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Abstract

Understanding the degassing process in magma is an important goal because of the first- 

order control it exerts on determining eruption style. Degassing in high viscosity magmas is of 

particular interest since these magmas tend to erupt explosively. However, the role of 

phenocrysts in the degassing process is still poorly constrained, though recent data indicate that 

the presence of phenocrysts should promote permeability development at lower porosities than in 

crystal-free magmas. This study specifically examined the effect of phenocrysts in a rhyolitic 

magma, but the results can also be applied to crystal-rich intermediate magmas that have 

rhyolitic matrix melts. Isothermal decompression experiments were conducted using powdered 

rhyolite (76 wt. % SiO2) and seeded with corundum (AhO3) crystals to approximate magmas 

with 20 and 40 vol. % phenocrysts. Experiments were saturated at 900°C and 110 MPa then 

continuously decompressed to final pressures between 75 and 15 MPa. Percolation threshold was 

determined by measuring permeability on a benchtop permeameter and measuring porosity from 

reflected light images. Additionally, vesicle structure was assessed by measuring pore throat 

radii from back-scattered electron images and plotting bubble size distributions. Finally, 

degassing state was checked by measuring dissolved water contents in the glass with Fourier 

Transform Infrared (FTIR) spectroscopy analyses. The addition of at least 20 vol. % phenocrysts 

resulted in a decrease in percolation threshold from 70-80 vol. % porosity in crystal-free 

rhyolites to 55 vol. % porosity. Bubble size distribution patterns indicate that coalescence was 

more widespread as final pressure decreased and crystal content increased. Minimum pore throat 

radii in the 40 vol. % phenocryst series were larger than in the 20 vol.% phenocryst and crystal- 

free series. The dissolved water measurements indicate that these experiments degassed in 

equilibrium even at the fast decompression rate of 0.25 MPa/s. Calculations of the magnitude of
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outgassing from the decreased percolation threshold and timescales of pressure dissipation 

indicate that the presence of phenocrysts plays a role in the effusive-explosive cyclicity of 

Vulcanian-style eruptions.
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1.0 Introduction

Silicic volcanism (SiO2 > 57%, spanning andesitic to rhyolitic composition) presents a 

distinct hazard to human life. These compositions tend to produce explosive eruptions, ranging 

in style from Plinian to sub-Plinian to Vulcanian (Cashman and Sparks, 2013). These explosive 

eruptions result from the high viscosity of these melts, which, along with slow H2O diffusion 

rates, kinetically hinders degassing processes compared to mafic compositions. High melt 

viscosity and slow diffusivity hinders bubble nucleation and growth, promotes volatile 

supersaturation, and results in significant overpressure development within the melt (Gardner et 

al., 2000). Additionally, it has been suggested that the significant supersaturation of volatiles can 

result in a late-stage bubble nucleation event that drives fragmentation and explosive eruptions 

specifically in rhyolites (Mangan and Sisson, 2000). However, silicic magmas can also erupt 

effusively or transition between explosive and effusive eruption styles, such as during the 1980 

eruption of Mt. St. Helens in the Cascades range of the western USA; this eruption transitioned 

through Plinian and Vulcanian eruptions to effusive dome building over the course of several 

months (Cashman and McConnell, 2005). Various factors can influence degassing processes to 

produce transitioning eruptions, such as ascent rate, permeability of the conduit, volatile content, 

and crystallization during ascent (Jaupart and Allegre, 1991; Cashman and McConnell, 2005; 

Diller et al., 2006). Because so many factors can influence the chemistry and physics of 

degassing, many studies have been performed on both natural and experimental samples to 

understand the degassing process (e.g., Gardner et al., 2000; Larsen and Gardner, 2000; 

Burgisser and Gardner, 2004; Larsen et al., 2004; Wright et al., 2009; Yokoyama and Takeuchi, 

2009; Lindoo et al., 2016). The experimental work has mostly examined crystal-free systems in 

order to understand basic processes involved in degassing, such as bubble nucleation, growth,
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coalescence, and magma ascent rate (Gardner et al., 1999; Gardner et al., 2000; Larsen et al., 

2004; Castro et al., 2012a; Lindoo et al., 2016). However, many natural magmas contain a 

significant amount of crystals (>10 vol. %) either as phenocrysts or microlites. Many of the 

experimental studies have noted that the presence of crystals could influence the degassing 

process but little experimental work has been done to try to constrain that influence (e.g.,

Gardner et al., 1999). Only one study has experimentally examined the role of crystals (Okumura 

et al., 2012) seeded into rhyolite melts, so more experimental work is necessary. Therefore, the 

goal of this study was to determine whether euhedral phenocrysts (355 p,m) influence the 

degassing process in high-silica melts and if so, what volume percent was necessary to produce 

the influence. Results indicate that the presence of at least 20 vol. % phenocrysts leads to bubble 

connectivity and permeability development and lower porosities, indicating crystal-rich melts 

could degas deeper in the conduit than crystal-free melts.

