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Abstract

This paper seeks to provide complete proofs in modern notation of (early) key satura
tion number results and give some new results concerning the semi-saturation number. We 
highlight relevant results from extremal theory and present the saturation number for the 
complete graph K k, and the star K 1,t , elaborating on the proofs provided in the 1964 paper A 
Problem in Graph Theory by Erdos, Hajnal and Moon and the 1986 paper Saturated Graphs 
with Minimal Number of Edges by Kaszonyi and Tuza. We discuss the proof of a general 
bound on the saturation number for a family of target graphs provided by Kaszonyi and 
Tuza. A discussion of related results showing that the complete graph has the maximum 
saturation number among target graphs of the same order and that the star has the maxi
mum saturation number among target trees of the same order is included. Before presenting 
our result concerning the semi-saturation number for the path Pk, we discuss the structure of 
some Pk—saturated trees of large order as well as the saturation number of Pk with respect 
to host graphs of large order.
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C h apter 1

In trod u ction

1.1 B asic D efin itions

A finite simple graph G =  (V (G ),E (G )) is a set of vertices V (G ) together with a set of 
edges E (G ) where each edge e e  E (G ) is an unordered pair of distinct vertices u ,v  e  V (G ). 
When e =  {u, v } belongs to E (G ), we write e =  uv and we say that the vertices u and v are 
adjacent in G. If v is adjactent to exactly j  vertices in G, we say that v has degree j ,  and 
we write degG(v) =  j.

The complement G of a graph G is the set of vertices V (G ) together with the set of 
exactly those edges not in E (G ). That is, for any vertices u ,v  e  V (G ) with u =  v, if the 
edge uv e  E (G ) then uv e  E (G ).

When |V(G)| =  n we say the G is a graph of order n. When |E(G)| =  m we will say 
that G has size m.

The understanding of definitions and proofs is aided by diagrams. When we use a diagram 
to represent a graph, the edges are represented by line segments or arcs and the vertices are 
respresented by small circles.

Observe that the graph G represented in Figure 1.1a has vertex set V (G ) =  {u, v, w, x, y, z } 
and edge set E (G ) =  {yz, zu, wz, zx, zv, yv, wv, vu, vx }. Notice that yu e  E (G ) and that 
yu e  E (G ). (See Figure 1.1b.)

The graph represented in Figure 1.2 belongs to a family of graphs known as complete 
graphs. In the complete graph K n of order n, each pair of distinct vertices is joined by an 
edge. Thus K n has size m =  Q ) .

A graph G is called bipartite if V (G ) can be partitioned into two sets U and W  such 
that every edge of G joins a vertex of U and a vertex of W. That is, for all e e  E (G ), we
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have e =  uw where u e  U and w e  W. The bipartite graph G is said to be complete bipartite 
if E (G ) =  {uw : u e  U, w e  W }. That is, if G is biparitie with all possible edges. If G 
is complete bipartite with |U| =  s and |W| =  t, we write G =  K s,t. A graph H  is called 
k-partite if V (H ) can be partitioned into k sets V1, V2,. . . ,  Vk with k >  2 such that for all 
e e  E (H ) we have e =  v ^  where vi e  V  and v  e  Vj with 1 <  i, j  <  k and i =  j. When 
| Vj|, |Vj | e  { [ nJ, rn 1} for all i, j  e  {1, 2 , . . . ,  k} we will say that H  is balanced. That is, H  is 
balanced if all of the partite sets have as near the same order as possible.

In a graph H, a set of vertices S C V (H ) is an independent set if for all pairs u ,v  e  S 
the vertices u and v are not adjacent. Notice that since each edge of a k—partite graph 
joins vertices from distinct partite sets, the partite set Vi forms an independent set for all 
i e  { 1, 2 , . . . ,  k}.

A graph is r — regular if every vertex of the graph has degree r. Notice that K 4 is 3—regular 
and for any n, the graph K n is (n — 1)—regular. For any integers n and r with 0 <  r <  n — 1, 
there exists an r —regular graph of order n whenever at least one of r and n is even. An 
elementary degree-sum argument shows that when both r and n are odd, no r —regular graph 
exists.

Let G and G 1 be graphs with k =  |V(G1)| <  |V(G)| =  n. If V (G 1) C V (G ) and 
E (G 1) C E (G ) then we say the G 1 is a subgraph of G. We say that two graphs H  and H' 
are isomorphic if there exists an adjacency-preserving bijection between their vertex sets 
and we write H  =  H '. If there exists a subset V ' C V (G ) of the vertices of G and a subset 
E ' C E (G ) of the edges of G such that H  is isomorphic to the subgraph H ' =  (V ',E '), we 
say that G contains a copy of H.

If I  is a subgraph of G such that E ( I ) =  {uv : u, v e  V ( I ) and uv e  E (G )}, we say that 
I  is an induced subgraph of G and we may write I  =  G [V (I)]. Note that by our definition 
above, when we say that G contains a copy of H, the subgraph H ' of G such that H ' =  H 
need not be an induced subgraph of G.

If we obtain the graph G' from G by adding the edge e e  E (G ), we have E (G ') =  
E (G ) U {e }  and we write G' =  G +  e. If e =  uv, we may write G' =  G +  uv.
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(a ) A graph G. (b ) The complement G of G.

F igure 1.1: A graph G and its complement. By inspection, G is K 4—saturated.

(a ) (b )

F igure 1.2: Two representations of the complete graph K 4 of order 4.

1.2 Saturation  N u m ber

z

We say that G is H  —satura ted  if G contains no copy of H  and for all e E E (G) the graph 
G +  e does contain a copy of H.

By inspection, we see that G in Figure 1.1a contains no copy of K 4. By checking all six 
edges e E E (G), we can see that G is K 4—saturated. That is, for any edge in e E E (G), the 
graph G +  e contains a copy of K 4. In this context, it is common to refer to G as the host 
graph and to refer to K 4 as the target graph.

Let H  be a target graph of order k. Observe that any host graph G of order n <  k 
must necessarily be complete. In this case, we say that G is trivially H —saturated. We will 
generally assume that the host G has order n >  k unless otherwise stated.

Figure 1.3 shows a target graph H  along with two distinct H —saturated graphs. Notice 
that |E(Gi)| <  |E(G2)|.

The sa tu ra tion  n u m ber  of a target graph H  with respect to host graphs of order n, 
denoted sat(n, H ), is the minimum number of edges in an H —saturated graph on n vertices. 
That is,

sa t(n ,H ) :=  min{|E(G)| : G is H-saturated, |V(G)| =  n}.

3



(a ) A target graph H . (b ) a  host Gi of order 6 (c )  A host G2 of order 6 and
and size 5. size 6 .

F igure 1.3: Both G 1 and G2 are saturated with respect to H.

If G is an H —saturated graph of order n and |E(G)| =  sat(n, H ), we say that G is a minimal 
H  —saturated graph. In Chapter 4 we will see that G 1 in Figure 1.3 is a minimal H —saturated 
graph of order 6 .

In general, to satisfactorily prove that sat(n, H ) =  m, we must both show that there 
exists an H —saturated graph G on n vertices with m  edges, and we must show that we 
cannot do better. That is, for any H —saturated graph F  of order n, we must show that 
|E(F)| >  m. The first task is “easy” because we typically have a particular graph G in 
mind. We can describe this graph G and prove it is H —saturated, by cases (kinds of pairs 
of vertices) as needed. The second task might be “easy.” Either it can be directly shown by 
making some straight-forward observations, or we may suppose that an H —saturated graph 
on n vertices with fewer than m edges exists and reach a contradiction.

This paper seeks to clarify proofs of key historical results related to saturation number 
by offering complete, detailed proofs in modern notation. The proofs we provide for the 
results discussed in Chapters 2 , 3, and 4 are adapted from those originally published with 
their corresponding results. Each result includes a citation idicating both the original paper 
and the result’s label in that paper.

This paper concludes with a consideration of the notion of saturation number as used 
in [EHM64]. We explore a weakening of the saturation number called the semi-saturation 
number, and we find the semi-saturation number of the path Pk on k vertices.
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1.3 C h apter O verview

In Chapter 2 we give a brief history of Extremal Graph Theory as it relates to saturation 
number. We consider the family of extremal K k—saturated graphs and we present the family 
of minimal K k—saturated graphs. The paper [EHM64], in which minimal K k—saturated 
graphs were first characterized, is widely regarded as the founding result in saturation theory.

In Chapter 3, we give a few general results regarding bounds on the saturation number 
and elaborate (by supplying details and illustrations) upon proofs presented in [KT86]. In 
particular, we discuss results showing that the complete graph has the maximum saturation 
number among target graphs of the same order and that the star has the maximum saturation 
number among target trees of the same order.

In Chapter 4, we summarize what is known about the saturation number for families of 
trees. In particular, we discuss a few results concerning the saturation number for paths and 
subdivided stars. For a given target tree T, we also discuss conditions that guarantee the 
existence of a minimal T —saturated forest.

Finally in Chapter 5, we consider the semi-saturation number for the Pk, motivated by 
the notion of saturation introduced in [EHM64]. We show that for n and k large enough, 
the semi-saturation number for Pk is strictly smaller than the saturation number for Pk.

In Chapter 6 we list a few questions for further research.
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C h apter 2

A  B r ie f H istory  o f  S aturation  N u m ber

2.1 E xtrem al T h e o ry

The study of saturation number falls into the area of reasearch known as extremal graph 
theory which explores questions regarding upper and lower bounds on the size of a class of 
graphs (or other graph parameters such as order, minimum degree, or girth) that guarantee 
certain properties. We use the notation ex(n, H ) =  max{|E(G)| : G is H  — saturated} to 
indicate the extremal number for the target graph H  with respect to H — saturated graphs 
of order n. Thus for all H — saturated graphs G of order n we have,

sat(n, H ) <  |E(G)| <  e x (n ,H ).

One of the earliest results in extremal theory is due to Mantel (1907), who showed that 
any graph of order n with at least |_n2/4 j +  1 edges contains a triangle (or a copy of K 3) 
[CLZ11]. The complete balanced bipartite graph Kynj,|-n-| of order n motivates this bound. 
That is, e x (n ,K 3) =  |_n2/4 j =  |E(K|_nj,-« -)|. We say that a host graph G of order n is 
extremal if G is H —saturated and has ex(n, H ) edges. Thus Kynj,-n- is extremal with 
respect to K 3.

In 1941, Turan extended Mantel’s result to characterize the class of K k—saturated graphs, 
of maximum size [BB98]. The extremal graph for K k, known as the Turan graph Tn,k-1 is 
the (k — 1) —partite graph on n vertices with partite sets of order n  where n  =  |_-jn ij or 
n  =  \kni 1 so that 1 n  =  n. (See Figures 2.1a and 2.1b.)
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(a ) The Turan Graph Tn,k-1, the com- (b ) T17,5 is the graph of maximum size
plete balanced (k — 1)-partite graph, is the on 17 vertices that is K 6—saturated. The
unique K k—saturated graph of maximum addition of any edge produces a copy of
size. K 6.

