximately 3 

ml of whole blood (with an estimated 1.3 million cells per ml of whole blood as previously 

described). The TRIzol (Life Technologies) reagent and protocol was utilized. The interphase 

containing protein and DNA was stored at -80° C for later analysis. Extracted RNA was 

quantified using the nanodrop machine. cDNA was synthesized using First Strand cDNA 

Synthesis protocol (Life Technologies/ The RNA volume added to each reaction was adjusted 

based on the concentration of RNA in the sample such that 1 |ig RNA was utilized for each 

cDNA synthesis reaction.

The real time RT-PCR experiment was set up with 1 |il of cDNA in each reaction. 

Reactions were run in triplicate. GAPDH was used as an internal control (“housekeeper 

gene”).109,110 Real time RT-PCR was performed using SYBR green chemistry on the Step One 

Plus RT PCR System (Applied Biosystems). Primers were designed to amplify the MEF2
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binding region of SLC2A4 (forward: 5'-CCT GAC ATT TGG AGG CTC-3'; reverse: 5'-GGA 

GCA ATG CCC CAA AG-3').54 Forty cycles of PCR were utilized for amplification. 

Experiments with a standard deviation between triplicates of greater than 1.0 were repeated until 

acceptable standard deviations were achieved. Relative quantification was conducted by 

expressing the cycle threshold (CT) values for SLC2A4 relative to the GAPDH internal control.

As will be presented in the results section, GAPDH did not show consistent expression between 

the two groups in this study, despite literature that suggests it is an appropriate internal control 

for SLC2A4.109’110 Because of this, the log transformation of the actual CT (2-CT) was used for 

further analysis.

GLUT-4 Enhancer Factor (GEF) and GLUT-4 Protein Analysis. The TRIzol protocol 

was utilized to isolate protein from the interphase saved from the RNA isolation described 

above. Protein was re-suspended in SDS according to protocol and stored at -20° C until protein 

quantification. Protein was quantified using the Lowry protocol with the RC DC™  (reducing 

agent and detergent compatible) Protein Assay (Bio Rad) using 25 |il of sample.

SDS-PAGE and immunoblotting were performed using standard techniques. A 10% 

SDS-PAGE gel was utilized. The quantity of sample loaded onto the gel was calculated based on 

the initial protein concentration to provide a loading concentration of 0.8 mg/ml in a total volume 

of 20 ^l of loading solution. The protein yield of many samples in the initial batches of 

experiments was very low. When the stock of isopropanol was replaced, the subsequent 

experiments had a visually identifiable difference in the protein pellet following that step and a 

more expected protein yield which led to the conclusion that the isopropanol used for the initial 

batches of experiments was most likely the problem in the initial experiments. For this reason, 

only nine samples were used for the remaining protein experiments. Even of the nine remaining
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samples, protein concentrations of some were limited; 0.8 mg/ml was selected as the highest 

concentration that could be obtained from all remaining samples. After SDS-PAGE, 

immunoblotting was done with anti-glucose transporter GLUT-4 antibody (Abcam) and anti- 

SLC2A4RG antibody (Abcam). Membranes were incubated with primary antibodies overnight at 

4°C with gentle shaking. Secondary antibodies were species-specific (anti-rabbit antibody for 

anti-SLC2A4RG/GEF and anti-mouse for anti-GLUT4) horseradish peroxides-conjugated 

immunoglobulins. Multiple concentrations of primary and secondary antibodies were used in an 

attempt to optimize the Western blot (See Appendix D for details of attempts at experiment 

optimization). SuperSignal™ West Femto Maximum Sensitivity Substrate (Life Technologies) 

was used for chemiluminescent imaging.

3.4 Statistical analysis

SPSS statistical analysis software (version 21) was used to analyze the data. Student’s 

independent sample t-tests were used to assess differences between the conditioned and 

sedentary groups (differences were considered significance at a  < 0.05) related to demographic, 

anthropometric, biochemical, and dietary data. Student’s independent t-tests were also used to 

assess differences in GLUT-4 and SLC2A4 between males and females. The SPSS box-plot was 

used to assess outliers, the Shapiro-Wilk test to assess normal distribution of the data, and 

Levene’s test to assess homogeneity of variances prior to conducting the t-test. The Mann- 

Whitney U test was used to assess physical activity data between the groups and non-parametric 

data. Pearson’s correlation coefficient or Spearman’s rank correlation coefficient on the 

combined groups were used to investigate associations between GLUT-4 and glucose, HbAlc, 

insulin, HOMA-IR, BMI, percent body fat, and dietary factors.
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Chapter 4: Results

4.1 Demographics

Conditioned participants had a mean age of 20.1± 2.0 years and the sedentary participants 

had a mean age of 21.5 ± 2.1 years. There were no significant differences between the groups in 

regard to age or sex (Table 1).

TABLE 1: Demographics

Parameter Conditioned Sedentary

~n 16 15

Age (years) 20.1 ± 2.0 21.5 ± 2.1

Sex:

Male 8 8

Female 8 7

Demographic data as reported on health history form.

Data are means + standard deviations.

No significant differences between groups for age or sex.

4.2 Diet, Physical Activity, and Biometric Assessment

Diet intake, physical activity, and body measurements were assessed. These indicators 

were analyzed for similarities and/or differences between groups as well as correlations with 

GLUT-4.
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4.2.1 Diet Assessment

Dietary factors related to blood glucose regulation were analyzed (Table 2). There was no 

significant difference in macronutrient distribution between the two groups. The conditioned 

group had a significantly higher total caloric intake (p=0.004), sugar intake (p=0.002), fiber 

intake (p<0.0001), and fruit and vegetable intake (p=0.005) than the sedentary group. When 

sugar, fiber, and fruit and vegetable intake were normalized to individual caloric intake, there 

was found to be no significant difference in mean grams of sugar per calorie between the groups 

(p=0.461). Servings of fruit and vegetables and grams of fiber intake per calorie were non- 

normally distributed therefore mean ranks were analyzed using a Mann-Whitney U test. The 

conditioned group had a higher mean rank of gram of fiber per calorie intake (19.97) than the 

sedentary group (11.77), U  = 56.500, z = -2.551, p=0.011. The conditioned group also had a 

higher mean rank of servings of fruits and vegetables per calorie intake (19.25) than the 

sedentary group (12.3), U  =68.000, z = -2.055, p=0.041. Using Pearson’s correlation coefficient, 

no associations between GLUT-4 and calories, sugar, fiber, or fruit and vegetable intake could be 

detected.

