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Abstract

As oil and gas production continues in the Arctic, oil exploration and shipping traftic
have increased due to the decline of Arctic sea ice. This increased activity in the Arctic Ocean
poses a risk to the environment through the potential release of oil from cargo ships, oil tankers,
pipelines, and future oil exploration. Understanding the fate of oil is crucial to understanding the
impacts of a spill on the marine ecosystem. Previous oil biodegradation studies have
demonstrated the ability of Arctic and sub-Arctic microorganisms to biodegrade oil; however,
the rate at which oil degrades and the identity of indigenous oil-degrading microorganisms and
functional genes in Arctic seawater remain unknown. In addition to oil, it is also important to
understand the fate and eftects of chemicals potentially used in oil spill response. Corexit 9500 is
a chemical dispersant that is pre-approved for use in sub-Arctic seawater and is likely the
dispersant of choice for spill responders in Arctic offshore environments. Currently no literature
exists concerning the biodegradation of Corexit 9500 in Arctic seawater.

Here we investigate the fate of oil, chemically dispersed oil, and the chemical
dispersant, Corexit 9500, in laboratory mesocosms containing freshly collected Arctic surface
seawater. The objectives of these experiments were to calculate the extent and rate of
biodegradation (based on GC/MS & LC/MS/MS analysis) and to identify bacteria (determined
using 16S rRNA gene sequencing) and genes (based on GeoChip 5.0 microarray) potentially
involved in the biodegradation process. Indigenous microorganisms degraded both fresh and
weathered oil, in both the presence and absence of Corexit 9500, with oil losses ranging from 36-
41% within 28 days and 46-61% within 60 days. The biodegradation of the active components of
Corexit 9500, which are dioctyl sodium sulfosuccinate (DOSS) and non-ionic surfactants, was
also measured after 28 days. Biodegradation of DOSS was 77% in offshore seawater and 33% in
nearshore seawater. Non-ionic surfactants were non-detectable after 28 days. Taxa known to
include oil-degrading bacteria (e.g. Oleispira, Polaribacter, and Colwellia) and oil-
biodegradation genes (e.g. alkB) increased in relative abundance in response to both oil and
Corexit 9500. These results increase our understanding of oil and dispersant biodegradation in
the Arctic and suggest that some bacteria may be capable of biodegrading both oil and Corexit

9500.
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We also sought to understand baseline abundances of taxa known to include oil-
degrading bacteria and functional genes involved in oil biodegradation in an offshore oil lease
area. Aerobic oil-degradation genes (based on GeoChip 5.0 microarray) and taxa (determined
using 16S rRNA gene sequencing) known to include oil-degrading bacteria were identified in
seawater from the surface, middle, and bottom of the water column. Bacterial community
structure differed significantly by depth (surface water vs. bottom water), while the relative
abundance of major functional gene categories did not differ with depth. These findings support
previous observations that two different water masses contribute to a stratified water column in
the summer open-water season of the oil lease area, but indicate that potential function is fairly
similar with depth. These results will contribute to understanding the potential for oil
biodegradation throughout the Arctic water column and the fundamental microbial ecology of an
offshore oil lease area.

Together, these mesocosm experiments and in sifu studies address important data gaps
concerning the fate of spilled oil and Corexit in Arctic seawater. These results provide novel
insight into the ability of Arctic bacteria to biodegrade crude oil and Corexit 9500, and suggest
similarities between Arctic and temperate deep-sea environments in regards to taxa and

functional genes that respond to oil and Corexit.
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Chapter 1: General Introduction

Summer sea ice coverage in the Arctic has reached the lowest extent on record and
continues to decline at a rate such that some models predict an ice-free Arctic by 2040 (Comiso
et al., 2008; Holland et al., 2006). Areas that were once covered in ice year round are now
accessible for shipping, tourism, and oil and gas exploration. This projected rise in activity
increases the risk of oil spills and generates the need to advance environmental research to
address data gaps regarding appropriate spill responses in Arctic marine environments.