F igure 2.1: The Turan graph Tn,k-1 is the unique K k—saturated graph on n vertices with 
the maximum number of edges. That is, Tn,k-1 is the extremal K k—saturated graph.

The graph Tn,k-1 is the unique K k—saturated graph on n vertices with the maximum 
number of edges [CLZ11]. Thus,

ex(n, Kk) =  |E(Tn,k-1) |.

Considering this construction, calculations [BB98] reveal that

ex(n, Kk) >  (1  — 1 n
k — 1 )  \2

Thus we see that for fixed k, the rate of growth of the extremal number of Kk is quadratic 
with respect to n. In the following section we will see how this compares to the rate of growth 
of the saturation number with respect to n. (See Corollary 2.)

The extremal number for various families of graphs has been the subject of extensive 
study. We discuss here the extremal number for two families of graphs whose saturation 
numbers will be treated in Chapters 3 and 4.

8



o---------- o--------- o--------- o-------- o
v1 v2 v3 v4 v5

M  M  M  M  M
0—0 0—0 0—0 0—0 0—0

(a ) The path P5 of order 5 has size 4. (b )  The extremal P5—saturated graph of 
order 20.

F igure 2.2: The extremal P5—saturated graph of order 20 has size ex(20, P5) =  30 and 
consists of five copies of K 4, denoted 5K4.

F1

(b )  The graphs F1 and F2 are both ex
tremal K 1,4—saturated graphs of order 12.

F igure 2.3: Any 3—regular graph of order n is K 14—saturated with size e x (n ,K 14) =  
2n. For example, for n = 1 2  both F1 =  3K4 and the connected graph F2 are extremal 
K 1,4—saturated graphs. These graphs do not exhaust the possibilities.

Given an integer k >  1, a graph of order k and size k — 1 is a k—path, denoted Pk, if its 
vertices can be labelled v1 , v2, . . . ,  vk and its edge set consists exactly of the pairs {v*, vi+1} 
with 1 <  i <  k — 1 . If v1 =  u and vk =  w we say that Pk is a uw — path and u and w are the 
end-vertices of P. (See Figure 2.2a.)

The Pk—saturated graph of order n and maximum size has at most (k -2) n edges. When 
k — 1 divides n, the bound is sharp: the extremal graph with exactly ex(n, Pk) =  (k -2) n 
edges is a union of complete graphs K k -1 of order k — 1 [BB98]. (See Figure 2.2b.) When 
k — 1 does not divide n, the extremal graph consists of |_ j disjoint copies of K k -1 and one 
copy of K r, a complete graph on the remaining r =  n — |_knq j vertices.

A star of order k and size k — 1, denoted K Y,k -1, is the graph with one vertex of degree 
k — 1 and k — 1 vertices of degree one. (See Figure 2.3a.) The average degree of the vertices 
in a graph G of order n and size m is equal to 2m. By average degree considerations, observe 
that any graph G of order n >  k with |E(G)| >  (k -2) n must have at least one vertex of

9



degree at least k — 1 and hence contains a copy of K Y,k-1. That is, the K Y,k-1—saturated graph 
of maximum size has at most (k -2) n edges. For n large enough and appropriate parity, any 
(k — 2)—regular graph of order n is an extremal K 1k-1—saturated graph. (See Figure 2.3.) 
We note that this is consistent with the bound offered in the Erdos-Sos Conjecture. The 
Conjecture states that for n large enough, every graph of order n and size at least (k -2) n + 1  
contains as a subgraph every tree of order k [E63].

2.2 T h e  M in im al K k—saturated  G raph : A k(n)

If we desire the K k—saturated graph on n vertices with the fewest possible edges, that is with 
sat(n, K k) edges, we redistribute the vertices of the Turan graph in Figure 2.1a. Let all but 
the (k — 1)st partite set contain exactly one vertex. That is, n  =  1 for all i G {1, 2 , . . . ,  k — 2}. 
Let the (k — 1)st partite set contain (the remaining) n —k+ 2  vertices. That is, nk-1 =  n —k+2. 
(See Figure 2.4a.)

Notice that the first k — 2 parts form a copy of K k-2. If we redraw the graph to group 
these vertices together, we obtain the representation shown in Figure 2.4b. We will call this 
graph Ak (n).

Below we present a result and its proof using the proof-technique and similar notation as 
in the 1964 paper A Problem in Graph Theory by Erdos, Hajnal and Moon [EHM64]. This 
proof is of particular interest because of its use of induction, an approach which is rather 
unusual in saturation theory. Saturation number proofs typically employ exhaustive case 
analysis.

N ota tion  1. Define the neighborhood of v in G, denoted NG(v) to be the set of vertices 
adjacent to v in the graph G. That is,

NG(v) =  {u  G V (G) : uv G E (G )}.

We say the the edge uv joins the vertices u and v. The join of a vertex w to a set of vertices

U, denoted w V U, is a graph with vertex set {w } U U and edge set {w u  : u  G U}.

We say that a graph G has property (n, k) if G is a graph of order n, and for any edge
e G E (G ), the graph G +  e contains a new copy of K k. Note that we do not in general say

10



n 1

(a ) The unique K k—saturated graph of order n and minimum size.

K k-2

(b )  The graph A k (n).

F igure 2.4: The unique minimal K k—saturated graph of order n has k — 2 vertices of degree 
n — 1 and n — (k — 2) vertices of degree k — 2 [EHM64]. Two different representions are 
shown.
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that a graph G with property (n, k) is K k—saturated because G may contain a copy of K k. 
Note also that if n <  k, any graph G with property (n, k) is necessarily complete. Thus we 
will assume that n >  k.

Consider the graph A k(n) on n vertices (see Figure 2.4b) which can be described as a 
complete graph on k — 2 vertices each of which is joined to each of the remaining n — (k — 2) 
vertices. Note that A k (n) has size

|E (A k(n)) | = ^  2 )  +  (k — 2 )(n — (k — 2)) =  n(k — 2) — (  2 )  , 

and notice that A k(n) has property (n,k).

We say that G is a minimal (n, k) graph if G has property (n, k) and |E(G)| =  min{|E(H)| : 
H  has property (n, k )}. Notice that for n >  k, the complete graph K n is a not minimal (n, k) 
graph since the graph Kn -  e, obtained from Kn by deleting any single edge, has property 
(n, k) and fewer edges.

T h eorem  1 ([EHM64] Theorem 1). For every pair of integers n and k, satisfying 2 <  k <  n, 
the only minimal (n, k) graph is A k (n).

Proof. First we show that A k (n) is a minimal (n, k) graph; second we show that A k(n) is 
unique. We proceed by induction on n.

We will show that A k (n) is minimal by establishing and solving a recurrence relation for 
the minimum number of edges in a graph with property (n, k). Observe that for n =  k, the 
unique minimal (k, k) graph is K k — e =  A k(k) with — 1 edges. Let G be a minimal (n, k) 
graph with n >  k +  1. Then there exist vertices p, q G V (G ) such pq G E (G ). Further, since 
G +  pq contains a new copy of K k, it must be that p and q share at least k — 2 neighbors 
and that there exist k — 2 of these common neighbors that form a copy of K k-2. (See Figure 
2.5a.)

Let G* be the graph formed by removing q (and its incident edges) from G and adding 
edges joining p to any neighbors of q not adjacent to p in G. (See Figure 2.5.)

Let e G E(G*). If e =  ab for some a, b =  p, then e G E (G ). We know that G +  e contains 
a new copy of K k, and we know that this copy of K k cannot contain both p and q since p and

12



(a ) G, a minimal (n, k) graph. (b )  G* =  G [V (G ) — q] U ( p V (NG(q) \ NG(p )))

F igure 2.5: The inductive step: Choose a pair nonadjacent vertices p and q. Note that 
NG(p) fl NG(q) contains a copy of K k-2. We obtain G* from G by deleting q and adding edges 
joining p to any neighbors of q not already adjacent to p in G. To illustrate the formation of 
G* from G, in the representation of G * the deleted vertex q and its incident edges are shown 
faintly while the edges added between p and neighbors of q are shown thicker.

q are nonadjacent in G. Then in G* +  e, we obtain the same new K k subgraph (up to the role 
of p which serves as q when needed). On the other hand, if e =  pb for some b G V(G* — p), 
then pb G E (G ), and since G has property (n, k), we know that G +  e contains a new copy 
of K k. Again, the new copy of K k we obtain in G +  e is also contained in G* +  e (since, as 
above, this copy of K k cannot contain both p and q). Thus G* has property (n — 1, k).

Let f k(n) denote the number of edges in a minimal (n, k) graph. We claim that

f k(n) >  f k(n — 1) +  (k — 2). (2.1)

To see this, note that since G* has property (n — 1, k), we know that |E(G*)| >  f k(n — 1). 
Further, since NG(p) f  NG(q) contains at least k — 2 vertices, at least k — 2 edges were 
removed from G to obtain G*. Hence,

|E(G*)| <  |E(G)| — (k — 2), or equivalently, |E(G)| >  |E(G*)| +  (k — 2).

13



We have seen that for k =  n, K k — e is the unique minimal (k, k) graph on k vertices. Hence

f k(k) =  — 1  (2.2)

Now, solving the recurrence relation in (2.1) with initial condition (2.2) we have

f k(n) >  — 1 +  (n — k)(k — 2) =  n(k — 2) — ^ 2 ^ =  |E(A k(n)) |. (2.3)

Thus (2.3) confirms that A k(n) is a minimal (n, k) graph.

The proof that A k (n) is unique proceeds by induction on the order of G. We have seen 
that A k(k) =  K k — e is the unique minimal (k, k) graph. Now assume that A k(n) is the unique 
minimal (n, k) graph for all n satisfying k <  n <  m for some integer m. Let G be a minimal 
(m, k) graph. Then |E(G)| =  |E(Ak(m)) |. As above, construct G* on m — 1 vertices from G 
by choosing two nonadjacent vertices p, q G V (G ), removing q (and its incident edges), and 
adding edges as needed to join p to any neighbors of q in G that are not also neighbors of p 
in G. By our previous result, G* has property (m — 1, k). We claim that G* =  A k(m — 1). 
We must show that G* is a minimal (m — 1, k) graph. By construction we have

|E(G*)| <  |E(G)| — (k — 2) =  |E(A k(m )) 1 — (k — 2). (2.4)

By (2.3) we know that |E(Ak(m — 1))| =  |E(Ak(m))| — (k — 2). But since |E(G)| =  
|E Ak (m) | and G* has property (m -  1, k) we must have

|E(G*)| >  |E(Ak(m — 1))| =  |E(Ak(m))| — (k — 2). (2.5)

Hence |E(G*)| =  |E(Ak(m — 1)) | and G* is a minimal (m -  1, k) graph. Then by the 
induction hypothesis, G* =  A k(m — 1).

Now consider p and q as above. We will show that the vertex q in G is a vertex of degree 
exactly k — 2 with the same neighborhood as p. We proceed by contradiction. Recall that 
A k(n) has k — 2 vertices of degree n — 1 (which form a copy of K k-2) and n — (k — 2) vertices 
of degree k — 2. Suppose that in G* =  A k(m — 1) the vertex p is one of the k — 2 vertices

14



K k- 2 K k- 2

(a ) G* if we suppose p E V (K k-2) (b )  G if we suppose p E V (K k-2).