TABLE 2: Calorie, Macronutrient, and Fruit/Vegetable Intake 

Parameter Conditioned Sedentary p-value

Mean Mean

5R

Fruit and Vegetable Intake 3.8 (2.2) 1.9 (1.1) 0.005

(servings/day)

Caloric Intake (kcal/day) 3022 (951) 2041 (756) 0.004*

Calories from Carbohydrate (%) 51.7 (5.1) 47.5 (6.8) 0.060
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TABLE 2 Cont.

Calories from Fat (%) 34.5 (3.9) 35.6 (5.2) 0.488

Calories from Protein (%) 15.4 (2.1) 14.3 (2.7) 0.223

Sugar Intake (g/day) 171.5 (63.2) 104.7 (46.0)
*0.002*

Fiber Intake (g/day) 29.0 (11.2) 14.2 (7.5) < 0.0001

Dietary data as assessed by ASA24 program. Data are reported as means (standard deviations).

* significant at p <0.05

83 84 86Based on findings of other studies, ’ ’ correlations between specific types of fat and 

GLUT-4 were analyzed. For both groups combined, a scatterplot showed no relationship 

between GLUT-4 and saturated fat, arachidonic acid, palmitate, oleic acid, or linoleic acid 

(Figures 1-5). The intake of these fats within the conditioned group was normally distributed, 

however in the sedentary group only arachidonic acid and oleic acid were normally distributed. 

For this reason, and to control for conditioning, the conditioned group was analyzed separately as 

well. Still, no associations between these fatty acids and GLUT-4 could be detected.
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FIGURE 1: Relationship Between GLUT-4 Protein and Arachidonic Acid Intake

There is no association between GLUT-4 protein and arachidonic acid intake in the combined groups.

FIGURE 2: Relationship Between GLUT-4 Protein and Saturated Fat Intake

There is no association between GLUT-4 protein and saturated fat intake in the combined groups.
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FIGURE 3: Relationship Between GLUT-4 Protein and Palmitate

There is no association between GLUT-4 protein and palmitate intake in the combined groups.

FIGURE 4: Relationship Between GLUT-4 Protein and Linoleic Acid Intake

There is no association between GLUT-4 protein and linoleic acid intake in the combined groups.
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FIGURE 5: Relationship Between GLUT-4 Protein and Oleic Acid Intake

There is no association between GLUT-4 protein and oleic acid intake in the combined groups.

4.2.2 Physical Activity Assessment

Despite a pre-screening of participants for physical activity levels, the International 

Physical Activity Questionnaire (IPAQ)-Short Form indicated that some of the participants in the 

sedentary group did in fact have moderate or high physical activity levels. A Mann-Whitney U 

test was conducted to determine if there were significant differences in physical activity, as 

assessed by the IPAQ-Short Form, between the two groups. MET-minutes per week were 

calculated which estimates the total energy cost of physical activity for a given week. Based on 

this calculation, participants were categorized as having low, moderate, or high activity levels. 

The distributions of MET-minutes per week and the categorical ranking of physical activity 

levels were different between groups, therefore median values could not be accurately compared, 

but mean ranks could be. The mean ranks between groups showed statistically significant 

differences for both methods of analyzing the IPAQ data (MET-minutes and categorical ranking
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of physical activity). For MET-minutes per week, U=7.00, p<0.0005; for categorical physical 

activity levels, U=17.5, p<0.0005, using an exact sampling distribution for each. These data 

confirm that the physical activity levels between groups were in fact highly significantly 

different which was intended in the study design.

4.2.3 Biometric Assessment

Of all anthropometric measurements (Table 3), there was only a single significant 

difference between the groups for Body Mass Index (p=0.05). All of the participants in the 

conditioned group had a BMI in a healthy range (18.6-25.0). In the sedentary group, ten 

participants had a healthy BMI, three were overweight (BMI = 25-29.9), and two were obese 

(BMI >30). There was no difference between groups for any other anthropometric 

measurements, however percent body fat and waist circumference trended toward significance (p 

= 0.10 and 0.06, respectively).

TABLE 3: Body Mass and Composition

Parameter Conditioned

Mean

Sedentary

Mean

p-value

Body Mass Index (kg/m ) 21.7 (1.8) 24.8 (5.3) 0.05

Body Fat (%) 17.2 (8.0) 22.4 (8.9) 0.10

Waist Circumference (cm) 72.9 (5.8) 80.7 (13.9) 0.06

Basal Metabolic Rate (kcal/day) 1616 (212) 1718 (330) 0.31

Data are reported as means (standard deviations).

* p < 0.05; others non-significant at p > 0.05
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4.3 Laboratory Assessment

The laboratory assessment evaluated metabolic parameters as well as GLUT-4 protein 

and SLC2A4 gene expression in PBMCs.

4.3.1 Metabolic Parameters

There were no significant differences between the groups for glucose, HbA1c, insulin, or 

HOMA-IR (Table 4) although insulin and HOMA-IR approached significance (p = 0.14 and

0.15, respectively).

TABLE 4: Glucose, Insulin, HbA1c, and HOMA-IR Comparison

Parameter Conditioned

Mean

Sedentary

Mean

p-value

Glucose (mg/dl) 90.8 (8.1) 93.4 (10.4) 0.43

HbA1c (% / mmol/mol) 5.1/32 (0.3) 5.0/31 (0.2) 0.49

Mean Rank1" Mean Rank

Fasting serum insulin 13.66 18.50 0.14

(pIU/ml)

HOMA-IR* 13.69 18.47 0.15

Data are reported as means (standard deviations).