Oil-degrading microorganisms have been discovered from pole to pole and are thought
to be ubiquitous (Schneiker et al., 2006; Head et al., 2006; Yakimov et al., 2007). In a variety of
environments, both terrestrial and marine, microorganisms have evolved over time to utilize
petroleum hydrocarbons as a source of carbon and energy (Prince et al., 2010). Natural oil seeps
have been discovered throughout the World’s oceans, including in the Arctic (NRC, 2003), and
these seeps continue to enrich oil-degrading microorganisms (Prince & Clark, 2004). With the
advent of DNA sequencing technologies, indigenous oil-degrading bacteria in deep-sea and in
temperate environments have been identified (Hazen et al., 2010; Chakraborty et al., 2012), but
relatively little is known about the potential for Arctic marine bacteria to degrade oil.

When an oil spill necessitates a response, spill responders have three main options.
Depending upon the conditions, these techniques are usually applied concurrently with no single
response option applicable to all situations. With the aid of specifically engineered booms or
herders, floating oil can be mechanically recovered (e.g. skimmers), or burnt (i.e. in situ burning)
(Fingas, 2016). In addition, with the aid of aircraft or large boats affixed with sprayers, floating
oil can also be dispersed into the water column with chemical dispersants. Corexit 9500 is the
chemical dispersant most likely to be chosen for use in the Arctic Ocean due to its prior approval
in subarctic Alaskan waters (ARRT, 2016) and reported effectiveness in temperate environments
(Bejarano et al., 2013). When dispersants are applied to an oil spill, the concentrated oil slick is
mixed into the water column as tiny droplets with the help of physical energy, such as wave
action. The formation of these droplets is essential to the biodegradation process, as they increase
the surface area available to oil-degrading microorganisms and can significantly increase oil

biodegradation (Brakstad et al., 2015; Prince & Butler, 2014). Testing these response options in



environmentally relevant conditions and communicating these results to responders is critical to
an efficient emergency response.

This dissertation addresses data gaps concerning the biodegradation of oil and Corexit
9500 in the Arctic Ocean. The fate and effects of chemically dispersed oil in the Arctic
environment has recently been identified as a recommendation for future research by the
National Academy of Sciences (NRC, 2014). The research herein reports rates at which whole
oil and Corexit biodegrade in Arctic seawater and identifies bacteria and genes potentially
involved in the biodegradation of oil and Corexit. Using a combination of laboratory mesocosms
and in situ measurements; physical, chemical, and genetic analyses were conducted to
understand the fate of oil and Corexit and the impact that these mixtures have on bacterial
community structure and functional potential, as well as to survey an offshore oil lease area for
the organisms and genes important to oil biodegradation. To my knowledge, these experiments
are the first to use freshly collected Arctic seawater containing indigenous microorganisms to
address these data gaps. Overall, these results indicate that significant oil and Corexit
biodegradation can occur in the Arctic Ocean without adding large amounts of nutrients or
microbial cultures.

This dissertation includes three research-based chapters. Chapter 2 describes the
biodegradation of Alaska North Slope (ANS) crude oil by indigenous Arctic marine
microorganisms in nearshore Arctic seawater in the presence and absence of added nutrients. At
-1°C, primary biodegradation (total measureable and many individual hydrocarbons) and
mineralization were measured in mesocosms that mimicked environmental conditions following
a successful dispersion of a surface oil slick. Arctic microorganisms significantly degraded both
fresh and weathered oil, in both the presence and absence of Corexit 9500. In addition, this study
was the first to report the ability of indigenous Arctic marine microorganisms to mineralize
Corexit 9500. This chapter provides novel insight into the extents of biodegradation at one of the
lowest temperatures ever reported, -1°C.