F igure 2.6: If we suppose for the sake of contradiction that p belongs to the copy of K k-2 
in A km — 1 =  G*, then since pq E E (G) and G has property (n, k), the vertex q must have 
at least one neighbor w that does not belong to the copy of K k-2 in G*. The dashed arc 
indicates a non-edge.

of degree m — 2, (that is, p E V (K k-2) and p is adjacent to all other vertices in G*). Then 
V (K k-2 — p) C NG(q), and since G +  pq contains at least one new copy of K k, the vertex q 
must be adjacent to at least one more vertex, w in G. (See Figures 2.6a and 2.6b.)

Now, for each x  E V(G* — p), we have px E E (G*), and, by our method of obtaining G* 
from G, we know that in G the vertex x falls into one of three categories.

Category 1 : px ,qx  E E (G ). Note that for each x in this category, we lose exactly one edge 
(namely qx) when we form G* from G. (Equivalently, for each such x the graph G has one 
more edge than does G*.)

Category 2 : px E E (G ) and qx E E (G ). Note that for each x is this catergory, there is no 
change in the number of edges when we form G* from G.

Category 3 : qx E E (G ) and px E E (G ). Note that for each x in this category, in constructing 
G* from G, the edge qx is deleted and the edge px is added, so there is no change in the 
number of edges when we form G* from G.

15



By (2.4) and (2.5) we know that |E(G*)| =  |E(G)| — (k — 2). That is, G* has exactly 
k — 2 fewer edges than does G. Since G has property (m, k), we know that in G, the common 
neighborhood of p and q contains a copy of K k-2. Then in G we have exactly k — 2 vertices 
adjacent to both p and q. Thus there are exactly k — 2 vertices of Category 1 (and up to 
isomorphism we know which ones they are: here x G V (K k-2 — p) or x  =  w as labeled in 
Figure 2.6b).

Now in G* for any vertex x G V (K k-2) and x =  w, we know that either px G E (G ) and 
qx G E (G ) (Category 2) or qx G E (G ) and px G E (G ) (Category 3). If px G E (G ) then in 
G +  qx we do not obtain a new copy of K k since |NG(x) f  NG(q)| =  k — 3. By symmetry, if 
qx G E (G ) then in G +  px we do not obtain a new copy of K k for the same reason. In either 
case, then G does not have property (m, k), a contradiction. Therefore, the vertex p must 
be one of the m — k +  1 vertices of degree k — 2 in G* as shown in Figure 2.7a.

Since p and q are non-adjacent in G, and p and q must have at least k — 2 common 
neighbors, q must be adjacent to all k—2 neighbors of p in G. Observe that by the construction 
of G*, and since |E(G*)| =  |E(G)| — (k — 2), if degG*(p) =  k — 2 then necessarily degG(q) =
k -  2.

(a ) G* =  Ak (m — 1) and G* =  G — {q } (b )  G =  A k (m)

F igure 2.7: Since G* =  A k(m — 1) and G* =  G — {q }, and since A k(m) differs from 
A k(m — 1) only by a single vertex joined to all vertices of the K k-2 subgraph in G*, it follows 
that G =  Ak (m).
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But now we see that the only difference between G and G* is the vertex q E V (G ) and 
k — 2 edges in E (G ) joining q to each of the vertices of the K k-2  subgraph. Thus

G =  Ak (m).

(See Figure 2.7b.)
We conclude that Ak(n) is the unique minimal (n, k) graph for any n ,k  E N satisfying 

2 <  k <  n. □

>u

x

(a) A  graph G.

zo
y

w

u

x
ov

(b ) The complement G of G.

F igure 2.8: The graph G of order 6 has property (6 , 3). The addition of any non-edge to 
G produces a new copy of K 3.

z

R em ark  1. We say that a graph is K k —free if it contains no copy of K k. Note that the 
minimal (n, k) graph A k(n) is K k—free, though we did not require that a graph with property 
(n, k) be K k—free. (For example, the graph G shown in Figure 2.8 has property (6 , 3) since 
for any e E E (G ) the graph G +  e contains a new copy of K 3.)

In the case of H  =  K k, the unique minimal (n, k) graph is also the unique minimal 
H  —saturated graph. As we will see in Chapter 5, in general, the minimal H  —saturated 
graph need not be the minimal graph G such that G +  e contains a new copy of H  for all 
e E E (G ).

C oro lla ry  2 (Corollary to Theorem 1). For any integers n and k satisfying 2 <  k <  n,

sat(n, Kk) =  (k — 2)n — ( k — ^  .

17



Proof of Corollary 2. Since A k (n) is the unique minimal K k—saturated graph of order n and 
since

|E(Ak(n)| = ^  2 ^ +  (k — 2)(n — k +  2) =  (k — 2)n — ^ 2 ^ , 

the result follows. □

Recall from Section 2.1 that the extremal number ex (n ,K k) is quadratic in n. Observe 
that the saturation number sat(n, K k) is linear in n.
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C h apter 3

G eneral S aturation  N u m ber R esu lts

We present here an upper bound on the saturation number for general families of target 
graphs. The results and proof technique are taken from the 1986 paper Saturated Graphs 
with Minimal Number of Edges by Kaszonyi and Tuza [KT86]. We expand on the proofs 
presentated in [KT86] by offering further details and some illustration. In the first section 
we show that for n sufficiently large, the saturation number for any non-complete graph of 
order k is strictly smaller than sat(n, K k), and in the second section we show that for n 
sufficiently large, the saturation number for any non-star tree of order t +  1 is strictly less 
than sat(n, K 1t).

3.1 G eneral B ou n d s for sat(n, F )

We begin with some definitions and notation, primarily taken from [CLZ11]. We say that a 
graph G is connected if for any pair of distinct vertices u ,v  G V (G ), there exists a uv—path 
in G. In general, a component of a graph is a maximal connected subgraph. The graph in 
Figure 3.2 is connected while parts a, b, and d of Figure 3.4 show disconnected graphs with 
two (connected) components.

We often describe a graph by referencing its components. Let H  be the graph consisting 
of three components: exactly two copies of K 4 and exactly one copy of K 3. Then we write 
H  =  2K4 U K 3. Note that in this example H  has order 11 and size 15.

Given an integer k >  3, a graph of order k is a k— cycle, denoted Ck, if its vertices can 
be labelled v1 ,v2, . . . ,  vk and its edge set consists exactly of the pairs {v 1, vk} and {vG vi+1} 
with 1 <  i <  k — 1. Observe that a k—cycle has size k. A graph is said to be acyclic if it 
does not contain a copy of Ck for any k >  3. A connected acyclic graph is called a tree. A
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o

(a) K i ,2 =  P (b ) K 1,3 (c ) K l 4 (d ) K

Figure 3.1: Some representations of stars of small order.

1,5

tree of order t necessarily has size t — 1. A forest is a graph all of whose components are 
trees. The graph P5 in Figure 2.2a is an example of a tree on 5 vertices. Every tree has at 
least two vertices of degree one. Vertices of degree one are called pendant vertices or leaves. 
Note that K 1 and K 2 are both trees. We refer to K 1 and K 2 as trivial trees.

A tree of particular interest to us is K 1,t, the complete bipartite graph of order t +  1 with 
partite sets of order 1 and t. As noted in Chapter 2, K 1,t is often referred to as a star. Recall 
that K 1t has one vertex of degree t and t pendant vertices. See Figure 3.1.

We define the maximum degree of a graph H, by A (H ) =  maxveV(H){deg(v )}. Observe 
that if H  has order k, then A (H ) <  k — 1. In determining whether a host graph G contains a 
copy of a given target graph H, it can be useful to consider maximum degree. For example, 
since A (K 1,t) =  t, we immediately see that any graph containing a vertex of degree t contains 
a copy of K 1,t.

Recall that in a graph H, a set of vertices S C V (H ) is an independent set if for all pairs 
u ,v  E S, the vertices u and v are not adjacent. The independence number of H, denoted

a (H ) =  max {|S| : uv E E (H ) for all u ,v  E S },
S CV (h )

is the cardinality of the largest independent set of vertices in H. We may write a  in place of 
a (H ) when H  is clear from the context. The graph in Figure 3.2 has independence number 
a  =  3 and { c 1,c 3,c6}  is a largest independent set.

Let U C V  (H ). We define H  [U] to be the subgraph of H  with vertex set U and edge 
set {uw E E (H ) | u ,w  E U}. We say that H[U] is the subgraph of H  induced by U. For 
example, in Figure 3.2, the subgraph induced by U =  { c 1, c3, c4, c6}  is a copy of K 13.

We next present and prove an upper bound on the saturation number for a general family 
F  of target graphs. We say that a graph G is F — saturated if G contains no copy of any 
target graph F  E F  and if for all e E E (G ) the graph G +  e contains a copy of some F  E F .
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Figure 3.2: A connected graph with a  =  3.

We begin with two useful lemmas.

L em m a 3 ([KT86] Lemma 8). If  F  is connected for all F  e  F  and G is F — saturated, then 
every (connected) component of G is F — saturated.

Proof. Let Gi be a component of G. If Gi is complete, then Gi is trivially F —saturated, so 
we may assume that G 1 is not complete. Then there exist vertices u ,v  e  V (G 1) such that 
uv e  E  (G). Since G is F —saturated, G +  uv contains a copy of F  for some F  e F . Since F  
is connected, this copy of F  is entirely contained in G 1 +  uv. Hence G 1 is F —saturated. □

vi V2 V3 V4

V5

(a) F

(b ) F  — v1

o  
o

(c ) F  — v2

o

(d ) F  — v3 (e ) F  — v4

Figure 3.3: If F  e F  then F  — v  e F ' for i e  {1, 2 , . . . ,  5}. Notice that F  — v1 =  F  — v5.

We call F ' =  { F  — v : F  e F , v e  V  (F ) }  the deleted family of F . That is, the members of 
F ' are the graphs obtained by deleting a single vertex from some member of F . For example, 
in Figure 3.3, given F  e F  we have F  — vj e F '  for i e  {1, 2 , . . . ,  5}. Observe that in Figure 
3.3, F  — v2 consists of a pair of isolated vertices (vertices of degree zero) and a copy of the 
star K 11, while F  — v3 consists of one isolated vertex and a copy of the star K 12, and F  — v4 

is a copy of K 1,3.

21



From F 1 we obtain the deleted family F '' =  { F  — v : F  E F ', v E V (F )}. If we continue 
in this manner for l iterations, we obtain F (1) =  { F  — v : F  E F (1-1),v  E V(F*)}, the deleted 
family obtained by deleting every possible subset of l vertices from each member of F . We 
will make use of this construction and the next lemma to prove Theorem 5 below.

L em m a 4 ([KT86] Lemma 9). Let F  be a family of graphs and let Gn be a graph of order n. 
Let F ' =  { F  — v : v E V (F ), F  E F }  and suppose that there exists some vertex x E V (G n) 
where degGn (x) =  n — 1. Then Gn is F — saturated if and only if Gn — {x }  is F '—saturated.