No significant differences between groups were identified for the glucose and insulin-related measures. 

f Serum insulin and HOMA-IR had non-normal distributions therefore the Mann-Whitney U test was 

conducted. For both measures, the distributions between groups were not similar as assessed by visual
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inspection therefore mean ranks were compared for analysis. For insulin U = 157.5, z = 0.483; for HOMA- 

IR U = 157.00, z = 1.436

* HOMA-IR calculation: [fasting serum glucose (mmol/L) * fasting serum insulin ( ÎU/ml)] / 22.5

Total cholesterol, LDL, HDL, and triglycerides also were not different between groups 

(Table 5), but HDL and triglycerides approached significance (p = 0.10 for both parameters). It is 

noteworthy that the Cholestech LDX which was used to measure lipid levels only detects 

triglycerides down to 45 mg/dl. LDL is calculated with the Friedwald formula using 

triglycerides. Six conditioned participants and two sedentary participants had undetectable levels 

of triglycerides with the methodology used. A value of 22.5 mg/dl was used (the midpoint 

between zero and the lowest detectable concentration) for those participants. This adds a level of 

error to both the triglyceride and LDL values so those data should be interpreted with caution.

TABLE 5: Serum Lipids in Participant Groups

Parameter Conditioned

Mean

Sedentary

Mean

p-value

Total Cholesterol (mg/dl) 167.4 (25.3) 168.0 (24.2) 0.95

LDL (mg/dl)+ 95.5 (32.8) 95.3 (16.9) 0.99

HDL (mg/dl) 68.0 (10.2) 59.5 (17.4) 0.10

Mean Ranki Mean Rank

Triglycerides (mg/dl)+ 13.38 18.80 0.10

Data are reported as means (standard deviations).

No significant differences between groups were identified for lipids.

39



f 45 mg/dl is the lowest detectable level of triglycerides with the Cholestech LDX; LDL is calculated with 

the Friedewald formula using triglycerides. For participants with triglycerides lower than the detectable 

limit, a value of 22.5 was assigned and LDL was calculated using that value. This was done for six 

participants from the conditioned group and two participants from the sedentary group.

* Triglycerides had a non-normal distribution therefore the Mann-Whitney U test was conducted. The 

distributions between groups were not similar as assessed by visual inspection therefore mean ranks were 

compared for analysis. U = 162.000 , z = 1.675

4.3.2 GLUT-4 Protein

The conditioned group had a higher GLUT-4 on PBMC in fresh samples than the 

sedentary group; that difference was not statistically significant, but approached significance 

(p=0.07) (Figure 6). The conditioned group (n=16) had a mean of 0.6433 ng/mL ± 0.2871 

compared to the sedentary group (n=13 due to sample loss) mean of 0.4057 ng/mL ± 0.3889.
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FIGURE 6: PBMC GLUT-4 Protein in Conditioned vs. Sedentary Participants

GLUT-4 measured in ng/mL. The conditioned group had higher PBMC GLUT-4 on the cell surface than 

the sedentary group, although it was non-significantly different (p = 0.07).

Females showed a higher mean GLUT-4 than males (0.7161 ng/mL vs. 0.3911 ng/mL) in 

the combined groups (p=0.01) (Figure 7) and the sedentary group (0.6813 ng/mL vs. 0.2335 

ng/mL; p=0.036). In the conditioned group, GLUT-4 levels in females were higher than males 

(0.7379 ng/mL vs. 0.5488 ng/mL), although the difference was not significant (p=0.197).
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FIGURE 7: PBMC GLUT-4 Protein in Males vs. Females

GLUT-4 measured in ng/mL. Females from combined groups of participants had higher PBMC GLUT-4 

on the cell surface than males (p = 0.01).

Pearson’s correlation coefficient or Spearman’s rank correlation coefficient were used to 

assess correlations between GLUT-4 and glucose, HbA1c, fasting insulin, HOMA-IR, BMI, and 

percent body fat. None of the parameters assessed showed a correlation with GLUT-4.
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SLC2A4 mRNA was evaluated using real-time RT PCR. The CT provides information on 

relative quantities of mRNA in the samples. GAPDH was utilized as an internal control.

The CT for GAPDH was evaluated based on the methodology of Schmittgen and Livak to 

assess the quality of GAPDH as an internal control.111 In this process, the CT was log

C Ctransformed to 2' T. The ratio of the 2' Tbetween the conditioned and sedentary groups is 21.87 

showing approximately a 22-fold higher expression in the conditioned group. This demonstrates 

that GAPDH is not a good internal control for evaluating effects of endurance exercise training. 

Unfortunately, there was insufficient sample to do an additional analysis with a different internal 

control gene. Subsequent analysis, therefore, uses the 2' T from the SLC2A4 RT PCR without use 

of the GAPDH. Using this same methodology of calculating the ratio between the conditioned 

and sedentary group, the conditioned group showed a 15-fold higher expression of SLC2A4 than 

the sedentary group.

The relative quantities of SLC2A4 mRNA, as evaluated by PCR, show that no groups 

have normal distribution of the 2' T values. Therefore the non-parametric Mann-Whitney U was 

used for analysis. By visual inspection of a histogram of the data, it does not appear that the data 

have the same shape therefore median values could not be compared, but mean ranks can. The 

mean rank of the conditioned group was 18.27 and the sedentary was 8.67 (p= 0.001). This 

indicates a difference in the distributions of the mean gene expression between the groups 

(Figure 8).

4.3.3 Genomic Labs
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FIGURE 8: SLC2A4 mRNA Analysis for Conditioned vs. Sedentary Groups

The distribution of mean ranks for the conditioned vs. sedentary groups is significantly different (p=0.001).

Like the analysis between the conditioned and the sedentary groups, an analysis between 

sexes also shows a non-normal and non-similar distribution therefore mean ranks were 

compared. The mean rank was 13.25 for females and 14.60 for males showing no difference in 

distribution of mean gene expression between sexes (0.683) (Figure 9).
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FIGURE 9: SLC2A4 mRNA Analysis for Females vs. Males

The distribution of mean ranks is no different between sexes (p=0.683).