2.0 Background

Once an eruption has been triggered, magma begins ascending from the magma chamber 

to the surface through the conduit. As the magma ascends, the overlying pressure is decreased, 

thus decreasing the solubility of volatiles. However, due to surface tension and viscosity, bubbles 

do not immediately nucleate; a certain degree of supersaturation is necessary for nucleation to 

occur (Mangan and Sisson, 2000). The degree of supersaturation necessary is dependent upon 

the melt composition and whether nucleation is homogeneous or heterogeneous. Homogeneous 

nucleation occurs when bubbles nucleate in free space and requires a large amount of 

supersaturation. Experiments have indicated that it could take up to 150-200 MPa of 

supersaturation in rhyolites for homogeneous nucleation to occur (Mangan and Sisson, 2000). 

Heterogeneous nucleation occurs when bubbles nucleate on a pre-existing surface, such as a
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crystal. The efficacy of heterogeneous nucleation depends upon the type of crystal present as 

well as the magma composition. For example, in rhyolitic magmas, bubbles nucleate well on Fe- 

Ti oxides but poorly on plagioclase (Hurwitz and Navon, 1994). On the other hand, in dacitic 

magmas, bubbles do not nucleate well on Fe-Ti oxides (Mangan et al., 2004). The wetting angle 

between the melt, bubble, and crystal surface determines how well bubbles will nucleate. If the 

wetting angle is acute, this indicates that the melt adheres strongly to the crystal surface, which 

does not leave a large enough surface area for the gas to adhere to the crystal; thus, nucleation 

will not be favored on that crystal type in that magma composition (Hurwitz and Navon, 1994; 

Mangan et al., 2004). A schematic representation of this relationship is shown in Figure 1. If 

heterogeneous nucleation can occur efficiently, it has been shown to drop the necessary 

supersaturation down to only 5 MPa (Hurwitz and Navon, 1994). Another key component to 

bubble nucleation is forming a stable nucleus. Because of surface tension, a certain minimum 

radius, termed the critical radius, is necessary for bubbles to be stable. Until bubbles grow to this 

critical radius, they are unstable and may collapse.

a) b)

Figure 1 . Schematic representation of wetting angle. In case a) the melt strongly wets the crystal and nucleation is 
not favored. In case b) the melt does not strongly wet the crystal and nucleation is favored.
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Once stable bubble nuclei have been formed, any decrease in overlying pressure from 

magma ascent will result in bubble growth. Bubbles grow by two main mechanisms -  diffusion 

of volatiles into pre-existing bubbles and decompression-triggered expansion. Both processes are 

impeded by the high viscosity of high silica melts. Bubble growth by diffusion is controlled by 

the diffusivity of the volatiles, which can range from 10-11 m2/s for an andesite (Behrens et al., 

2004) to 10-12 m2/s for a rhyolite (Zhang and Behrens, 2000). Diffusivity is also a function of 

melt viscosity; the higher the viscosity, the more difficult it becomes for volatiles to diffuse 

through the melt. The viscosity of water saturated, crystal-free intermediate and felsic magmas 

can range from 102 Pa s for an andesite (Vetere et al., 2006) to 105 Pa s for a rhyolite (Hess and 

Dingwell, 1996). The values for these viscosities will increase as the magma decompresses, loses 

its volatiles, and crystallizes. Additionally, there is a limited distance that the water can travel 

within the degassing time period. Thus there is a water-depleted shell around the bubbles from 

water diffusing into bubbles. The size of this shell is dependent on the size of the bubble and the 

diffusivity of the water in the melt. Bubbles will also grow by gas expansion as the overlying 

pressure decreases. As a magma ascends, the confining pressure decreases and the volatiles 

already within the bubbles will expand according to the ideal gas law. However, in order to 

expand, bubbles must move magma out of the way, which is challenging when the viscosity is 

high (Gardner et al., 2000).

When the bubbles have grown sufficiently large, they begin to impinge on one another. 