Proof. Let Gn be a graph on n vertices with some x E V (G n) of degree n — 1. Denote

Gn- 1 =  Gn — { x } .
Suppose that Gn is F —saturated. First we show that Gn-1 contains no member of F '. 

Suppose to the contrary that there exists F ' E F ' such that Gn-1  contains a copy of F '. Since 
F ' E F ', there exists F  E F  such that F  — v =  F '. Then we can let x E V (G n) play the role 
of v E V (F ), and we see that Gn contains a copy of F. But this contradicts the assumption 
that Gn is F —free. Thus there can be no member F ' of F ' such that Gn-1 contains a copy 
of F '.

Next we show that for any e E E (G ), there exists F ' E F ' such that Gn-1 +  e contains 
a copy of F '. Choose e E E (G ). Since Gn is F —saturated, we know that Gn +  e contains a 
copy of some F  E F . If x belongs to this copy of F  in Gn +  e, then there exists a copy of 
F ' E F ' in Gn-1  +  e. If x does not belong to this copy of F  in Gn +  e, then there exists a 
copy of F  in Gn-1 +  e. Then there is also necessarily a copy of F ' E F ' in Gn-1  +  e. Thus, 
in either case, Gn-1 is F '—saturated.

Conversely, suppose that Gn-1 is F '—saturated. Then for all e E E (G n-1), the graph 
Gn-1 +  e contains a copy of some F ' E F '. Since F ' E F ' we know that there exists F  E F  
such that F  — v =  F ' for some v E V (F ). Now if Gn-1 +  e contains a copy of F, then Gn +  e 
must also contain a copy of F. Notice that if Gn-1 +  e does not contain a copy of F, since 
Gn =  Gn-1 V {x } ,  the vertex x can play the role of v E V (F ) and Gn +  e contains a copy of 
F  E F '. Thus Gn +  e contains a copy of some F  E F  for all e E E (G n-1).

Notice that Gn cannot contain a copy of any F  E F  since then Gn-1 would contain a 
copy of F ' =  F  — v for some v E V (F ), contradicting the assumption that Gn-1 is F '—free. 
Thus Gn is F —saturated. □
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With the help of Lemma 4 and the notion of the deleted family, we can prove a gen
eral bound on the saturation number for an arbitrary family F  of target graphs. We first 
introduce and illustrate two key parameters.

N ota tion  2. Given a family F  of graphs, denote

l =  i (F  )= m in {| V  (F  )| — a (F ) — 1}
F (EF

and

d =  d (F ) =  min < |E(F)| : F  is a subgraph induced by an independent set S C V (F )
FcFeF ^

and some other vertex x  e  V (F ) \ S where |S| =  |V(F)| — l — 1 j .

Notice that the induced subgraph F  =  F [S U {x }] always consists of a star and a (possibly 
empty) set of isolated vertices.

To find l, we choose the smallest value of | V(F)| — a (F ) — 1 among all F  e  F . To find d, 
we restrict the search to members F  of F  such that | V (F ) | =  a (F ) + 1 +  1. For each such F, 
we search over all independent sets S C V (F ) with |S| =  a (F ) and all vertices x e  V (F ) \ S, 
and we choose the smallest value of |E(F[S U {x}])|. Note that for any particular F  e  F  
such that | V(F)| >  a (F ) +  l +  1, there is no independent set S of the required order. Thus, 
effectively, the search for d is restricted to members F  e  F  whose maximum independent 
sets are “large” relative to |V(F)|.

One way to think about the parameters l and d is that l is the smallest integer such that 
at least one member of F (1) consists of a star together with a possibly empty set of isolated 
vertices, and among these star-like members of F (1), the minimum size is d.

We also note that the search over all graphs F  satisfying | V (F ) | — a (F ) — 1 =  l must truly 
be over all possible independent sets S of order |V(F)| — l — 1. This issue is illustrated by 
the graph in Figure 3.2. Notice that for S =  {c 2,c4,c 7}, we cannot obtain d = 1 .  However, 
there are choices of S (such as S =  { c 1, c3, c5} with x =  c6) that do give d = 1 .

Using the above parameter notation,
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T h eorem  5 ([KT86] Theorem 1). For n sufficiently large,

(3.1)

Proof. First suppose that l =  0. Then F  contains the union of a star and a (possibly empty) 
set of isolated vertices. Furthermore, the smallest such star is K 1d, by our definition of 
d. More precisely, there exists F  E F  such that F  =  K 1,d U K r where r is a nonnegative 
integer. Now, if G is F —saturated, we know that degG(v) <  d — 1 for all v E V (G ). Then 
|E(G)| <  2(d — 1)n, and (3.1) holds when l =  0.

Now suppose that l >  1. Then no member of F  can be a star. Construct the deleted 
families F ',  F ' ' , . . . ,  F (1). As noted above, by our definitions of l and d, we must now have 
K 1,d U K r E F (1) for some integer r >  0. Furthermore, K 1p E F (1) for any p <  d, again by
our definition of d. That is, F (1) contains a smallest star (together with K r), namely K 1,d.

Since K 1d U K r E F (1), for an arbitrary F (1)—saturated graph Gn-1, we have

By repeated application of Lemma 4, we see that the graph Gn, obtained from Gn-1 by

The above proof is constructive. With the help of Lemma 4, we have shown that given

|E(Gn-i)| <  2 (d — 1)(n — l) . (3.2)

adding l vertices of degree n — 1, is F —saturated if and only if Gn-1 is F (1)—saturated. 

We have

which is the bound in (3.1). □

an F (1) —saturated graph Gn-1, we can obtain an F —saturated graph whose size satisfies
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(3.1). Hence we know that the saturation number for the family F  with respect to a host 
graph of order n respects this bound.

Theorem 5, together with Theorem 1 in Chapter 2, allows us to prove that the complete 
graph has the largest saturation number among all target graphs of the same order.

T h eorem  6 ([KT86] Theorem 3(a)). For fixed k, let Hk be a graph on k vertices, then

sat(n, Hk) <  sa t(n ,K k)

for  Hk =  K k and n >  k.

Proof. From Corollary 2, we know

k 1
sat(n ,K fc ) =  |E (Afc (n)| =  (k — 2)n — ( 2

Observe that the coefficient of n in (3.1), which gives an upper bound on sat(n, F ), is
l +  I(d  — 1). Thus for n sufficiently large and fixed k, sat(n, Hk) <  sat(n, K k) provided that
l +  2 (d — 1) <  k — 2 .

Let F  =  {H k}. Then using the parameters of Notation 2, we know that l =  k — a (H k) — 1, 
or equivalently

k =  l +  a(Hk) +  1. (3.3)

Furthermore,
l <  d <  a (H fc). (3.4)

Case 1: d >  1. Note that if d >  1, then d — 1 >  1 (d — 1). Thus

k — 2 =  l +  a (H k) — 1 by (3.3)

>  l +  d — 1 by (3.4)

>  l +  2 (d — ^  

which is what we needed to show.
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Case 2: d =  1. Note that K k is the unique graph of order k with independence number 
a  = 1 .  Since Hk ^  K k, if d = 1 ,  by (3.4) we know d <  a (H k). Then we have

k — 2 =  l +  a (H k) — 1 

>  l +  d — 1

= l +  2 (d — ^

as needed. □

3.2 Stars

T h eorem  7 ([KT86] Theorem 4). The saturation number for the star K 1t is given by

¥ n  — 1 L fj n >  t +  LU
sat(n, K 1,t) =   ̂ . (3.5)

(2) +  ( V )  t + 1  <  n <  t +  L 2j

R em ark  2. We can describe the minimal K 1t—saturated graphs as follows.

1. For n “large” relative to t (that is, n >  L2 j ), if either of the quantities t — 1or n —1/2 is 
even, then a minimal K 1,t—saturated graph G consists of two components: a complete 
graph K^tj or Kpt-| (both will work) and any (t — 1) —regular graph on the remaining 
n — L2J or n — |~|] vertices. (See Figures 3.4a and 3.4b.)

2. If n >  L J  and both of the quantities t — 1 and n — t/2  are odd, then G consists of 
one component: a complete graph on | vertices and a nearly (t — 1) —regular graph 
on n — 2 vertices joined by exactly one edge. Here by nearly (t — 1)—regular we mean 
that all vertices but one have degree t — 1 and exactly one vertex x has degree t — 2. 
In G this vertex x is adjacent to exactly one vertex in the complete graph on L2J or 
|"21 vertices. (See Figure 3.4c.)
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K a

(a) For n =  12, the graph K 3 U Rg is 
minimal K 1 / —saturated.

K 4

(b ) For n = 1 2 , the graph K 4 U R8 is also 
minimal K 1 / —saturated.

K 3

(c )  For n =  10, the graph obtained by 
joining K 3 to R 7 by one edge incident to 
the vertex of degree 4 in R 7 is minimal 
K 1 6—saturated.

o

6 K 2

(d ) For n =  8 , the graph K 6 U K 2 is the 
minimal K 1,6—saturated graph.

F igure 3.4: The minimal K 1,7—saturated graphs for n = 1 2  >  |_3(7)J and the minimal 
K 1,6—saturated graphs for n = 1 0  >  |_^J and n =  8 <  | _ J .

3. If n is “small” relative to t (specifically, n <  |_yJ), then G =  K t U K n-t. That is, G is 
the union of the smallest possible (t — 1)—regular graph, namely K t, and a complete 
graph on the remaining vertices. (See Figure 3.4d.)

Proof of Theorem 7. Suppose G is a K 1t—saturated graph on n vertices with the minimum 
number of edges. Then for all v E V (G ), deg(v) <  t — 1.

Given v1 ,v2 E V (G ) with deg(v1) <  deg(v2) <  t — 2, the vertices v1 and v2 must be 
adjacent. For if G does not contain the edge e =  {v 1, v2}, then in G +  e all vertices are of 
degree at most t — 1 and G +  e does not contain a copy of K 1,t.
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Let X  =  {v  e  V (G ) : deg(v) <  t — 2}. Then by the previous observation, all vertices 
of X  are adjacent to each other, so G contains a K|X| subgraph, and the adjacencies of X  
contribute at least  ̂ edges. Let Y  =  {v  e  V (G ) : deg(v) =  t — 1}. Then the adjacencies 
of Y  contribute at least 2 (t — 1)(|Y|) edges. Since V (G ) =  X  U Y, we have

|E(G)| >
|X|
2 +  2 (t — 1)(n — |X |). (3.6)

Define

/ (x) :=
x 1
2 j  +  2 (t — 1)(n — x ) .

Then / '(x ) =  x — 2, and x =  2 is a critical point of / .  Observe that / ''(2 )  
/  has a minimum at x =  2. Then in (3.6) when |X| =  x =  2 we have

(3.7)

1 >  0 , and thus

|E(G)| >
t /2

+  1 (t — F  n — 2 (3.8)

Let tj denote any (t — 1) —regular graph on n — L2J vertices. Observe that if n >  t +  L2J, 
and if t is odd or n — L2J is even, then the graph K y tj URn_ytj is K 1,t—saturated and achieves 
the bound in (3.8). That is,

sa t(n ,K 1,t) =  ( L /, J^ +  2 (t — ^  ( n — 2 )  = 2  (t — 1)n — 1  . (3.9)

2

There are two remaining cases:

Case 1: Suppose that n >  t +  L2J, and that t is even and n — 2 is odd.