SLC2A4 mRNA was analyzed for an association between gene expression and dietary 

intake of specific nutrients and food groups including caloric intake, percent of calories from 

carbohydrate, fruit and vegetable servings, and intake of sugar, fiber, saturated fat, arachidonic 

acid, palmitate, oleic acid, and linoleic acid. None of these dietary variables show any type of 

relationship or association with SLC2A4 mRNA.

SDS-PAGE with subsequent western blot was used to analyze GLUT-4 enhancer factor 

(GEF) between groups. Due to insufficient yield of protein in many samples, samples from only 

six of the conditioned group and three of the sedentary group were able to be used for analysis. A 

successful western blot showing clear GEF was not obtained.
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Chapter 5: Discussion and Conclusions

5.1 GLUT-4 Levels in Conditioned vs. Sedentary College Students

The present study compared GLUT-4 protein on PBMCs of conditioned and sedentary 

college students. These results were compared to two primary lines of literature: one which 

demonstrates that GLUT-4 is elevated in skeletal muscle tissue in response to exercise and a 

second which demonstrates PBMC GLUT-4 responds to insulin in a similar way that skeletal 

muscle responds to insulin. The goal was to determine whether to further evaluate PBMC as a 

proxy tissue for skeletal muscle for the study of GLUT-4.

The findings of this study demonstrate a non-significant, but noteworthy, difference in 

GLUT-4 on PBMC in conditioned compared to sedentary individuals. The conditioned athletes 

had higher GLUT-4 protein than their sedentary peers. Muscle biopsies were not obtained in this 

study so it cannot be concluded definitively that PBMC GLUT-4 quantity is a direct reflection of 

skeletal muscle GLUT-4 quantity, however the results do suggest this is a plausible hypothesis.

Samples for this study were obtained in the morning following a day of intense training 

for the conditioned group. Although a specific time frame following exercise was not built into 

the study design, it is known that the athletes reported for their blood draws approximately 15-19 

hours following their last training session. The literature on the initiation of GLUT-4 elevation in 

skeletal muscle following exercise and the duration of maintenance of that elevation is 

inconclusive. Elevations may begin as early as three hours following exercise and may persist for 

as long as 36 hours. The time frame of blood draws for the current study are within that range, 

but it is difficult to predict whether analysis of PBMCs collected sooner after the training would 

have yielded higher or lower GLUT-4 levels.
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Many studies on GLUT-4 changes in skeletal muscle in response to exercise do not 

account for variables such as body composition or dietary intake. In the current study, the 

sedentary group had a significantly higher BMI and a trend toward higher percent body fat and 

waist circumference than the sedentary group. The mean BMI within the sedentary group was 

however still within a “healthy weight” range (mean BMI 24.8). It cannot be ruled out that 

differences in body composition and weight had an impact on GLUT-4 quantity.

As would be expected from collegiate athletes, the calorie intake of the conditioned group 

was significantly higher than the sedentary group. Their fruit and vegetable and sugar intake was 

also significantly higher and the percent of calories from carbohydrates was higher although non­

significantly (p=0.06). Intake of calories, and particularly sugar and carbohydrates, stimulate 

insulin release. The study design did not provide a way to control for the possibility that 

increased GLUT-4 levels in the athletes were not somehow related to these dietary differences. 

The blood draws for PBMC analysis were conducted in a fasting state (minimum of 12 hours) so 

it would be expected that insulin stimulation from dietary intake would no longer be present. 

Nonetheless, the substantial difference in calorie and carbohydrate intake between the two 

groups is a limitation of the current study design yet one that could not be avoided when looking 

at groups with vastly different activity levels.

This study was limited by the fact that muscle biopsies were not obtained to directly 

compare muscle GLUT-4 to PBMC GLUT-4. Comparing the results to the existing literature 

however suggest that there may be a correlation between these two. Future studies with a design 

that allows for direct comparison are warranted. Using participants as their own control with pre- 

and post-exercise measures would help control for individual variabilities in factors such as 

caloric intake and body composition.
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5.2 Correlation between PBMC GLUT-4 and Common Indicators of Insulin Resistance

Direct and indirect methods for assessing insulin sensitivity have been described.106 The 

hyperinsulinemic euglycemic glucose clamp is a direct measure of insulin resistance. Using this 

procedure, after an overnight fast the individual would receive an insulin infusion at a constant 

rate. Simultaneously, a dextrose infusion would be given while sampling blood glucose levels 

every 5 to 10 minutes. The dextrose would be adjusted to keep blood glucose levels in a 

euglycemic range. A steady state must be achieved in this test which can take several hours. In 

these study conditions, the glucose infusion rate (GIR) should equal the glucose disposal rate 

since the test design is such that blood glucose levels are maintained. Clearly, this methodology 

is invasive and time consuming and therefore is not used in the clinical setting.

One of the most commonly used clinical methods for assessing insulin resistance is by 

assessing glucose tolerance. It is important to recognize that glucose intolerance and insulin 

resistance are not the same; however when assessing insulin resistance in a clinical setting the 

core question is typically whether the individual is able to maintain euglycemia regardless of 

glucose intake. An oral glucose tolerance would be used for this assessment.

Several surrogates of insulin resistance can be used clinically as well. One common 

method is to take fasting blood glucose and insulin levels. These values are then mathematically 

used to estimate insulin resistance. One limitation on any mathematical models using fasting 

insulin and glucose are that they only represent hepatic glucose and insulin utilization since they 

are taken in a basal state. In healthy individuals with normal glucose metabolism, this is going to 

be similar to peripheral insulin and glucose utilization, but in individuals with glucose 

metabolism disorders (such as diabetes or hypoglycemia) this may not be true. Another
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limitation is that the lack of a standardized insulin assay prevents the development of standard 

cut-off values for diagnostic criteria.