This causes deformation of the bubbles and eventually coalescence. Pervasive coalescence leads 

to magma permeability, and the porosity at which this occurs is termed the percolation threshold 

(0c; Blower, 2001). There are two main mechanisms for bubble coalescence -  drainage of melt 

from the melt film between the bubbles and stretching of the melt film from bubble growth
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(Castro et al., 2012a). In rhyolitic melts, melt drainage has been estimated to take 104 to 109 

seconds, whereas coalescence by film stretching can take 101 to 103 seconds, depending upon 

bubble size (Castro et al., 2012a; Nguyen et al., 2013). Based on these time scales, the most 

likely mechanism for bubble coalescence in high viscosity melts is stretching of the melt film 

resulting from bubble growth. Coalescence can also be induced by shear stress (Okumura et al., 

2008; Caricchi et al., 2011). Most commonly, magmas will experience shear stress along the 

conduit walls (Okumura et al., 2008). However, the shear stress from the conduit walls only has 

a local effect on magma along the edges and, depending on the conduit radius, does not affect the 

magma located in the center of the conduit (Castro et al., 2012b). When two bubbles coalesce, 

the aperture that forms between the bubbles is termed the pore throat. The size of this aperture is 

an important property for determining the permeability of a melt as the smallest pore throat will 

restrict the permeability of the whole sample (Yokoyama and Takeuchi, 2009).

Once permeability has been established, gas can begin to escape from the magma, either 

vertically through the column of permeable magma or horizontally through the conduit walls 

(Jaupart and Allegre, 1991; Diller et al., 2006). Vertical escape out the vent is only possible if the 

path is not blocked by an impermeable lava plug (e.g., as in a Vulcanian eruption) or if  vertical 

variations in permeability do not significantly impede gas escape. Horizontal gas escape is 

controlled by the permeability of the conduit wall rocks (Jaupart and Allegre, 1991). The conduit 

wall rocks can be permeable to start with or become permeable as an eruption causes fractures to 

form in the conduit wall rocks. Evidence for the second process can be seen from boreholes that 

intersected the conduit beneath the Inyo Domes in California (Heiken et al., 1988). Conversely, 

as an eruption proceeds, the permeability of the conduit wall rocks can decrease through 

hydrothermal precipitation of quartz, particularly in cases where the magma is hydrous
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(Edmonds et al., 2003). Thus, magma outgassing can be a function of both changes in magma 

permeability and changes in conduit wall rock permeability, which in turn will influence eruption 

style.

The relationship between permeability and porosity has typically been explored through 

the context of two different models, the Kozeny-Carman relationship and percolation theory 

(e.g., Blower, 2001; Rust and Cashman, 2004). The Kozeny-Carman relationship relates 

permeability (k) to porosity (0 ) and pore geometry:

0 a 2

k = —  (1)

where a is the average hydraulic radius of pore throats and C is a geometrical constant, typically 

2 for cylinders (e.g., Saar and Manga, 1999). This relationship implies that permeability is 

strongly dependent on the size of pore throats. Other studies have confirmed that pore throat size, 

rather than bubble size, controls permeability (Saar and Manga, 1999; Klug et al., 2002; Rust and 

Cashman, 2004).

Percolation theory predicts a power-law relationship between permeability and porosity 

of the form:

k = c ( 0 -  0 C)  (2 )

where c is a constant that determines permeability magnitude and the exponent b is controlled by 

the percolation pathway geometry, typically 2 for infinite cylinders and 3 for infinite cracks

(Sahimi, 1994). When modelling vesicles as overlapping spheres, percolation theory predicts 0c

= 30 vol. % porosity (Blower, 2001). However, many natural and experimental crystal-free 

samples (rhyolite and rhyodacite composition) do not show measurable permeabilities until a
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threshold of at least 56 vol. % is reached (Eichelberger et al., 1986). However, most studies 

indicate that the critical porosity is much higher, between 70 and 80 vol. % porosity (Klug and 

Cashman, 1996; Takeuchi et al., 2009; Lindoo et al., 2016). Analogue experiments conducted by 

Oppenheimer et al. (2015) indicate that a certain threshold of phenocrysts could decrease the 

percolation threshold in highly silicic magmas by restricting bubble growth pathways as the 

system approaches a state of random loose packing of the crystals. At this point, the rheology of 

the system develops yield strength. The crystal-restricted vesiculation process evolves as bubbles 

elongate away from crystal surfaces, impinge on one another, and coalesce earlier in the 

degassing process than in a crystal-free magma, thus allowing the magma to develop 

permeability at a lower porosity. However, experimental studies investigating the relationship 

between crystal content and percolation threshold have had differing results. Lindoo et al. (2015) 

found that the addition of >20 vol. % crystals to phonolites resulted in a reduction of the 

percolation threshold from 75 vol. % to 53 vol. % porosity. On the contrary, Okumura et al. 