Then there exists no (t — 1)—regular graph on n — 2 vertices. (Since no graph can have 
an odd number of vertices of odd degree.) Let Rra_ t denote a nearly (t — 1)—regular graph 
on n — 2 vertices: that is, all vertices in Rra_ t have degree t — 1 except one vertex x that has 
degree exactly t — 2. (See Figure 3.4c for an example.) Now observe that the graph obtained 
by joining Rra_ t to K t by one edge e incident to x and some vertex v e  V (K t ) is a minimal
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K 1,t—saturated graph on n vertices. We have

|E (Rn- 2 U K  2 +  e)| =  ( 2 )  +  2 [(n — 2 — 1)(t — 1) +  (t — 2)] +  1

t /2 j  +  12 2
n — 2  ) (t — 1) +  1

tf ) + 2 (t — 1^ n — 2 ) a s in (3 .9 ).

Case 2: Suppose n <  t +  |_|J.

Case 2.1: Suppose n — |X| >  t. Then the graph G =  K t U K n-t with

|E (G)| =  G W + (n — t)(n2 — 1 — °  (3.10)

is K 1,t—saturated and achieves the bound in (3.6).

Case 2.2 Suppose that n — |X| <  t. Observe that since G [Y] is not a (t — 1) —regular graph 
and we overcount by at most (n- X̂ ') edges,

| E (G )| > (|X1)  + ( n  — |X|)(t — 1) — ( n 2|X^ . (3.11)

Define

g (x) :=  ( 2)  +  (n — X)(t — 1) — ( n 2 X)  =  (n — t)X — I ^  — 2t +  1 .̂

Observe that g is linear in x and that g '(x) =  n — t >  0. Since, in this case, |X| =  x  >  n — t, 
we know that g(x) >  g(n — t) =  (2) +  (n -*). Thus the bound in (3.10) cannot be improved. 
Hence for n <  t +  |_ | J, we have

sa t(n ,K 1,t) = ( 2)  +  ( n 2 1

□
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T h eorem  8 ([KT86] Theorem 3(b)). For fixed t >  3, let Tt+1 be a tree on t +  1 vertices,

for  Tt+1 =  K 1t and n sufficiently large.

Proof. Let T  be any tree of order t +  1 such that T  ^  K 1,t. We exhibit a T —saturated 
graph G of order n such that |E(G)| <  sat(n, K 1,t) for n large enough. Let r and q be 
non-negative integers such that n = ( t  — 1)q +  r and r <  t — 2. We claim that the graph 
G =  (L_  J — ^ K t_ 1 U rK t is T —saturated. Note first that G contains no copy of T  since 
all components of G have order at most t. Trivially, K t_ 1 contains a copy of any tree of order 
t — 1. Since T  is not a star, there exists an edge e' =  uv e  E (T ) such that neither u nor 
v is a pendant vertex. Then each component of T  — e' has order at least two. Hence for 
all e e  E (G ), there is a copy of T  in G +  e where e plays the role of e'. Notice that since

then
sat(n, Tt+1) <  sat(n, K 1,t)

r <  t — 2 we have |E(G)| <  ( t_2) n +  ( t_2) t. Then for n >  L9 2 J,

sat(n, K 1t).

□
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C h apter 4

S aturation  N u m bers for Paths and oth er Fam ilies o f  Trees

Here we collect some saturation results for a few families of trees including paths and sub
divided stars. We also briefly discuss a few subtree properties that are known to guarantee 
relatively large or relatively small saturation numbers.

4.1 Isolated  Edges

Before directly addressing trees, we begin with a few results concerning target graphs with 
isolated edges offered in [M73] and [KT86]. We say that a vertex w in a graph G is isolated 
if degG(w) =  0. We say that an edge uv E E (G ) is isolated if degG(u) =  1 =  degG(v). The 
complete graph K 2 =  P2 is an isolated edge, and a collection of m copies of K 2, denoted 
m K 2, is called a collection of isolated or vertex-disjoint edges.

F igure 4.1: For any graph F  of order 5 with no isolated vertices and at least one isolated 
edge, the graph K 4 U K n-4 is F —saturated.

First, we consider a family F  of graphs none of whose members has an isolated vertex. 
If the member of smallest order F1 of the family F  has an isolated edge, then for n large
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enough, we will see that the saturation number for F  is bounded above by some constant c 
based solely on |V(F1)|. Moreover, the saturation number of F  is bounded above by such a 
constant if and only if some member of F  has an isolated edge.

Let F  be a graph of order k with no isolated vertices and at least one isolated edge. Then 
for n >  5, the graph G =  K k -1 U K n -(k-1) is F —saturated. Note that |E(G)| =  (fc-1) . (See 
Figure 4.1 for an example.)

T h eorem  9. ([KT86] Theorem 2)

1. Let F  be a family of graphs. Suppose that no member of F  contains isolated vertices. 
Let F  E F  be an element of smallest order and suppose that F  has an isolated edge. 
Then

lim sat(n, F ) =  c

for some constant c.

2. If  limn^ ^  sat(n, F ) =  c then there exists Fj E F  containing an isolated edge.

3. If no Fj E F  contains an isolated edge, then sa t (n ,F ) >  |_nJ.

Proof of (1). Observe that if |V(F)| =  k, the graph H  =  K k -1 U K n -k -1 is F —saturated. 
Thus for n >  k, we have sat(n, F ) <  (k-1). □

Proof of (2). Suppose there exists N  E N such that for n >  N, we have sat(n, F ) =  c 
for some constant c E N. Then for all n >  N  there exists an F —saturated graph G on n 
vertices with |E(G)| =  c. If n >  m ax{N , 2c +  2} then any G of size c must have at least two 
isolated vertices x and y. Since G is F —saturated with the fewest possible edges, namely c, 
G contains no copy of Fj E F  for any i, but G +  xy must contain a copy of Fj E F  for some
i. Then for some i, Fj must have at least one isolated edge. □

Proof of (3). Suppose that for all i, the graph Fj E F  contains no isolated edge. Let G be an 
arbitrary minimal F —saturated graph. By part (2) above, G can have at most one isolated 
vertex. Thus |E(G)| >  [nJ . □

Next, we consider a collection of isolated edges m K 2 and discuss the saturation number 
for m K 2. With the help of Theorem 10, a result that originally appeared in different but 
equivalent terminology in [M73], we can completely characterize the minimal m K 2—saturated 
graphs [KT86].
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T h eorem  10 (Mader’s Characterization as stated in [KT86]). Let m K 2 denote the graph 
consisting of m vertex-disjoint edges. Let G be an m K 2 — saturated graph of order n. The 
structure of G can be characterized as follows:

1. If  G is not connected, then every component of G is a complete graph with an odd 
number of vertces.

2. If  G is connected, and G ^  K n, with n >  2m, then G has a vertex x  of degree n — 1 
and G — x is (m — 1)K 2—saturated.

A set of vertex-disjoint edges in a graph is called a matching. Observe that a matching 
of maximum cardinality, or size, contained in K 2t+1 consists of exactly t edges. By Mader’s 
Characterization, if G is an m K 2—saturated graph and G is not connected, then G =  
Ui K 2ti+1 where t  e  {0,1,  2 , . . . } .  Since the size of the largest matching contained in each 
component C  =  K 2t.+1 of G is C, we see that the size of the largest matching contained 
in G is E  i tj. Let e e  E (G .) Since all components of G are complete graphs of odd order, 
e =  uv where u and v belong to distinct components of G. Furthermore, the largest matching 
contained in G +  e has size 1 +  E i ti =  m. Hence G contains a (largest) matching of size 

m — 1 =  E i  ti.

C oro lla ry  11 ([KT86] Corollary to Theorem 10). If n >  3(m — 1) then

sat(n ,m K 2) =  3(m — 1)

and if G is a minimal m K 2 — saturated graph, G =  (m — 1)K3 U K ra_3(m_ 1) or m =  2, n =  4 
and G =  K 13.

F igure 4.2: If m =  5 and n >  12, then the minimal 5K 2—saturated graph is G =  4K 3 U 
K n_ 12. Notice that for any edge e e  E (G ), the graph G +  e contains a copy of 5K 2.
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Proof of Corollary 11. We proceed by induction on m. The corollary follows by simple case 
analysis for m = 1  and m = 2. Assume that for some mo >  2 , the corollary holds. Let 
m =  m 0 +  1 and let G be a minimal m K 2—saturated graph of order n >  max{5, 3(m — 1)}. 
First we show that G is not connected. Suppose to the contrary that there exists x E V (G) 
with degG(x) =  n — 1. Then by Mader’s Characterization, G — x is (m0)K 2—saturated. By 
the induction hypothesis, then |E(G — x)| >  3(m0 — 1) =  3(m — 2). Now since G =  (G — x) Vx, 
we have

|E(G)| >  n — 1 +  3(m — 2) >  4 +  3(m — 2) >  3m — 3.

But there exists a minimal m K 2—saturated graph of size 3(m — 1), namely (m — 1)K 3 U 
K n_3(m—1) , a contradiction to our assumption that G is m K 2—minimal. Hence G has no 
vertex of degree n — 1. Then, since G is m K 2—saturated, by part (2) of Mader’s Character
ization, G is not connected. Now by part (1) of Mader’s Characterization, G is a (disjoint) 
union of two or more complete graphs of odd order.

Let C  be a component of G. We show that C  E {K 3, K 1}. Suppose to the contrary that 
C  =  K 2t+1 with t >  2.

Case 1: G contains at most one isolated vertex. Then at most one component of G is a 
copy of K 1. Let n0 denote that number of vertices of degree zero in G. Then n0 E {0,1} .  
Let n1 denote the number of vertices (of degree 2) in G belonging to the components of G 
that are triangles. Then n 1 >  0. Let n2 denote the number of vertices of G belonging to 
components of order 5 or more. Then n2 >  5. By assumption G has order n >  3m -  3 and 
thus n2 +  n1 +  n0 >  3m — 3. Since the vertices of G belonging to the necessarily complete 
components of order 5 or more have degree at least 4, and since the number of edges in a 
graph is equal to half its degree sum, we have

|E(G)| =  ^ ^  degG(v)
vev (G)

>  2 (4n2 +  2n1 +  0n0)

=  2n2 +  n 1

>  n2 +  n1 +  n0 

3m 3.
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But then
|E(G)| >  E ^(m  — 1)K 3 U K „_ 3(TO_ 1̂  =  3m — 3,

contradicting the minimaity of G.