The homeostasis model assessment for insulin resistance (HOMA-IR) is one commonly 

used surrogate based on a mathematical model. The calculation for HOMA-IR is {[fasting 

insulin (^U/ml) x [fasting glucose (mmol/l0]} / 22.5. The 22.5 is a normalization factor which 

takes into account “normal” fasting glucose and “normal” fasting insulin levels. In a person with 

normal insulin sensitivity, the HOMA-IR would be about 1 due to normalization in the 

mathematical model with the 22.5. Fasting levels of insulin are not linear and therefore another 

methodology is to calculate log (HOMA-IR). This may be more accurate in individuals with 

abnormal glucose tolerance or insulin sensitivity.

The present study used fasting glucose, insulin, HbAlc, and HOMA-IR to assess IR. A 

limitation of this study is that the direct measure of IR using a hyperinsulinemic euglycemic 

glucose clamp was not used. No difference between the two groups was found for any of the 

glucose or insulin parameters suggesting both groups had similar metabolic utilization of 

glucose. There was no correlation between PBMC GLUT-4 levels and any of the indicators of 

insulin resistance utilized in this study. This suggests that PBMC GLUT-4 may not be a good 

measure of insulin resistance in this population. It should be noted, however, that insulin and 

HOMA-IR data were non-normally distributed and a larger sample population may yield 

different results. There was no clinical indication of diabetes or pre-diabetes in any participant; 

individuals with impaired glucose tolerance may show different results. The findings of this 

study do not support PBMC GLUT-4 as a measure of insulin resistance however a modified 

study and participant sampling design may be warranted for further investigation.
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5.3 Increased Transcription of SLC2A4 in Conditioned vs. Sedentary College Students

The results of the present study, while not definitive, suggested a higher level of GLUT-4 

protein in the conditioned participants compared to the sedentary. The next question of interest 

was whether genomic analysis would demonstrate that increased transcription of SLC2A4 played 

a role in the mechanism of action.

While exploring this question, an unexpected finding, despite what existing literature 

might suggest, was that GAPDH does not appear to be a good internal control for assessing 

effects of exercise on gene expression. This became a limitation of data analysis. The most 

widely accepted methodology of analyzing real-time RT PCR is by using an internal control 

(“housekeeping gene”). Since the intended internal control, GAPDH, was significantly different 

between the groups, this methodology could not be used for analysis. Alternately, the log

CTtransformation of CT was used (2 ). Although this is not the first choice of analysis, it does

provide data on the raw mRNA levels. The input RNA volumes were standardized for cDNA 

synthesis which was then used for RT PCR. The conditioned group did indeed show higher 

expression of SLC2A4 (15-fold) based on mRNA analysis when compared to the sedentary 

group.

A benefit of the finding related to GAPDH is that it identifies the need for additional 

methodology research in SLC2A4 gene expression in response to exercise. Valid and reliable 

internal control genes for exercise-related research need to be identified for most accurate 

analysis of the data. Because physical activity has such widespread impact on physiological 

systems, this could prove challenging.

In addition to mRNA, this study attempted to assess MEF2 and HDAC5 binding to the 

SLC2A4 promoter region. Again, the goal was to determine whether transcriptional activity in
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PBMCs appeared to mimic what literature demonstrates occurs in skeletal muscle tissue. 

Chromatin was extracted using a commercial kit and then MEF2 and HDAC5 were 

immunoprecipitated using a commercial ChIP kit. There was insufficient yield at the end of this 

stage of the experiment to move forward with analyzing MEF2 and HDAC5 binding. Although 

this was an unfortunate outcome for the present study results, it does provide information about 

future methodology. Obtaining a blood cell count of samples prior to chromatin extraction would 

have allowed input into the experiment based on actual blood cell numbers as opposed to 

estimation of blood cell count based on blood volume. Additionally, a larger volume of blood 

collection would have allowed for more input material as well as an opportunity to replicate the 

experiment if  needed. Based on this study, no conclusions can be drawn regarding whether 

MEF2 and HDAC5 activity on SLC2A4 in PBMC correlate with activity in skeletal muscle 

tissue.

5.4 Sex and GLUT-4 Protein

An unexpected, yet important, finding of this study was that females had higher GLUT-4 

levels than males. Conditioning attenuated this effect to some extent. Many human studies on 

GLUT-4 upregulation in response to exercise have been conducted exclusively on male subjects. 

It may be that upregulation of GLUT-4 is more responsive to exercise in males than in females. 

There is little in the literature regarding the role of sex in GLUT-4 regulation in skeletal muscle. 

This needs to be explored both in skeletal muscle and PBMCs.

5.5 Summary of Key Findings

In summary, several key findings from this study can guide future research:
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1) GLUT-4 protein on PBMCs may respond to exercise in a similar fashion to myocyte 

GLUT-4. Muscle biopsy would be needed to validate the use of PBMCs as a proxy 

tissue for the study of skeletal muscle GLUT-4 response to exercise.

2) Diet should be accounted for in the study design of GLUT-4 regulation as it may play 

a role in transcription and/or translocation of GLUT-4.

3) SLC2A4 transcription in PBMCs may occur in a similar fashion in response to 

exercise as SLC2A4 transcription in skeletal muscle tissue. In order to accurately 

study this, an acceptable internal control gene needs to be identified.

4) Sex must be considered in studies of GLUT-4. Females demonstrate higher GLUT-4 

levels and may have less GLUT-4 response to exercise than males.
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Chapter 6: Future Directions

Although the present study was unable to provide definitive conclusions regarding the 

use of PBMCs for the study of GLUT-4 regulation, the data do suggest this warrants further 

exploration. This chapter addresses study design considerations (Table 6) to investigate the use 

of PBMC as a proxy tissue for myocytes in the study of exercise and lifestyle impacts on GLUT-

4.

6.1 Participant Selection

The literature is inconclusive as to whether GLUT-4 regulation in response to exercise 

differs between individuals with normal glucose metabolism and impaired glucose tolerance or 

diabetes. For this reason, it would be important to specify boundaries for blood glucose 

regulation in the participant selection criteria. Since the largest body of literature in humans 

addresses GLUT-4 regulation in individuals without impaired glucose tolerance that should be 

the selection criteria for an initial study. This would be consistent with the participants of the 

present study. If funding and time allowed, it would be insightful to have one group of 

participants with impaired glucose tolerance or type 2 diabetes and one group with normal 

glucose regulation.