(2012) found no measurable permeability in experiments with up to 50 vol. % phenocrysts and 

measured porosity up to 61 vol. %. Thus, a big question remains as to whether and to what extent 

phenocrysts influence the degassing process.

Since the number of experimental studies is so few and have conflicting results, this 

study aims to investigate the role phenocrysts play in the degassing process in order to provide a 

better constraint. This study used decompression experiments with corundum seed crystals to 

approximate phenocrysts and powdered rhyolite obsidian to investigate the role phenocrysts play 

specifically in high viscosity melts. Results from permeability and porosity measurements show 

that experiments with >20  vol. % phenocrysts become measurably permeable at a lower porosity 

(55 vol. %) than crystal-free rhyolites (70-80 vol. %). The mechanism proposed by Oppenheimer
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et al. (2015), crystals inducing coalescence by restricting bubble growth pathways, appears to be 

the reason for this decrease in percolation threshold. Calculations of outgassing from the 

decreased percolation threshold relative to a crystal-free melt indicate that significant outgassing 

can occur if  gas can escape either vertically through the permeable column of magma or 

horizontally into permeable conduit walls. These results have implications for effusive-explosive 

eruption transitions, particularly in the context of Vulcanian eruptions.

3.0 Methods

3.1 Experimental methods

The decompression experiments employed powdered rhyolite obsidian from Mono Craters, CA 

(Table 1) and euhedral corundum seed crystals sieved to 355 p,m to approximate phenocrysts 

with relatively low aspect ratios (AR) and equant shapes (AR: 1.8 ±0.6, n=64, range: 1.1-3.5). 

Two different experimental series were conducted -  20 and 40 vol. % corundum seed 

populations. Two crystal-free experiments were conducted as control experiments in order to 

compare to Lindoo et al. (2016) results. One other crystal free experiment was conducted to 

assess the proportion of porosity contributed from hydration bubbles, which resulted from water 

being trapped in spaces between powder grains (Gardner et al., 1999; Larsen and Gardner, 2000). 

The total volume of powder and corundum was 0.053 cm3, which corresponded to ~0.0833 g of 

corundum and 0.0713 g of powder for the 40 vol. % series and 0.0416 g of corundum and 0.0951 

g of powder for the 20 vol. % series. The only exceptions were the two highest quench pressure 

40 vol. % series experiments (Pf = 65 and 50 MPa) which had a total volume of 0.065 cm3, 

corresponding to 0.1021 g of corundum and 0.0875 g of powder. For experiments quenched at 

higher pressures (Pf > 30 MPa), approximately 7 wt. % water was added, and for experiments 

quenched at lower pressures (Pf < 25 MPa), approximately 5 wt. % water was added (Table 2).
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Table 1. Major oxide composition of Mono Craters rhyolitea

Oxide Percentage

SiO2 76.32 (0.29)

TiO2 0.21 (0.17)

Al2O3 13.02 (0.06)

FeO* 1.03 (0.8)

MgO 0.04 (0.02)

CaO 0.53 (0.03)

Na2O 3.93 (0.11)

K2O 4.72 (0.1)

Total 100

nb 4

aValues from Lindoo et al. (2016). 1o standard deviations given in 
parentheses

bNumber of analyses

The amount of added water was decreased for the lower quench pressure experiments in order to 

reduce the chance of capsules bursting during decompression. Both amounts were enough to 

reach the saturation value (4.15 wt. %) calculated from the solubility model of Moore et al. 

(1998). The starting materials and water were sealed in 5 mm silver (Ag) tubing using a PUK 3 

arc welder. Smaller capsules of MgO powder in 4 mm diameter Ag tubing were sealed in the 

headspace of the capsules to act as a sink for excess water vapor produced during decompression 

(Figure 2). The capsules were checked for leaks by weighing the capsules before and after 

welding as well as after allowing the capsule to sit on a hot plate at 150°C for 15 minutes. If the 

weight changed during either check, the capsule was discarded.