Case 2: G contains at least two isolated vertices. Then we can replace K 2t+1 U 2K 1 with t 
vertex-disjoint triangles tK 3 to obtain G', an m K 2—saturated graph of the same order. To 
see that G' is indeed m K 2—saturated, recall that by our observations above, the size of the 
largest matching in K 2t+1 U 2K 1 is t, as is the size of the largest matching in tK 3. Hence the 
size of the largest matching contained in G' is again m — 1. Now since G' is also a union of 
complete graphs of odd order, G' is m K 2—saturated. Since t >  2 , we have

and then |E(G')| <  |E(G)|. But this cannot be since G is m K 2—minimal. Thus G contains 
no K 2t+1 for t >  2. Hence for n >  max{5, 3(m — 1)}, we must have G =  (m — 1)K 3 U

4.2 Paths

We have seen that for a collection of m copies of P2, that is m K 2, the minimal saturated 
graphs consist of a union of triangles and isolated vertices. We now consider small paths 

for k e  {3, 4}. We will see that for k =  3 and k =  4, unions of copies of P2 together 
with (possibly) one isolated vertex or one triangle, respectively, are minimal —saturated 
graphs.

T h eorem  12 (K T 86 Proposition 6). Let n be a positive integer. Then

K n_3(m_1). □

n_^ n odd
sat(n, P3)

n n even2
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and
f  A 3̂ n odd 

sat(n, P4) =  <
[ n n even

Proof of sat(n, P3). Let G be a P3—saturated graph on n vertices. Observe that every con
nected component Gj of G contains at most two vertices. Notice that G can have at most 
one isolated vertex, for if there are two isolated vertices x ,y  e  V(G),  then G +  xy does not 
contain a copy of P3 and G is not P3—saturated. It follows that if n is odd, G =  A_3 K 2 U K 1, 
and if n is even, G =  nK 2. □

Proof of sat(n, P4). For j  >  2 let G be a graph of order n =  2j — 1 consisting of j  — 1 
components: G =  (j  — 2)K 2 U K 3. Notice that G has j  — 2 +  3 =  j  +  1 edges. Observe that 
for any two non-adjacent vertices u, w e  V ( ( j  — 2)K2) C V(G),  the graph G +  uw contains 
a copy of P4. Notice also that for any vertex v e  V (K 3) C V(G) ,  the graph G +  uv contains 
a copy of P4. Thus G is P4—saturated. We claim that G is P4—minimal.

Let G' be a minimal P4—saturated graph. We will show that all components of G' belong
to the set {K 2, K 3, K 1,4}. Note that any (connected) component of G' of order k >  4 must
be a star since G' contains no copy of P4. For even values of k, we can replace a star on
k vertices with the graph |K 2 which requires only | <  k — 1 edges. Thus no connected 
component of G' can have order k e  {4, 6 , 8 , . . . } .  For odd values of k, we can replace a star 
on k vertices with k 3̂ K 2 U K 3 which requires only k^3 +  3 <  k — 1 edges. Here equality 
occurs only in the case of k =  5. Since |E(K14) =  4 =  E (K 2 U K 3)|, the star K 14 can be a 
component of G'.

Any component on fewer than 4 vertices must be complete. If we suppose that K 1 is a 
component of G', then observe that the remaining components of G' must be copies of K 3. 
But note that K 1 U K 3 contains three edges and can be replaced by 2K2 which requires only 
two edges. Thus G' contains no isolated vertices.

Since G' contains only components G» e  {K 2,K 3,K 14}  and |E(K14) =  4 =  E (K 2U K 3)|, 
we have shown that G is a minimal P4—saturated graph and sat(n, P4) =  j  +  1 =  n+3 for 
odd n.

If G' is of order n =  2j, by our above observations, it must be that G' =  j K 2 which has 
exactly j  =  a edges. Thus sat(n, P4) =  a for even n. □
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Figure 4.3: Representations of Tk for k E { 5 ,6 , 7}.

Now we turn our attention to paths with k >  5. We will describe a minimal —saturated
forest and discuss the saturation number for for large n.

Recall that given distinct vertices u and v in a connected graph G, there exists a uv—path 
in G. The number of edges in a minimal uv—path is the distance between u and v in G. The 
eccentricity of u E V (G ) is the distance from u to a vertex farthest from u in G. The central 
vertices of G are the vertices of G with minimum eccentricity. Every tree has either one or 
two central vertices [CLZ11].

N ota tion  3. In [KT86], we are given a description of Tk for any k >  5 where T k is a (non

trivial) —saturated tree of smallest order. This tree T k has |_|J levels, and the highest level 
contains the central vertices (known as the root or roots depending on the parity of k)  of 
the tree. We say Tk is “almost binary” since all vertices (including the root(s)) have degree 
exactly 3 except for the lowest level which contains only pendant vertices. We say that the 
vertices adjacent to the pendant vertices of Tk form the second level of Tk. (See Figures 4.3 

and 4 .4 .)
Let

{3 ■ 2j _ 1 — 2 k =  2j
.

4 ■ 2j _ 1 — 2 k =  2j +  1

Observe that ak is the order of Tk. (See Figure 4.4.) Notice that ak grows exponentially with 
k.

T h eorem  13 (K T 86 Theorem 7). Let T  be a —saturated tree with k >  5. Then T  contains 
a copy of T fc.

37



F igure 4.4: The tree T 10 is the minimal P10—saturated graph of order a10 =  3-25- 1 — 2 =  46. 
Notice that T 10 has |_yJ =  5 levels with 24 pendant vertices and 12 vertices in the second 
level. Notice that starting an any internal (non-pendant) vertex x, there are at least two 
paths of equal length sharing only x and terminating in (nearest) pendant vertices.

Proof Theorem 13. Observe that if G is —saturated, any vertex v of degree two in G 
must belong to a triangle. This is because the addition of the edge joining the neighbors of v 
cannot increase the length of the longest path in G. Hence any —saturated tree T  contains 
no vertices of degree two. Choose x E V ( T ) such that deg(x) >  1, and let x 1, x 2, . . . ,  xp with 
p >  3 be the neighbors of x. Let £j with 1 <  i <  p denote the maximum number of vertices 
in a path starting at x and containing x j . Let the index labels i be assigned to neighbors of 
x such that €1 >  £2 >  ■ ■ ■ >  €p. Since T  is —free, by following a longest path through x 1 

and x 2, we see that €1 +  £2 — 1 <  k — 1. (Note that we subtract 1 here since we have double 
counted x.) Since there exists a copy of in T  +  x 2x 3, we know that €1 +  £2 >  k. Hence 
^1 +  ^2 =  k.

Further, £2 =  £3. To see this, suppose to the contrary that £2 >  £3. Then the addition of 
the edge e =  x 1x 2 does not produce a copy of in T  +  e because the longest path in T  +  e 
containing e has €1 +  £3 <  £1 +  £2 =  k vertices. That is, the longest path containing e =  x 1 x 2 
uses the path from x 1 on £1 vertices, the path from x 3 on £3 vertices, and connects them via 
the path (x 1,x 2, x , x 3). Since x is not a pendant vertex, we now see that T  contains at least 
two paths of equal length (namely of length £2 =  £3) that start at x, share only the vertex 
x, and terminate in pendant vertices. Hence T  contains a copy of T k. □

We note that the above proof implies that, for k >  5, except in the trivial case of 
T  E { K 1 , K 2}, any —saturated tree T  has order at least ak. Thus for 2 <  n <  ak, if G
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F igure 4.5: The forest composed of copies of two copies of T7 and one copy of T7 is a 
minimal P7—saturated graph for n =  45.

is a Pk—saturated graph of order n, we know that G is not a tree. A characterization of 
the structure of such G, as well as sat(n, Pk) for small n, remain open questions. However, 
Theorem 13 allows us to establish the saturation number of Pk for large n.

R em ark  3. Theorem 13 gives a method for constructing a Pk—saturated forest F. We con

struct F  of order n where n =  akq +  r with 0 <  r <  ak by taking q copies of Tk and adding a 
total of r pendant vertices to the copies of Tk. In this construction, each of these r pendant 
vertices must be joined to some vertex in the second level of some copy of Tk in F. We call 
this multiplying the pendant vertices of T k.

Recall that since a tree of order t has t — 1 edges, the size of a forest of order n with q 
components is n — q. Thus a forest of order n with |_—J trees has size n — |_—J.

E xam ple 1. If we take k =  7, then j  =  3 and a7 =  4 ■ 2 — 2 =  14. Let n =  45. Then

q =  L14J =  3 and our forest can contain up to 3 copies of T7 using 42 vertices. We also 
have r =  45 — 3(14) =  3 remaining vertices. We can join these vertices as leaves (pendant 
vertices) to the second-lowest level of one copy of T7 to obtain T7, a Pk—saturated graph on 
17 vertices and 16 edges. We now have the forest 2T7 U T£ with 42 edges. See Figure j .5

By Theorem 13, any Pk—saturated tree T  contains T k. By Lemma 3, all connected 
components of G must be complete and Pk—free or must contain T k. Hence for large n, a 
Pk—saturated graph has at least n — L J  edges. The details follow.

C oro lla ry  14. If  n >  ak, and k >  6 , then

sat(n, Pk) =  n —
n

(4.1)
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Proof of Corollary 1 4 . Let G be a minimal Pk—saturated graph of order n >  ak. Let r =  
n — qak with 0 <  r <  ak. Let Tk denote a copy of Tk with r additional pendant vertices 
joined to the second level. Observe that T£ is Pk—saturated and that (q — 1)Tk U Tk is a 
Pk—saturated forest on n — q edges.

Suppose, to produce a contradiction, that |E(G)| <  n — q. Then G must have at least 
q +  1 tree-components, at least one of which must have fewer than ak vertices. By the proof 
of Theorem 13, the only Pk—saturated trees on fewer than ak vertices are K 1 and K 2. Notice 
that neither T k U K 1 nor T k U K 2 is Pk—saturated for k >  6 . To see this consider e =  uv 
where u E V (K p) for p E {1, 2} and v E V ( T k) is a central vertex, or root, of Tk. Then 
Tk U K p +  e does not contain a copy of Pk. Thus for k >  6 , G cannot have tree components 
on fewer than ak vertices.

Then G can have at most q tree components. Since there exists a Pk—saturated forest 
composed of a total of q =  |_n J of trees: q — 1 copies of Tk and one copy of Tk,

We note that in the case where k =  5, ak =  6 , the previous argument applies, but for 
r E {2, 3, 4, 5}, the minimal Pk—saturated graph must have K 2 as a component and

4.3 Trees o f  M in im u m  Saturation  N u m ber

We now adopt an alternative notation for the star K 1,t. We write St+1 =  K 1,t. This notation

Note that for each subdivided edge, both the order and the size of the graph increase by one.

N ota tion  4. Let Sk_1 denote the graph obtained by subdividing exactly one edge of a star 
on k — 1 vertices (Sk -1 =  K 1,k-2). See Figure 4 .6.

sat(n, Pk) =  |E(G)| =  n
n

□

will aid in our discussion of the “star-like” trees called subdivided stars. To subdivide the 
edge e =  uv is to replace the edge e with a copy of P3 such that u and v are its end vertices.
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o

(a ) S31 (b )  S1

Figure 4.6: Some subdivided stars of small order.

Thus Sk-1 has k vertices: one vertex of degree k — 2, one vertex of degree two, and k — 2 
pendant vertices.