Both chronic and acute exercise has an impact on GLUT-4 regulation in myocytes 

therefore participants with different pre-study exercise habits may introduce a confounding 

factor. It is proposed that participant selection criteria would exclude participants who engage in 

more than 20 minutes of moderate physical activity more than 3 times per week. It is
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recommended to use the IPAQ short form as a pre-screening tool to verify that participants are 

similar in their exercise habits.

Medical conditions such as thyroid disorder and pregnancy would be exclusion criteria 

due to the potential for affecting GLUT-4 regulation. Due to the key role the liver plays in 

glucose metabolism, individuals with known liver disease or dysfunction would also be 

excluded. Individuals taking corticosteroids or hypoglycemic medications would be excluded.

All prospective participants would need to be medically able to participate in the exercise portion 

of the intervention.

Based on the results of the present study that sex likely has an impact on GLUT-4 levels 

and potentially on GLUT-4 regulation, sex must be accounted for. Ideally, one-half of the 

participants would be male and one-half female. Dividing into these subgroups however reduces 

the statistical power therefore if a large enough sample size is not feasible it is recommended to 

select only one sex. Since the proposed study would be early work in this area, it is 

recommended that if  only one sex can be used that it be males since the majority of literature 

currently includes exclusively males. Subsequent studies could look to replicate the results in 

females.

6.2 Study Protocol

The study would be designed to compare PBMC GLUT-4 to myocyte GLUT-4 in an 

attempt to validate PBMC as a proxy tissue for myocytes for the study of GLUT-4. An exercise 

intervention would be provided and laboratory data collected and analyzed to assess effects of a 

single exercise bout (30 and 60 minutes) and two weeks of moderate exercise.
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Previous studies have utilized exercise at a VO2 max ranging from 60-75% with 75%

21 24 28 78 112being the most common. ’ ’ ’ ’ For the proposed study, an exercise intensity of 75% VO2 

max is suggested. The exercise could be done on a treadmill or exercise bicycle.

21Muscle biopsy would be from vastus lateralis muscle as described in previous studies.

24 28 77 78 112’ ’ ’ ’ Collection of PBMCs would be done with the same protocol as the present study 

however three 8-ml tubes would be collected instead of one to ensure adequate sample for all 

procedures and potential need for replicates.

Dietary intake could affect GLUT-4 levels, particularly if caloric intake or carbohydrate 

intake is high. Ideally, participants would be given food boxes for the duration of the study that 

provided them a modest carbohydrate diet (50-60% carbohydrate) meeting their individual 

calorie needs as determined by indirect calorimetry. If it was not possible to have that level of 

control, participants could be educated on a modest carbohydrate diet so they were not limiting 

carbohydrates nor eating excessive amounts. Participants could be asked to record their food 

intake in the ASA24 self-administered 24-hour recall system daily to assess total caloric intake 

and macronutrient distribution.

TABLE 6: Overview of Proposed Future Study Protocol

Time Frame Interventions/ Protocols Lab Tests / Procedure

Prior to initiation of study 

(1-3 weeks prior)

• None • Pre-screening 

questionnaires (medical, 

exercise)

• Fasting blood glucose and 

HbA1c to verify normal
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TABLE 6 Cont.
blood glucose levels

• VO2 max

• Resting Metabolic Rate 

via indirect calorimetry 

(Parvo Metabolic Cart)

• Height, weight, and body 

composition via BodPod

• Participant orientation and 

training on diet recording 

tool

Day 1 • 30 minutes exercise

• Exercise done at least 4 

hours after eating to 

minimize any effect of 

food on GLUT-4

• Sample schedule: 

participant eats breakfast 

at 7 AM, comes to clinic 

at 11 AM for blood draw 

and muscle biopsy, 

performs 30 minute 

cycling, returns to clinic at 

6 PM for second blood

• Muscle biopsy

• PBMC

• Collection of each done 

pre-exercise, 6 hours post 

exercise, and 18 hours 

post-exercise
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TABLE 6 Cont.
draw and muscle biopsy, 

then returns to clinic at 

noon on following day for 

third blood draw and 

muscle biopsy.

Days 2-4 • 30 minutes exercise daily • None

Day 5 • Rest • None

Day 6 • 60 minutes exercise

• Exercise done at least 4 

hours after eating to 

minimize any effect of 

food on GLUT-4

• Sample schedule: 

participant eats breakfast 

at 7 AM, comes to clinic 

at 11 AM for blood draw 

and muscle biopsy, 

performs 60 minute 

cycling, returns to clinic at 

6:30 PM for second blood 

draw and muscle biopsy, 

draw and muscle biopsy,

• Muscle biopsy

• PBMC

• Collection of each done 

pre-exercise, 6 hours post 

exercise, and 18 hours 

post exercise
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TABLE 6 Cont.
then returns to clinic at 

12:30 on following day 

for third blood draw and 

muscle biopsy.

Days 7-9 • 60 minutes exercise daily • none

Day 10 • Rest • none

Day 11-14 • 60 minutes exercise daily • none

Day 15 • none • Muscle biopsy

• PBMC

• Collection of each done at 

24 hours following last 

exercise session

• VO2 max

6.3 Laboratory Analysis

Laboratory analysis would focus on GLUT-4 protein and SLC2A4 mRNA content in 

myocytes and PBMCs. The data would be analyzed from two primary perspectives:

1) To determine whether the quantity of GLUT-4 protein and SLC2A4 mRNA in myocytes 

correlates with the quantity in PBMC in a given individual at a given point in time.
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2) To elucidate whether the effects of exercise impact GLUT-4 protein and SLC2A4 mRNA 

in a similar fashion in myocytes and PBMCs.