Chapter 3 details the biodegradation of ANS crude oil and Corexit 9500 in Arctic
surface seawater collected from: (1) an offshore oil lease area (Burger; ~90 km from
Wainwright, AK) and (2) a nearshore location (~1 km from Barrow, AK). This nearshore
location is similar to the location where the seawater for Chapter 2 was collected. Mesocosm

studies were conducted using freshly collected seawater spiked with either oil or Corexit to



determine rates of biodegradation and effects on natural Arctic bacteria. This chapter contains
the first report of biodegradation rates of oil (total measurable hydrocarbons) and Corexit
components (dioctyl sodium sulfosuccinate, DOSS, and the non-ionic surfactants) in Arctic
seawater. Abundances of total prokaryotes, as well as bacterial community structure (using 16S
rRNA gene sequencing) and functional genes known for oil-biodegradation (e.g. alkB, using the
GeoChip 5.0 microarray) were compared between oil and Corexit incubations. In the natural
seawater, both oil and Corexit enriched some of the same bacterial ‘species’ (97% similarity) and
genes known to biodegrade oil, but overall Corexit was shown to enrich a greater abundance of
prokaryotes compared to oil. These results suggest that some bacteria may be capable of
biodegrading both oil and Corexit.

The final research chapter, Chapter 4, builds upon the mesocosm studies described in
Chapters 2 and 3 by reporting in sifu oil biodegradation potentials in the Arctic Ocean. In an
offshore oil lease area, I characterized the bacterial community structure (using 16S rRNA gene
sequencing) and detected the relative abundance of functional genes (using the GeoChip 5.0
microarray), including oil biodegradation and biogeochemical cycling (carbon, nitrogen, and
phosphorus cycling) genes in surface, middle, and bottom seawater samples. These data were
then correlated to physical and biogeochemical measurements within the oil lease area. Oil-
degrading genes and taxa known to contain species able to biodegrade oil were located
throughout the water column in relatively similar abundances. These findings support previous
observations that two different water masses contribute to a stratified water column in the
Chukchi Sea during the summer open-water season. The overall genetic potential for oil
biodegradation or biogeochemical cycling was not affected by stratifications in temperature,
water chemistry, and bacterial community structure. These baseline community trends may be
useful to those assessing the effects of climate change and oil exploration on microbial
communities in the Chukchi Sea.

The primary objectives of this dissertation were to (1) quantify the biodegradation of oil
and the chemical dispersant Corexit 9500 by indigenous Arctic marine microorganisms, (2)
characterize the effects of oil and Corexit on bacterial community structure, (3) determine the
identity of biodegradation genes potentially utilized by indigenous Arctic marine bacteria when
biodegrading oil or Corexit, and (4) contribute to an ecological baseline analysis of an offshore

oil lease area by documenting bacterial community structure and functional potential to



biodegrade oil and cycle nutrients. Together, these results provide novel insight into the
biodegradation of crude oil and Corexit 9500 by Arctic microorganisms and contribute to
comprehensive oil spill research recommended by the National Academy of Sciences to assess

oil spill response technologies in the Arctic marine environment.
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Chapter 2: Biodegradation of Dispersed Oil in Arctic Seawater at -1°C!

Abstract

As offshore oil and gas exploration expands in the Arctic, it is important to expand the scientific
understanding of Arctic ecology and environmental impact to mitigate operational risks.
Understanding the fate of oil in Arctic seawater is a key factor for consideration. Here we report
the chemical loss due to the biodegradation of Alaska North Slope (ANS) crude oil that would
occur in the water column following the successful dispersion of a surface oil slick. Primary
biodegradation and mineralization were measured in mesocosms containing Arctic seawater
collected from the Chukchi Sea, Alaska, incubated at -1°C. Indigenous microorganisms degraded
both fresh and weathered oil, in both the presence and absence of Corexit 9500, with oil losses
ranging from 46-61% and up to 11% mineralization over 60 days. When tested alone, 14% of 50
mg/L Corexit 9500 was mineralized within 60 days. Our study reveals that microorganisms
indigenous to Arctic seawater are capable of performing extensive biodegradation of chemically
and physically dispersed oil at an environmentally relevant temperature (-1°C) without any

additional nutrients.