For an arbitrary tree Tk of order k, we have seen that sat(n ,Tk) <  sat(n, Sk) [KT86]. It 
has also been shown that sat(n ,Tk) >  sat(n, S^_1) [FFGJ09]. We summarize some of the 
details below. The [FFGJ09] proof of Theorem 16, which we present here uses Lemma 15 
and leads to a characterization, Corollary 17, of minimal S^_1—saturated graphs. We give 
examples in Figure 4.7.

c r°

(a ) For n =  19, the minimal (b ) For n =  20, the minimal
Sg—saturated graph is a forest of Sg —saturated graph is a forest of stars:
stars: 3S6 U K 1. 3S6 U K 2.

(c ) S1 (d ) S6

i  i
(c )  For n =  22, the minimal Sg—saturated graph is a forest of stars, three of which have 
order 6 or more, one of which is K 2 =  S2. The forest S6 U 2S7 U is shown here. The forest 
2S6 U Sg U S2 is also a minimal Sg1—saturated graph.

F igure 4.7: The minimal S^_1—saturated graphs are star forests. Here k =  6 .

When n =  k, the only tree that has a connected host graph of order k and size k — 1 is
the subdivided star S^_1, and Sk is the S^_1—saturated host:

L em m a 15 ([FFGJ09] Lemma 1). Let Tk be a tree of order k. If there exists a tree Tk of

order k such that T  ̂ is Tk — saturated, then Tk =  Sk -1 and T  ̂ =  Sk.
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T h eorem  16 (FFGJ09 Theroem 5). Let Tk be a tree of order k >  5 and choose n >  k +  2.
Then

sat(n, Tk) >  n —
n +  k — 2 

k

Moreover, Sk- 1 is the only tree Tk that attains this minimum for all such n.

C oro lla ry  17 ([FFGJ09] Corollary 1). For k >  5, if G is a minimal Sk- 1 — saturated graph 
of order n, then G is a forest of |_(n +  k — 2)/kJ stars. If  n — k|_n/kJ >  2 , then exactly one 
star is S2 =  K 2.

Proof of Theorem 16. Let G be a minimal Tk—saturated graph of order n for a fixed tree Tk 
with k >  5. Note that

1. Any component Gpi of G with order p* <  k — 1 must be complete,

2. For any two components Gpi and Gpj, of orders p* and pj respectively, we must have 
p» +  p2 >  k, and as a consequence

3. G can have at most one component Gpi E { K 1 =  S1, K 2 =  S2}.

Suppose Tk ^  Sk_1. Then by Lemma 15, any non-complete tree component of G has 
order at least k + 1 .  Since a forest with t components has n — t edges, the forest composed 
of the union of trees on k +  1 vertices and one copy of K 1 or K 2 has at least n — (|_n+1■ J +  1) 
edges. Then we obtain the lower bound

sat(n,Tk) =  |E(G„)| >  n —
n — 1 
k +  1

+ 1

From this bound we can see that for n k +  2 we have

sat(n, Tk) >  n —
n — 2 

k
+ 1 n

n +  k — 2 
k

Suppose instead that Tk =  Sk_1. If |E(G)| <  n — |_n+k-2 J, then G must have more than 
|_n+k-2 J components and at least two components Gpi and Gpj are of order k — 1 or less 
and thus must be complete. But we can replace these components with a star on p̂  +  pj 
vertices and obtain a Tk—saturated graph G' with fewer edges, a contradiction. Let F  be
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the forest of order n composed of |_n+k 2J stars, all of order at least k, except at most one
(S G { K 1,K 2},). Notice that F  has size |E(F)| =  n — |_n+k 2J. Then in this case

sat(n, Tk) =  n
n +  k — 2 

k

□

4.4 O th er Tree S aturation  N u m ber R esu lts

4.4.1 P rop erties  o f  subtrees and saturation  num ber bou n ds

In addition to the lower bound on saturation number for trees, some interesting subtree prop
erties guaranteeing relatively high or relatively low saturation numbers have been identified 
[FFGJ09]. We briefly discuss a few of these results below.

Since all trees have at least two pendant vertices, the minimum degree of every nontrivial 
tree is one. However, for a given tree T, the second smallest degree £2(T ) is of interest. 
Indeed, given a non-star tree T, it is known that sat (n,T) >  ^ 2(T?-1 )  n, for n sufficiently 
large. Relatively speaking, trees with high second smallest degree have high saturation 
numbers. In particular, if £2(T ) >  3, the bound in Theorem 18 below shows that there exists
no (non-trivial) T —saturated tree.

T h eorem  18 ([FFGJ09] Theorem 6 ). If  Tk =  K 1,k-1 is a tree, k >  5, with ^2 =  2̂(Tk), then 
for  n >  (£2 — 1)3,

On the other hand, for n large enough, a non-path tree T  with a relatively long induced 
path has saturation number at most n — 1. Suppose T  is a tree with maximum degree A ( T ) > 
3 and whose longest path contains £ vertices. If the vertices of a path P  =  (v1 , v2, . . . ,  v )̂ 
of order £ in T  can be labeled such that deg(v2) , . . .  ,deg(v^/2-) =  2, then we can find a 
T —saturated tree of similar structure to the [KT86] tree described in Notation 3. Specifically, 
for target trees with long induced paths, we can modify the P^—saturated tree T  (see Figure
4.4 and Notation 3), by “multiplying the branches” so that all internal (non-pendant) vertices
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have degree A  +  1, and we obtain a target-saturated host tree whose longest path contains 
t  — 1 vertices. Such host trees are called T^- 1,a+ 1 in the theorem below. (Notice that in this 
notation, for the Pk—saturated tree of Notation 3 we have T k =  T k-1,3.)

T h eorem  19 ([FFGJ09] Theorem 7). Let T  be a tree with maximum degree A  >  3 and 
whose longest path contains exactly t  vertices, the first |~t/2 ] of which have degree at most

2. Then the tree T f_ 1,A+1 is T —saturated and sat (n,T) <  n — 1 for  n >  |V(T^- 1,a+1)|.

4.4 .2  Trees T  for w hich  th ere  exists a m inim al T —saturated  forest

In the case that we can find a smallest non-trivial Tk—saturated tree Ts, the following tech
nical lemma (Lemma 20) can simplify the proof of the saturation number [FFGJ09]. If there 
exist Tk—saturated trees of all orders p E {s, s +  1 , . . . ,  2s — 1} and the (disjoint) union 
of any pair of such trees is again Tk-saturated, then there exists a minimal Tk-saturated 
forest. In the case that the (disjoint) union of K 1 or K 2 and a Tk—saturated tree of order p 
is Tk—saturated, this leads to the lower bound sat(n ,Tk) >  n — |_n_^J — 1. We also obtain 
the upper bound sat(n,Tk) <  n — |_nJ corresponding to a forest of |_nJ — 1 trees of order s 
and one tree of order p. When it applies, Lemma 20 provides an outline for the saturation 
number proof. We will see such a proof in Chapter 5, and this technique was already seen 
in the proof of Corollary 14.

L em m a 20 ([FFGJ09] Lemma 3). Suppose that Tk is a tree of order k >  5 and that Ts is a 
Tk—saturated tree of order s >  k such that

1. s <  |V(T)| for all Tk — saturated trees T,

2. for all j  with 1 <  j  <  s — 1, there exists a Tk—saturated tree Ts+j of order s +  j ,  and

3. the union of any pair of Tk—saturated trees T^+j ,T s+j2 E T  =  {T s,T s+1, . . .  ,T2s-1} is 
T k - saturated,

then for  n >  s, there exists a minimal Tk—saturated forest, and

n — 1 n
n - — 1 <  sat(n, Tk) <  n —

s s
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The above theorems and lemma provide useful tools for establishing the saturation num
bers for a variety of trees. The saturation number bounds for specific trees including par
ticular brooms, twice-or-more subdivided stars, and double stars are also established in 
[FFGJ09].

45





C h ap ter  5

S em i-S atu ration  N u m ber

In this chapter we state and prove a new theorem concerning the semi-saturation number of 
paths.

5.1 M otiva tion

In order for a graph G to be H —saturated, G must satisfy two requirements:

1. G must be H —free, and

2. for all e G E (G) the graph G +  e must contain a copy of H, necessarily containing e.

The notion of an H —semi-saturated graph arises from eliminating the first of these two 
requirements. We say that a graph G is H  —semi-saturated if for all e G E(G) ,  the graph 
G +  e contains a new copy of H. That is, G +  e contains a copy of H  that contains e. Thus 
any H —saturated graph is also an H —semi-saturated graph.

The semi-saturation number for a target graph H  with respect to host graphs of order n 
is the minimum number of edges in an H —semi-saturated graph of order n. We adopt the 
notation of [FK12] and write

ssat(n, H ) :=  min{|E(G)| : G is H  — semi-saturated, |V(G)| =  n}.

Since any H —saturated graph is also H — semi-saturated, we have

ssat(n, H ) <  sat(n, H ).
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By the proof of Theorem 1, the saturation number and the semi-saturation number for K k 
coincide. On the other hand, as we shall see below, there exist families of graphs for which 
the semi-saturation number is strictly smaller than the saturation number.

In fact, both the saturation number and the semi-saturation number for a k -cy c le  are 
known. For n >  k >  3, a minimal Ck—saturated graph on n vertices has sat(n, Ck) =  
n + n + q ( n  +  k2) edges [FK12]. In [FK12], it is proved constructively that the number of 
edges in a minimal Ck—semi-saturated graph on n vertices is on the order of n +  2k. That 
is, for n >  k >  6 , it is known that

ssat(n, Ck) =  n +  2k  +  Q ^k_ +  k j .

5.2 T h e  S em i-S atu ration  N u m ber for Pk

We will establish the semi-saturation number of Pk, and we will prove that for k >  6 and 
n >  2 1_ 3(k_ 1) J, the semi-saturation number of Pk is strictly less than the saturation number 
of Pk with respect to host graphs of the same order. That is, ssat(n, Pk) <  sat(n, Pk). We 
first prove a semi-saturated version of Lemma 20.

L em m a 21. Suppose that Tk is a tree of order k >  5 and that Ts is a Tk — semi-saturated 
tree of order s >  k such that

1. s <  |V(T)| for all Tk — semi-saturated trees T,

2. for all j  with 1 <  j  <  s — 1, there exists a Tk—semi -saturated tree Ts+j of order s 
and

3. the union of any pair of Tk—semi-saturated trees Ts+jl ,T s+j2 E T  =  {Ts,Ts+1, . . .  ,T2s-1} 
is T k -semi-saturated,

then for  n >  s, there exists a minimal Tk—semi-saturated forest, and

n
n — 1

— 1 <  ssat(n, Tk) <  n —
n

s s
(5.1)
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Proof of Lemma 21. We show that the forest F  =  (|_ -  J — 1)Ts U Ts+j-, where j  =  n — |_ -  J, 
is Tk—semi-saturated. Let e =  uv G E ( F ). Then either u ,v  G V ( T ) for some Tk—semi
saturated tree T  in F, or u G Ti and v G T2 where T  and T2 are distinct Tk—semi-saturated 
trees in F. In either case, F  +  e contains a new copy of Tk since the union of any pair of trees 
in F  is Tk—semi-saturated. Notice that since F  is a forest of |_ -  J trees, we have

|E (F  )| n
n

l s J

This establishes the upper bound in (5.1).