Once a satisfactory capsule was produced, the capsule was loaded into a TZM (Ti-Zr-Mo 

alloy) pressure vessel. The pressure vessel was fitted with a water-cooled cold seal top that 

allowed for a rapid quench so that bubble textures at the end of the decompression would be 

preserved with minimal cooling-induced expansion (Figure 3). Approximately 2.5 bars of CH4
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Figure 2 . Schematic diagram of capsule design. Not to scale.

gas was added to the vessel in order to prevent H diffusion out of the capsules. The vessel was 

pressurized with Ar gas to 110 MPa and heated to 900°C in a vertical Deltech furnace. Pressure 

in the system was measured using a Heise gauge accurate to ±5 MPa, according to the 

manufacturer’s specifications for the University of Alaska Fairbanks (UAF) gauge. The 

experiments were held at the initial conditions for 24 hours, long enough to allow the water to 

diffuse into the center of the largest powder grains. This timescale can be estimated from the 

equation (Larsen and Gardner, 2004):

L = V flt (3)

where L is length, D  is water diffusivity, and t is time. Diffusivity is calculated from Nowak and 

Behrens (1997), and at 110 MPa, 4.15 wt. % water, and 900°C, the diffusivity is 36.7 p,m2/s. At a 

hold time of 24 hours, the water can diffuse 5x105 p,m, which is a larger distance by many orders 

of magnitude than any possible grain size of powder. One experiment was also checked using 

Fourier Transform Infrared (FTIR) spectroscopy to ascertain that the water was diffusing 

uniformly through the experiment.
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Table 2. Experiment starting materials

Sample
Mass

powder
(g)

Vol. % 
powder

Mass
AhO3

Vol. % 
Al2O3

Wt. % 
H2O

Initial
mass

(g)

Final
mass

(g)

Mass
changea

Wt. % 
H2O 
lost

MCO-NEQ-6 0.1142 100.00 0 0.00 6.92 0.9640 0.9640 0.0000 0.00

MCO-TCM-1 0.0870 59.85 0.1022 40.15 7.03 1.8022 1.8001 -0.0021 1.11

MCO-TCM-2 0.0869 59.17 0.1050 40.83 7.19 1.6243 1.6187 -0.0056 2.92

MCO-TCM-4 0.0709 60.08 0.0825 39.92 7.04 1.6341 1.6304 -0.0037 2.41

MCO-TCM-5 0.0950 80.00 0.0416 20.00 6.88 1.6648 1.6651 0.0003 0.00

MCO-TCM-6 0.0948 80.12 0.0412 19.88 7.35 1.5464 1.5518 0.0054 0.00

MCO-TCM-12 0.0957 80.34 0.0410 19.66 6.95 1.6873 1.6848 -0.0025 1.83

MCO-TCM-13 0.0711 60.26 0.0821 39.74 7.57 1.6802 1.6756 -0.0046 3.00

MCO-TCM-14 0.0960 80.16 0.0416 19.84 7.27 1.6217 1.6194 -0.0023 1.67

MCO-TCM-17 0.0715 60.11 0.0831 39.89 5.17 1.5863 1.5828 -0.0035 2.26

MCO-TCM-20 0.0955 80.12 0.0415 19.88 5.18 1.3151 1.3153 0.0002 0.00

MCO-TCM-22 0.0950 79.84 0.0420 20.16 5.18 1.3989 1.3982 -0.0007 0.51

MCO-TCM-26 0.0955 79.81 0.0423 20.19 5.29 1.6371 1.6351 -0.0020 1.45

MCO-TCM-27 0.0713 59.90 0.0836 40.10 4.97 1.5154 1.5119 -0.0035 2.26

MCO-TNCM-4 0.1191 100.00 0.0000 0.00 7.22 1.5355 1.5354 -0.0001 0.08

MCO-TNCM-7 0.1052 100.00 0.0000 0.00 7.32 1.6987 1.6980 -0.0007 0.67

a Positive mass changes are a result of graphite powder from inside the pressure vessel clinging to the capsule

At the end of the hold period, the experiments were decompressed continuously and 

isothermally at a rate of 0.25 ±0.03 MPa/s to final pressures between 75 and 15 MPa by carefully 

bleeding pressure from a leak valve and timing with a stopwatch. Once the desired final pressure 

was reached, the pressure vessel was lifted from the furnace and quickly flipped so that the 

capsule fell to the water-cooled head space. All samples were quenched within 10 seconds of 

reaching the desired final pressure, and this hold time was incorporated into calculations of 

actual decompression rate.
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Figure 3 . Example of experimental set up. Water hoses attach to the top of the pressure vessel and provide the 
cooling method for rapidly quenching samples. Experiment capsule is located at the bottom of the vessel.