! McFarlin KM, Prince RC, Perkins R, Leigh MB. (2014). Biodegradation of dispersed crude oil in Arctic seawater
at -1°C. PLoS ONE 9:¢84297



Introduction

As the oil and gas industry continues offshore exploration in the Arctic, it is imperative
to base design and operational plans on a deep scientific understanding of the Arctic ecology and
the potential environmental impact in order to mitigate risks. The Arctic’s fragile environment
and sensitive ecology present unique challenges. Understanding the rate and extent of oil
biodegradation in cold-water environments is a key factor for consideration. Biodegradation is
generally believed to be the dominant process that removes petroleum compounds from the
environment [ 1], but the process has not been thoroughly studied in the Arctic, and questions
remain as to whether biodegradation is a significant process in cold conditions [2].
Microorganisms capable of using hydrocarbons as a source of carbon and energy are diverse and
widespread [3], including in the Arctic [4] and other cold environments [5-8].

Dispersant application is a potential oil spill response option in Arctic marine
environments. Corexit 9500 has been shown to be effective in dispersing Alaska North Slope
(ANS) crude oil in a large outdoor wave tank at temperatures ranging from 0-3°C [9]. When
Corexit 9500 was widely applied to the Deepwater Horizon spill, some research suggested that
the dispersant was not toxic to the indigenous Gulf of Mexico microorganisms and that some
bacterial species were capable of degrading various components of the dispersant [10]. However,
little is known about the degradation of Corexit 9500 and dispersed oil in the Arctic marine
environment.

When a dispersant is applied to an oil slick it reduces the interfacial surface tension
between the water and the oil, allowing the oil to become mixed into the water column as tiny (1-
70 um) droplets [11] with mild wave action. The creation of small oil droplets increases the
surface area available for microbial colonization [12] and can significantly increase
biodegradation [11, 13-16]. The localized concentration of oil drastically decreases as it is
chemically dispersed into the water column and has been reported to range from 1-15 mg/L
beneath (1-5 m) oil slicks treated with dispersant within a few hours after the application [13, 17-
19]. This study aimed to assess the biodegradation of oil at concentrations that are expected in
the water column following successful dispersion in the Chukchi Sea.

Several laboratory studies have investigated sub-Arctic oil biodegradation in Alaska
[20, 21], Canada [5], and Arctic and sub-Arctic Norway [6, 8, 22], but with diverse experimental

methodologies, making direct comparisons of biodegradation data challenging. Previous studies



have used a range of oil loadings and in some cases the addition of enrichment cultures and/or
high quantities of nutrient amendments. Most experiments have been conducted using high
dispersed-oil concentrations (100-900 mg/L) [19, 21, 23], while few studies have focused on the
low dispersed-oil concentrations (1-15 mg/L) that soon occur beneath a dispersed slick [13, 17-
19]. Other studies have supplemented oil incubations with large quantities of nutrients, which
accelerate biodegradation rates [24-26] but may create an experimental system that does not
accurately represent environmental conditions.

This study measures the biodegradation of Alaska North Slope crude oil [27] that would
occur in the water column following a successful application of Corexit 9500 to a surface oil
slick. Arctic seawater with its indigenous microbial community was collected and experiments
were conducted at the temperature of the water at the time of collection (-1°C) with natural or
slightly enhanced nutrient levels. Biodegradation was measured using respirometry and gas

chromatography-mass spectrometry (GC-MS) analysis.

Methods

Field studies did not involve endangered or protected species. Water collection did not require

specific permission because the Chukchi Sea is not a federal or state protected area.
Seawater collection

Seawater (free of slush and ice) was collected from the eastern edge of the Chukchi Sea,
approximately 2.5 km East of where the Chukchi Sea meets the Beaufort Sea. Samples were
collected 1 km from Barrow, AK (N 71°21°43”, W 156°40°13”) from beneath 1 m of ice.
Seawater was immediately transferred to the laboratory cold-room in clean Nalgene®
rectangular carboys and aerated with aquarium air stones until test initiation. The test waters did
not contain visible particulates and were not filtered. Measured seawater quality parameters at
collection included pH (8.05), temperature (-1°C), dissolved oxygen (11.6 mg/L) and salinity (33
ppt). Nutrient levels (nitrate, nitrite, and ammonia) were below detection limits by simple

colorimetric tests (DR/850, Hach, Colorado).



Experimental environmental parameters

All incubations were performed in a cold room, which was kept at -1°C, and under low
light (Photosynthetically Active Radiation (PAR) of 1.83 pmoles'em™; LI-193SA Spherical
Quantum Sensor, LI-COR, Nebraska).