The lower bound holds since any Tk—semi-saturated graph G can essentially be replaced 
by a forest of trees selected from T  without adding any edges. Observe that G will have 
at most one component of order 2 or less. Let G =  H 1 U H2, where H 1 consists of all the 
components of G that are trees and have at least 3 vertices. Since G is Tk—semi-saturated, 
this means that all components of H 1 have order at least s. Let H2 =  G — H 1. Thus, any 
component that is a K 1 or K 2 lies in H2.

Case 1: Assume H2 =  0.

Then G is a forest and each component of G is a tree of order at least s. Thus, since 
|_(n — 1)/sJ + 1  >  |_n/sJ,

1.

Case 2: Assume K 1 or K 2 is a component of H2.

Then |E( # 2)! >  |V(H2)| — 1 and |V(H1)| <  |V(G)| — 1. Thus,

n
>  n —

n — 1
n — —

s s

|E(G)| =  |E ( # 1)| +  |E ( # 2)!

> | V  ( # 1)! — 

> | V  (G)| —

|V ( # 1)!
+  |V ( # 2)! — 1

|V (G)! — 1
1,

which is what we needed to show.

s

s
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V i  V2 Vi Vi+1

F igure 5.1: If either of u or w is an end vertex of Pr, then Pr +  uw contains the path 
P'T =  (vi-1 , vi -2, . . . ,  v1 =  u, vi =  w, vi+1, . . .  vr), a new copy of Pr.

Case 3: Assume that no component of H2 is a K 1 or K 2 but H2 =  0.
The the argument from Case 2 is repeated. That is, |E (H2)| >  |V(H2)| and |V(H1)| < 

IV(G)| -  1. Thus,

|E (G)| =  |E (H 1)| +  |E (H2)|

>  IV(H1) | -

>  IV(G)| —

>  IV(G)| —

IV (H1)|
s

IV (G) I — 1

+  IV (H2)I

IV (G)I — 1
1,

which is what we needed to show. □

L em m a 2 2 . Let Pk be a path on k >  2 vertices and let

3(k — 1)
r =

Then the path Pr is Pk — semi-saturated.

Proof of Lemma 22. Let Pr =  (v1, v2, . . . ,  vr). Let u and w be any pair of distinct nonadjacent 
vertices in V (P r). We must show that Pr +  uw contains a copy of Pk using the edge uw. 
First we consider the case where u or w, say u, is an end vertex of of Pr. Suppose that 
u =  v1 and let w =  vi for some i E {3, 4 , . . . ,  r} .  Then Pr +  uw contains a path on r vertices: 
(vi - 1,vi -2, . . .  , v1 =  u,vi =  w,vi+1, . . .  vr). (See Figure 5.1.) Thus Pr +  uw also contains a
path on k vertices containing the edge uw.

vr

s

s
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Now suppose that neither u nor w is an end vertex of Pr. Then the choice of u and w 
induces a tripartition on the vertices of Pr — {u, w }. That is, the choice of u and w partitions 
V (P r) — {u, w } into three parts: the vertices between u and w on the path from u to w, the 
vertices on the path not containing w from u to one end-vertex of Pr, and the vertices on 
the path from w to the other end-vertex of Pr. We claim that the induced subgraph on the 
two larger parts together with u and w contains a new copy of Pk. To see this, observe that 
the smallest part has order at most

3(k — 1) 1 A r — 2
_ 2 _ CO

Note that for even values of k, we have r 3k—4 and for odd values of k, we have r = 3k- 3

Then, if k is even, the longest path containing uw in Pr +  uw has order at least

r
r — 2 3k — 4

—  — 2 —2 — —

3k k
 2 — -  +  2
2 2

1 ( 3k— 4  _  2
3 2 -
k 4 
2 — 3

=  k.

If k is odd, the longest path containing uw in Pr +  uw has order at least

r
r 2 3k — 3 

2
3k 3
T  — 2

i  ( 3 i —3 — 2
3 V 2 
k — 1 2

3
3k 3 k i
 1 +1
2 2 2 2

=  k.

□
L em m a 23. Let Tp be any tree of order p with 3 <  p <  r — 1 where r =  |_3(k-1) J. Then Tp 
is not Pk—semi-saturated.
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u v
o— O----O ... .....o ...... ....  o  ■■
x i x 2 x3 x k —1 2 y ̂ ya y2 yi

F igure 5.2: A longest path Pg of order £ >  k in Tp, a tree of order p <  r — 1. When k is 
odd, the graph Tp +  uv does not contain a new copy of Pk.

Proof of Lemma 23. First, suppose that k is odd. Then Tp has order

3k — 5
p <  r — 1 = ---------- .
1 2

Recall from Notation 3 that for k >  5 where k =  2j +  1, the order of the minimal 
Pk—saturated tree is

• 1 k — 3
ak =  4 ■ 2j - i  — 2 =  4 ■ 2k—3 — 2.

Observe that for k >  5, we have ak >  — . Suppose that the longest path in Tp has order 
£ <  k — 1. Then if Tp is Pk—semisaturated, Tp is also Pk—saturated, and then by Theorem 
13 we know that Tp has order at least ak, a contradiction since p <  3k—5. So we may assume 
that the longest path Pg in Tp has order £ >  k.

Let the end vertices of Pg be labeled x i and yi and let their neighbors be labeled x 2 and 
y2, respectively. Continue labeling along the path as shown in Figure 5.2 up to x k—i and y k—i . 
Choose u =  xk—i and v =  yk—i . Note that uv G E(Tp) since £ >  k. Observe that this choice 
of u and v partitions the vertices of Tp \ {u, v } into at least three components, exactly three 
of which correspond to the connected components of Tp \ { u , v }  containing vertices of Pg. 
The two parts of this partition containing X  =  { x i , x2, . . . ,  xk—3}  and Y  =  { y i , y2, . . . ,  yk—3}, 
respectively, have order at least k -3. The third part contains at least one vertex w since u 
and v are not adjacent.

Now consider Tp +  uv. Since

(  ( k — 3 \ \ 3k — 5 „
p — (K ^) + d < “ 2 (k — 1)

k 3
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we know that the third part has order at most k -3. Hence the longest path in Tp +  uv con
taining uv has order at most 2 ( k y )  +  2 =  k — 1 and thus Tp is not Tk — semi-saturated for 
odd values of k.

When k is even, we have p <  y y . Observe that for k >  4 with k =  2j we have

„• i k-2 3k — 6
ak =  3 ■ 2j-1  — 2 =  3 ■ 2k-2 — 2 > ----------.k 2

Thus, as above, we may assume that the longest path Pe in Tp has order at least k. Labeling 
the vertices of Pe in a similar manner as above, we now choose u =  x k-2 and v =  y k-2 . 
The resulting partition of V(Tp \ { u ,v } )  contains two parts of order at least k y  (the parts 
containing x 1 and y1). By a similar computation as above, we see that there are at least two 
vertices w1 and w2 on the path from u to v in Tp, and the part containing w1 and w2 has 
order at most k y . Then in Tp +  uv the longest path containing uv has order at most

k — 2 k — 4
—  +  —  +  2 = k — 1

Hence Tp is not Pk—semi-saturated for even values of k. □

T h eorem  24. Let n >  2r, with r =  |_3(k2 1) J. Then

n — 1 n
n - — 1 <  ssat(n, Pk) <  n —

r r

Proof of Theorem 2 4 . By Lemmas 22 and 23, we know that Pr with r =  |_3(k- 1) J is a 
Pk—semi-saturated tree of smallest order. It follows from the proof of Lemma 22 that for j  
with r <  j  <  2r — 1, the path Pj is Pk—semi-saturated. Further, the (disjoint) union of any 
two paths Pj1 and Pj2 with j\, j 2 G {r, r +  1 , . . . ,  2r — 1} is Pk—semi-saturated. To see this, 
let e =  uv where u G V (P j1) and v G V (P j2). Then the longest path P  in (P j  U Pj2) +  e 
such that e G E (P ) has order at least |~ji] +  |~ j 2] >  r. (P  has smallest order when u ,v  are 
central vertices of Pj1 and Pj2, respectively.) Now by Lemma 21, for n >  r, there exists a
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C K >C K >C K >C K >0 

0 0
CKKKKKKKKKKKKKKK)

F igure 5.3: For k =  7, we have r =  |_3(72 i) J =  9. For n =  45 the forests F i and F2 are both 
minimal P7—semi-saturated graphs with 45 — |_45J = 4 0  edges.

Pk—semi-saturated forest and

n
n 1

— 1 <  ssat(n, Pk) <  n —
n
r

□
See Figure 5.3 for some examples of minimal P7—semi-saturated forests for n =  42. When 

compared to a minimal P7-saturated forest of the same order, such as that shown in Figure 
4.5, we see that ssat(42, P7) <  sat(42, P7). This result is generalized in Theorem 25.

T h eorem  25. For k >  6 , and n >  2r =  2|_3(k-i)J,

ssat(n, Pk) <  sat(n, Pk).

Proof of Theorem 25. By Corollary 14, for n >  ak we have sat(n, Pk) =  n — |_yJ. Since for 
k >  6 , we have r <  ak, and ssat(n, Pk) <  n — [nJ, then ssat(n, Pk) <  sat(n, Pk). For n such 
that 2r <  n <  ak, any minimal Pk—saturated graph G can have at most one tree component, 
and if G has a tree component T, then T  G { K i , K 2}. All non-tree components of G have at 
least as many edges as vertices and thus

|E(G)| >  n — 1.

Since for such n, there exists a Pk-semi-saturated forest of order n composed of at least two 
trees and thus having at most n — 2 edges, we have |E(G)| >  ssat(n, Pk). □
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C h apter 6

Further Q uestions

In [EHM64] it is established that ssat(n, K k) =  sat (n,Kk). We have seen that for Pk, the 
saturation number is larger than the semi-saturation number. This raises the questions: for 
which families of graphs is the semi-saturation number the same as the saturation number? 
Further, what properties do these families of graphs have that guarantees ssat(n, Hk) =  
sat(n, Hk)? Can a bound analogous to that given in Theorem 5 be established for the 
semi-saturation number of an arbitrary family F  of graphs?

In the notation of Theorem 19, we have seen that for n >  ak, a forest of the trees Tk-1,3 
(with pendant vertices multiplied as needed) is a minimal Pk—saturated graph, and we know 
that any Pk—saturated tree of order ak or more contains Tk_ 13. (See the proof of Corollary 
14 and Theorem 13.) But what do non-tree path-saturated graphs look like? In particular, 
what is the structure of a small (order n <  ak) Pk—saturated graph?

[EHM64] completely characterizes the minimal K k—saturated graphs, and [KT86] char
acterizes the minimal K 1,t—saturated graphs. For the graphs whose saturation number is 
known, what is the structure of the minimal saturated graphs that correspond to this satu
ration number?
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