6.3.1 GLUT-4 Protein

The PBMCs and myocytes would be analyzed via flow cytometry to obtain a cell count 

and cell surface GLUT-4 protein. Obtaining a cell count would allow expression of GLUT-4 per 

a particular quantity of cells. The present study used ELISA for analyzing GLUT-4 however the 

vast majority of literature has utilized flow cytometry. ELISA is attractive due to the ease of the 

procedure and ability to store cells for a longer period of time prior to analysis. For this reason, it 

is suggested that ELISA be conducted additionally so the results from flow cytometry and 

ELISA could be compared to help validate ELISA as a methodology for assessing cell surface 

GLUT-4 protein.

6.3.2 SLC2A4 mRNA

SLC2A4 mRNA would be analyzed with real time RT-PCR as was done in the methods 

of the present study however an internal control gene would be validated prior to running the 

experimental protocol. Candidate internal controls include cyclophilin, beta-actin, and 28S rRNA

24 28 77 112because of their use in similar human studies. ’ ’ ’ An internal control would be selected and 

utilized following this validation.

6.4 Conclusions

GLUT-4 regulation is a key aspect of blood glucose control. A better understanding of 

how environmental and pharmacological treatments may be able to upregulate GLUT-4 would

61



be valuable. In order for human research to progress more rapidly in that area, it would be 

beneficial to have an easily obtained cell type to study. The present study suggests that PBMCs 

may be a viable cell type for this purpose. The proposed study would allow further exploration of 

this hypothesis.
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Appendix B 
Demographic and Medical Questionnaire

Demographic and Medical Screening Questionnaire

Date:_________________________ Study # ________________________
Introduction to general screening questionnaire: We would like to ask you a few general screening 
questions and some specific questions about your medical history and medications you’re currently 
taking. This will take about 10 minutes. Please leave a blank for any question you do not wish to answer 
or do not know the answer.

Please Circle One.
01. Sex:

1. M
2. F

02. Where do you currently live? On-campus housing , Off-campus , with your
parents ?

03. Who currently lives in your household and how are they related to you? (Circle ALL that 

apply)

Relationship How

Many?

Relationship How Many? Relationship How

Many?

1. Wife 8. Sister 15. Niece

2. Husband 9. Grandmother 16. Nephew

3. Daughter 10. Grandfather 17. Cousin

4. Son 11. Granddaughter 18. Girlfriend

5. Mother 12. Grandson 19. Boyfriend

6. Father 13. Aunt 99. Other

7. Brother 14. Uncle

04. What is your academic standing (freshman, sophomore etc.)?.

05. Where do you most often eat? (Please circle only one)
1. Cook for myself at home
2. Eat at campus dinning facility
3. Eat out in town
4. Eat with my family at home
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06. Do you receive assistance to pay for food (i.e., food stamps or WIC coupons)?
1. Yes
2. No
3. No Response

07. What is your race? (Circle all that apply)
1. Alaska Native
2. White
3. Black or African American
4. Asian
5. O ther_________________

08. How often do you eat Alaskan wild fish, seafood, game or berries?
1. A lot
2. Some
3. Not at all
4. No Response

09. Have you ever used any type of tobacco products?
1. Yes
0. No (Skip to question 17)

010. I have used tobacco products
1. But no longer use 

question 011)
2. Have quit some tobacco products but still use tobacco 

question 011)
3. And currently use tobacco 
question 014)

Please give answers for each type of tobacco product you used but quit: (Put a "0” in the first 
column if you never used that type of tobacco)

(i) (ii)
(iii)

Avg. number used/day Age when started use
Age when quit 
Type of tobacco used
011. Smoked cigarettes # cigs ______  _______

012. Chewed commercially-prepared # chews ______  _______
(i.e. Levi-Garrett or Redman)

013. Used Snuff # of dips ______  _______
(i.e. Copenhagan or Skoal)

(If no longer use tobacco, go to question 35)

(Go to 

(Go to 

(Go to
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Please give answers for each type of tobacco you now use: (Put a "0” in the first column if you 
never used that type of tobacco)

(i) (ii)
Avg. number use/day Age when started use

014. Smoke cigarettes #cigs ______  _______

015. Chew commercially-prepared # chews
(i.e. Levi-Garrett or Redman)

016. Use snuff # of dips
(i.e. Copenhagan or Skoal)

017. Do you consume alcohol?
1. Yes How many drinks per week
2. No

The following questions are about your medical history.

018. Are you currently taking any medications prescribed by a health care provider?
1. Yes Which ones?________________________________________________

0. No

019. Are you taking vitamins or other supplements?
1. Yes Which ones? ______________________________________________

0. No
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020. Have you or a family member related by blood (parents [p], siblings [s], children [C])
ever been diagnosed with any of the following (DO nOt  provide names of family members, only 
the number of family members):

Self Yes No Unknown Family member(s) Yes No Unknown How many of each?
1 0 8888 1 0 8888 P /  S  /  C

Arthritis □ □ □ Arthritis □ □ □ /  /

Osteo □ □ □ Osteo □ □ □ / /

Rheumatoid □ □ □ Rheumatoid □ □ □ / /

Asthma □ □ □ Asthma □ □ □ / /

Cancer □ □ □ Cancer □ □ □

/ /

Breast □ □ □ Breast □ □ □ / /

Colon □ □ □ Colon □ □ □ / /

Lung □ □ □ Lung □ □ □ / /

Ovarian □ □ □ Ovarian □ □ □

/ /

Prostate □ □ □ Prostate □ □ □

/ /

Stomach □ □ □ Stomach □ □ □

/ /

Other □ □ □ Other □ □ □ / /

Diabetes Type I □ □ □ Diabetes Type I □ □ □ / /

Diabetes Type II □ □ □ Diabetes Type II □ □ □ / /

Gestational Diabetes □ □ □ Gestational Diabetes □ □ □

/ /

Depression □ □ □ Depression □ □ □

/ /

Gall Bladder/Stones □ □ □ Gall Bladder/Stones □ □ □ / /

Heart Attack □ □ □ Heart Attack □ □ □

/ /

High Cholesterol □ □ □ High Cholesterol □ □ □ / /

Hypertension □ □ □ Hypertension □ □ □
/ /

Kidney failure □ □ □ Kidney failure □ □ □

/ /

Osteoporosis □ □ □ Osteoporosis □ □ □

/ /

Overweight □ □ □ Overweight □ □ □

/ /

Stroke □ □ □ Stroke □ □ □

/ /

Thyroid Disorder □ □ □ Thyroid Disorder □ □ □ / /

Others Others

Pacemaker □ □ □

DO NOT MEASURE BODY FAT ON TANITA IF “YES” TO PACEMAKER



Now we’d like to collect some information on your body 

measurements.