Oil and dispersant

A single batch of Alaska North Slope (ANS) crude oil was collected from the Alyeska
terminal in 2009. Some was artificially weathered by allowing a known weight of static fresh oil
to evaporate (at room temperature) in a fume hood until it had lost 20% of its initial mass to
approximate oil that might have been floating at sea for 12-24 hours [28]. The dispersant used in
this study was Corexit 9500 [29]. Because of the small volumes involved, oil and dispersant
were premixed before addition to the experimental chambers. The biodegradation of dispersed
oil was tested at 1:20 and 1:15 dispersant to oil ratios (DORs) and the mineralization of Corexit
9500 alone was measured at SO mg/L. The 1:20 DOR application rate is the target ratio in oil
spill response, although ratios as high as 1:10 have been required with more emulsified and

viscous heavy oils [19].
Biodegradation experiments

Low concentrations of oil were tested (2.5 mg/L and 15 mg/L) in order to assess the
biodegradation of dispersed oil at concentrations that are expected to approach those found in the
water column after successful dispersion. Two methods were used to quantify the biodegradation
of oil. The first measured the primary biodegradation of the oil, i.e. the chemical disappearance
of specific hydrocarbons, monitored with respect to a conserved internal marker within the oil
(hopane) [30]. Primary biodegradation was measured in open top mesocosms (2.5 mg/L oil in 4
L of unamended seawater) and closed respirometer flasks (15 mg/L oil in 900 ml seawater +
nutrients). Respirometer flasks contained their own oxygen generation system. The second
method measured the mineralization of oil to COz and H>O with an electrolytic respirometer
(Co-ordinated Environmental Service; Kent, England) and required the use of higher oil
concentrations (15 mg/L oil in 900 ml seawater + nutrients) because of the detection limits of the
instrument. Preliminary experiments indicated that the biodegradation of such concentrations (15

mg/L) would likely be limited by the availability of nitrogen and phosphorus in the seawater, so
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low levels of nutrients (16 mg/L Bushnell Haas Broth [31]) were added to respirometer flasks,
providing 75 uM phosphate, 49 uM nitrate and 76 uM ammonium. For comparison, Codispoti et
al. [32] measured background nutrient levels adjacent to Point Barrow and reported 0.8 uM
phosphate, 6 uM nitrate and 6 uM ammonium in summer surface seawater.

All treatments were continuously mixed (400 rpm) using Teflon coated stir-bars.
Respirometer experiments were carried out in general agreement with the Organization for
Economic Cooperation and Development 301F [33] guidelines for biodegradation testing, with
the omission of a microbial inoculum. Mineralization was determined as a function of the
sample’s theoretical oxygen demand (ThOD): the amount of O2 required to mineralize the
sample. ThOD was calculated based upon analytical measurements of the substrate’s elemental
composition (QTI, Whitehouse, NJ): ANS crude oil contained 84.9% carbon, 12.0% hydrogen,
and 0.39% nitrogen (ThOD = 3.32 mg O2/mg oil), while oil plus Corexit 9500 (20:1) contained
83.8% carbon, 11.6% hydrogen, and 0.32% nitrogen (ThOD = 3.30 mg O2/mg dispersed oil).
Positive controls for the respirometry contained either sodium benzoate or peptone at 50 mg/L.
Negative controls for the respirometry experiments contained seawater and 0.5% BH with no oil
or dispersant addition. Materials necessary for sterile controls were unavailable in our remote
Arctic research facility. The minimal respiration measured in the negative controls (3 replicates)

was subtracted from all respirometer treatments.
Oil analyses

Petroleum hydrocarbons were extracted from all experimental incubations and analyzed
with GC-MS as described by Douglas ef al. [34]. Oil biodegradation was determined with
respect to 17a(H),21B(H)-hopane as a conserved internal marker within the oil [30]. Each
experimental container was extracted three times with methylene chloride. The combined extract
was concentrated to a nominal concentration of approximately 10 mg/ml by evaporation to a
small volume (but not to dryness), then dried of water and filtered by passage through a column
of anhydrous sodium sulfate. All treatments were analyzed for total detectable hydrocarbons as

well as individual aromatics and alkanes.
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Statistical analyses

Levene's test for equality of variances and the t-test for equality of means were
performed with a 95% confidence interval using a statistical package for social science, version

16 (SPSS Inc., Chicago, IL, USA).

Results and Discussion

The primary goal of this study was to quantify the chemical loss due to the
biodegradation of dispersed oil at low temperature by indigenous microorganisms in Arctic
seawater. Extensive biodegradation of ANS crude oil occurred at -1°C, both in the presence and
absence of the dispersant Corexit 9500 (Figure 2-1). By the end of the incubation period (~60
days), 46-61% of total measurable oil was lost (Figure 2-2, Table 2-1). Percent losses were
affected by prior weathering of oil and by the presence of Corexit 9500.

As reported by Venosa and Holder [21] at warmer temperatures, Corexit 9500 initially
enhanced the rate of biodegradation, although differences between treatments with and without
Corexit became smaller as time progressed (Figure 2-2). At the end of the experiments (56-63
days), the indigenous Arctic microbial community (in incubations containing 2.5 mg/L fresh and
weathered oil), had biodegraded almost 100% of heptadecane, octadecane, and individual
aromatics; including EPA listed priority pollutants (Figures 2-3 & 2-4) regardless of the presence
of Corexit 9500. In addition, the complete loss of phenanthrene, C-1 phenanthrenes,
dibenzothiophenes and C1-dibenzothiophenes was observed with or without Corexit in fresh oil
incubations (Figure 2-4). The loss of C2-phenanthrenes was close to 90%, while almost 80% of
C2-dibenzothiophenes was removed, as was approximately 60% of benz[a]anthracene (Figure 2-
4). In addition, the indigenous microbial community was able to biodegrade the four-ringed
PAH, chrysene (Figure 2-4). As expected, the degradation rates were lower for chrysene than for
the lower molecular weight compounds (e.g., naphthalene, phenanthrene; Figures 2-3 & 2-4).
The patterns of petroleum hydrocarbon biodegradation observed in these experiments were
similar to those observed previously in both sub-Arctic and temperate conditions [34]; with the
shorter, straight-chained alkanes more readily degraded than longer n-alkanes and branched
alkanes, lower molecular weight PAHs more readily degraded than higher molecular weight

PAHs, and parent PAHs degraded before their alkylated homologues.
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It is not surprising that at such low oil concentrations only small differences in
biodegradation were observed with the addition of Corexit 9500, although some have expressed
concern that Corexit might be inhibitory [20, 35]. The desire to test equivalent oil loadings for
both dispersant-treated and untreated mesocosms resulted in both treatments having very similar
quantities of dispersed oil, as the small volumes of oil added to the mesocosms dispersed
naturally without Corexit addition due to the physical mixing. In the environment, it is unlikely
that a large oil slick would be physically dispersed to these low concentrations without dispersant
application. The important finding of this work is that indigenous Arctic marine microorganisms
are capable of extensive biodegradation of dispersed oil, regardless of whether physically or
chemically dispersed. We note, though, that dispersants such as Corexit 9500 dramatically
increase the amount of dispersed oil in the water column, and minimize surface slicks.

The oil losses detected in this study are primarily due to biodegradation, although
volatilization may be responsible for a portion of the loss of low molecular weight compounds in
fresh oil. The chromatograms shown in Figure 2-1 are normalized to an internal marker within
the oil (170(H),21B(H)-hopane) [30], so the losses represent the primary biodegradation of total
extractable hydrocarbons rather than, for example, physical loss due to poor extraction. In
addition to normalizing GC-MS data to conservative markers, such as hopane, reporting ratios of
degradable hydrocarbons (alkanes or PAHs) to recalcitrant hydrocarbons (isoprenoids) has also
been used as a measure of biodegradation [15, 36, 37]. Table 2-2 summarizes the Cig to phytane
ratio at 10, 28 and 63 days in mesocosms containing 2.5 mg/L of oil with and without Corexit
9500. The ratio decreases with time, as expected during biodegradation.