021. Height: in. (measured by researcher)

Tanita Data: Results from Impedance Analyzer

022. Weight: 

here)

lbs. (Please tape tanita printout

023. BMI:

024. Percent body fat: %

V

025. BMR: Kcal

026. Impedance: ,

027. Fat Mass: lb.

028. FFM: lb.

029. TBW: lb.

030. Height entered into Tanita:____ ft. in.

031. Waist circumference: cm 2nd Measure: 3rd Measure:
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032. Blood pressure: 1s measurement: Systolic . Diastolic Pulse

2nd measurement: Systolic . Diastolic Pulse

3rd measurement: Systolic Diastolic Pulse

Average measurement: Systolic

Data from Cholestech:

Analysis
033. Triglycerides:____________ mg/dl
here)

040. Cholestech D ate:______

041. Cholestech Time:______

042. NPO after (last eat) Date:

043. NPO after (last eat) Time:

Diastolic Pulse

Results from Blood

(Please place Cholestech printout

034. Total Cholesterol: mg/dl
V 7

035. Glucose: mg/dl

036. HDL: mg/dl

037. LDL: mg/dl

038. VLDL: mg/dl

039. HbA1c: %
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044. Blood drawn at Date:

045. Blood drawn at Time:
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International Physical Activity Questionnaire Short Form (IPAQ-SQ)

S tu d y  # _____________

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE

We are interested in effects of physical activity on insulin signaling. The questions will 
ask you about the time you spent being physically active in the last 7 days. Please 
answer each question even if you do not consider yourself to be an active person. 
Please think about the activities you do at work, as part of your house and yard work, to 
get from place to place, and in your spare time for recreation, exercise or sport.

Think about all the vigorous activities that you did in the last 7 days. Vigorous 
physical activities refer to activities that take hard physical effort and make you breathe 
much harder than normal. Think only about those physical activities that you did for at 
least 10 minutes at a time.

1. During the last 7 days, on how many days did you do vigorous physical 
activities like heavy lifting, digging, aerobics, or fast bicycling?

 days per week

Appendix C

No vigorous physical activities ► Skip to question 3

2. How much time did you usually spend doing vigorous physical activities on one of those days?

  hours per day

  minutes per day

Don't know/Not sure

Think about all the moderate activities that you did in the last 7 days. Moderate 
activities refer to activities that take moderate physical effort and make you breathe 
somewhat harder than normal. Think only about those physical activities that you did for 
at least 10 minutes at a time.
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3. During the last 7 days, on how many days did you do moderate physical
activities like carrying light loads, bicycling at a regular pace, or doubles tennis? 
Do not include walking.

 days per week

No moderate physical activities ► Skip to question 5

4. How much time did you usually spend doing moderate physical activities on one of those days?

  hours per day

  minutes per day

  Don't know/Not sure

Think about the time you spent walking in the last 7 days. This includes at work and at 
home, walking to travel from place to place, and any other walking that you might do 
solely for recreation, sport, exercise, or leisure.

5. During the last 7 days, on how many days did you walk for at least 10 minutes 
at a time?

 days per week

No walking ► Skip to question 7

6. How much time did you usually spend walking on one of those days?

  hours per day

  minutes per day

  Don't know/Not sure

The last question is about the time you spent sitting on weekdays during the last 7 days. Include time 
spent at work, at home, while doing course work and during leisure time. This may include time spent 
sitting at a desk, visiting friends, reading, or sitting or lying down to watch television.
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7. During the last 7 days, how much time did you spend sitting on a week day?

  hours per day

  minutes per day

  Don't know/Not sure

This is the end of the questionnaire, thank you for participating.
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Appendix D 

Western Blot Optimization Trials 

Western Blotting Antibody Concentrations / Reaction Optimization

Anti-GEF / SLC2A4RG primary antibody; anti-rabbit secondary antibody

Experiment Primary Secondary Notes / Results on Imaging

1 1:1000 1:2000 Very faint, if  any, band was seen where 

would be expected for GEF at about 41 

kDa.

2 1:500 1:2000 No real improvement over experiment 1.

4 1:1000 1:2000 Very faint lines observed at about 41 kDa, 

but a significant amount of non-specific 

binding still observed on the blot.

5 1:1000 1:100,000 No visible lines seen where GEF expected 

to be

6 1:1000 1:10,000 No clear lines; continues to be significant 

background noise in the image.

Anti-GLUT4 primary antibody; anti-mouse secondary antibody

Experiment Primary Secondary Notes

1 1:500 1:2000 Bands were seen where expected for 

GLUT4 at about 54 kDa, however there
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were large amounts of other non-specific 

binding / noise.

3 1:500 1:4000 Continued to have large amounts of non­

specific binding/noise.

On experiment 1, both primary and secondary antibodies were added simultaneously. The 

membrane was then stripped and all further experiments (2-6) were conducted with one primary 

and one secondary antibody at a time.

Experiment 1 had large amounts of non-specific binding/noise and little, if  any, visible band for 

GEF. It was suspected that there was too low of a concentration of primary antibody for GEF and 

the mouse secondary antibody was too concentrated.

The membrane was stripped between each subsequent experiment.

For experiment 2, the anti-GEF antibody concentration was increased and the secondary was left 

at 1:2000. Very faint lines were observed where expected, but there continued to be large 

amounts of non-specific binding/noise in the image.

For experiment 3, the anti-GLUT4 antibody was left at a concentration of 1:500, but the 

concentration of the secondary was reduced to 1:4000. This did not appear to improve the non­

specific binding/noise in the image.
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For experiments 4-6, the anti-GEF antibody was used, with a concentration of 1:1000. The 

secondary antibody was adjusted in concentration as shown above.
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