Biodegradation of dilute oil is extensive in temperate [38, 39], tropical [40] and Arctic
environments (this study), although the rates of biodegradation vary based on region. By the end
of our incubations (~60 days), 46-61% of total GC-detectable oil had been lost (Figure 2-2).
Thus the overall ‘half-life’ of crude oil in the Chukchi Sea at -1°C, when present at low
concentrations (2.5-15 mg/L), was on the order of 60 days. Using the same methods as our study,
Prince et al. [39] measured an 82-88% loss of weathered ANS crude oil without and with Corexit
9500 in incubations with New Jersey seawater at 8°C after 60 days. They also measured the
percent loss of fresh oil and concluded that 81-82% of oil was lost after 41 days, which
corresponds to an 11-14 day half-life with and without Corexit, respectively. Zahed ef al. [40]

also measured the half-life and percent loss of crude oil (100 mg/L) in incubations with
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indigenous seawater enrichment cultures from Butterworth, Malaysia with and without Corexit
9500 at 28°C. In tropical seawater and with a light crude oil, they reported a maximum loss of 67
and 64% of total petroleum hydrocarbons over 45-day incubations, with half-lives of 28 and 31
days, respectively. Hazen e al. [38] reported half-lives of soluble alkanes in MC252 oil
dispersed with Corexit 9500 in the Deepwater Horizon subsurface (1099-1219 m) plume to range
from 1.2-6.1 days at a temperature of 5°C. Of course the half-life of petroleum does not predict
the persistence of total oil, as the low molecular weight hydrocarbons are more readily
biodegraded than the larger compounds. Half-life measurements are dependent on many factors,
with oil concentration and composition being very important, making direct comparisons among
different studies using different oil loadings and types challenging. However, all these studies
show that indigenous microbial communities are able to degrade a substantial amount of
petroleum in tropical, temperate and Arctic environments.

Crude oils are very dense sources of carbon and energy that provide no biologically
available nitrogen or phosphorus, which are essential for microbial growth. If oil is stranded on
shorelines, this limitation can be overcome by the application of fertilizers [41], even in the
Arctic [42]. When successfully applied to an oil slick, dispersants dilute the oil so that the natural
background levels of nutrients in the sea may support the microbial community during oil
biodegradation [39]. In our 60-day experiments, 4 L mesocosms containing 2.5 mg/L oil and no
added nutrients exhibited similar oil biodegradation extents as smaller (900 ml) respirometer
flasks containing 15 mg/L oil and additional nutrients (16 mg/L Bushnell Haas medium).
Because the aim of the study was to replicate environmental conditions as much as possible,
higher concentrations of nutrients were not tested to evaluate whether additional nutrients might
accelerate biodegradation.

In addition to measuring primary biodegradation (loss of individual chemicals) using
GC/MS, we also measured mineralization (i.e. the complete respiration of substrate to CO2 and
H20) with respirometry. Although primary biodegradation was slightly enhanced by Corexit
9500 (Figure 2-2), no stimulatory effect of the dispersant was observed for mineralization
(Figure 2-5). The indigenous microbial community mineralized 11% of weathered crude oil (15
mg/L) after 56 days in both physically and chemically dispersed treatments. Lindstrom and
Braddock [20] compared the mineralization of oil with and without dispersant using a microbial

enrichment culture from a sub-Arctic spill site, and similarly concluded that Corexit 9500 had
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little effect on mineralization. Baelum ef al. [15] also saw no significant difference in
mineralization rates in incubations containing MC252 oil with and without Corexit 9500 at 5°C
after 20 days, but reported a significant increase in primary biodegradation (60% vs. 25%) with
the addition of Corexit.

There are several factors contributing to the fact that percent mineralization will likely
always be lower than primary degradation. One is that oil-degrading bacteria utilize petroleum as
a carbon source, integrating a portion of hydrocarbon metabolites directly into biomass [43-45].
Another is that GC analyses only measure a fraction of the hydrocarbons in most oils, while
percent mineralization is based on total oil. The resin and polar fractions of the oil [46] are not
significantly volatile, and do not enter the GC column, and nor do hydrocarbons with more than
about 40 carbon atoms. All of these molecules are expected to degrade more slowly than
hydrocarbons with <30 carbon atoms, although evidence is accumulating that resins and
asphaltenes are at least partially degradable [47, 48]. Taking these two effects into consideration,
our respirometry data are not inconsistent with our GC data.

Biodegradation of the dispersant alone was also examined using respirometry. Primary
biodegradation of Corexit 9500 was not assessed, since solvent extraction and the GC/MS
methods used in this study do not accurately measure all the components present in the
dispersant. The concentration of Corexit 9500 (50 mg/L) in dispersant-only incubations was
considerably higher than the concentration of Corexit in chemically dispersed oil incubations
(0.75 mg/L) to enable detection of mineralization, and mineralization may have been nutrient
limited due to the use of such a high concentration in our low-nutrient incubations. Nevertheless,
approximately 14% of Corexit 9500 (50 mg/L) was mineralized by the indigenous Arctic marine
microbial community within 60 days at -1°C (Figure 2-5). Incubations with Corexit 9500 alone
(50 mg/L) consumed more oxygen and at a much faster rate than treatments containing oil (15
mg/L oil + 0.75 mg/L Corexit). The rate of oxygen consumption in the Corexit 9500 treatment
(50 mg/L) was the greatest over the first 10 days, while the treatments containing 15 mg/L
weathered ANS and weathered ANS plus Corexit (15 mg/L oil + 0.75 mg/L. Corexit) reached a
maximum rate of oxygen consumption between day 12 and day 16, respectively. Almost no lag
period was observed for the mineralization of Corexit 9500 alone (Figure 2-5), suggesting that
the indigenous microbial community can readily initiate biodegradation of at least some

components of the dispersant. The overall mineralization pattern of ANS and Corexit observed in
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these experiments are similar to the results of Lindstrom and Braddock [20], who reported that
Corexit 9500 was mineralized faster than fresh ANS crude, which in turn was mineralized faster
than weathered ANS crude. Future studies using analytical methods capable of measuring
chemical losses of dispersant components, such as LC-MS, would enable a more thorough

understanding of Corexit 9500 biodegradation.

Conclusions

To our knowledge, this is the first study to measure the biodegradation of a crude oil,
with and without a dispersant, at environmentally relevant concentrations [17] by an indigenous
Arctic microbial community at sub-zero temperatures. Microorganisms indigenous to the
Chukchi Sea were found to degrade both fresh and weathered crude oil in the presence and
absence of Corexit 9500 at -1°C, with oil losses ranging from 46-61% and up to 11%
mineralization over 60 days. Weathered ANS dispersed with Corexit 9500 underwent a 57%
loss in Arctic seawater after 60 days in our experiment, but experienced an 88% loss in New
Jersey seawater in the same time [39]. These experiments suggest that in the Arctic, ANS crude
oil degrades more slowly than oil in temperate regions, but that oil losses were still substantial
even at -1°C. There is evidence that Corexit 9500 initially stimulated oil biodegradation (Figures
2-1 & 2-2), but, as expected, its effects were minimal in longer-term incubations. We conclude
that the biodegradation of oil in Arctic seawater is extensive at -1°C, and that the biodegradation
of dilute, dispersed oil is not inhibited by the presence of Corexit 9500. Although no microbial
analyses are reported, it is apparent that the chemical loss of oil is indeed microbial. The
respiration measured in all treatments could only be the result of indigenous microorganisms
mineralizing oil and/or dispersant, since the minimal respiration measured in the background
controls (seawater + nutrients) was subtracted from the respiration measured in the treatments
(seawater + nutrients + oil and/or dispersant). Furthermore, the selective disappearance of some
chemicals before others, whether referred to hopane, or for example the older Cis to phytane
ratio, is a diagnostic for biodegradation [49]. Future work will focus on biodegradation rates in
offshore Arctic oil lease areas and on the identification of microorganisms and genes active in
biodegradation. Additional research in the Arctic is needed to address the behavior and

biodegradation of oil spilled in ice-covered waters.
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