3.2 Analytical methods

Once the capsule was removed from the pressure vessel, the experiment was carefully 

extracted from the tubing using wire cutters and a razor blade. The samples were prepared for 

analyses of porosity, permeability, vesicle structure, and three-dimensional computed x-ray 

tomography using a variety of different methods according to analytical procedure, as follows.

3.3 Permeability

Samples were prepared for permeability measurements first by being wrapped by 

Crystalbond 509 then submerged in Hillquist epoxy and allowed to cure overnight. The shell of
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Crystalbond 509 was necessary to prevent the less viscous Hillquist epoxy from permeating the 

sample during the curing period. The resulting epoxy pucks were cut and polished such that both 

ends of the sample were suitably exposed and the thickness of the sample was at least five times 

the diameter of the largest bubble (Blower, 2001). Permeability measurements were conducted 

on a benchtop permeameter located at the University of Alaska Fairbanks that was designed after 

Takeuchi et al. (2008) specifically for the small experimental samples. Compressed air, regulated 

by a precision CKD pressure regulator to between 0.005 and 0.1 MPa, was passed through the 

sample, which created a pressure differential between the upstream and downstream sides of the 

variably permeable or impermeable samples. This pressure differential was measured with a 

Testo 526 digital manometer. The gas flow through the sample was measured with an Omega 

FMA 4308 digital mass flow meter with accuracy of ±1% of full scale and a range of 0 to 500 

mL/min. One sample (MCO-TCM-27) had a low enough flow rate through the sample (<5 

mL/min) that a flow rate converter was used to convert the gas flow to water flow so that a more 

accurate measurement could be made. The flow rate converter worked by directing the 

downstream air flow into a tube of water, and the air bubbles forced out an equivalent volume of 

water. The expelled water was caught and weighed on an electric scale, and using the density of

water, the volumetric flow rate of the air was calculated. Permeability was determined by 

measuring at least 10 different gas flow rates and resulting pressure differentials, which create a 

curve that can be fit using a second-order polynomial. The polynomial curve fit was then used to 

estimate permeability coefficients using the Forchheimer equation (Figure 4):

p2 -  Pi2 M _P 2 ( .
2P0L k 1V k 2 V ( ^
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where P 2 and Pi are the pressures at the top and bottom of the sample, respectively, Po is the 

pressure of the fluid at which fluid viscosity (w) and velocity (v) are measured, typically defined 

as Po=Pi, L is sample length, p  is fluid density, ki is Darcian permeability and k2 is inertial 

permeability (Rust and Cashman, 2004). The Forchheimer equation is preferable to the classic 

Darcy’s law since it incorporates inertial permeability, which arises from turbulent flow through 

the permeable bubble pathways.

7.00E+07

6.00E+07 

^  5.00E+07
PL

g 4.00E+07 
'-3

O  3.00E+07 
<0 
3
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Gas Volumetric Flux (m3/s/m2)

Figure 4. An example of a fit of the second order polynomial to the Forchheimer Equation. This example is for 
MCO-TCM-4, and the correlation coefficient R2 indicates a nearly perfect fit to the second order polynomial curve 
used to obtain values of ki (viscous) and k2 (inertial) permeabilities.

3.4 X-ray tomography

After the permeability measurements were conducted, a subset of the experimental 

samples was soaked in acetone to dissolve the Crystalbond shell and allow for removal of the 

experiments from the epoxy puck. 3D X-ray computed tomography images of five experiments
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were obtained from the University of Texas at Austin High Resolution X-ray Computed 

Tomography Facility. Two samples from each crystal series were sent, one permeable and one 

impermeable, as well as one impermeable crystal-free sample from this study and one permeable 

crystal-free sample from Lindoo et al. (2016). Samples that were sent for tomography are 

denoted in Table 3 with an asterisk. The images had a resolution of 5 microns/voxel.

3.5 Porosity

Porosities of the samples were measured using stereology from reflected light images taken with 

a Nikon DS-Fil camera attached to an Ortholux II POL-BK petrographic microscope. Samples 

were polished flat by hand using silicon carbide powder and the finishing polish was conducted 

using 1 micron diamond grit until the surface was reflective. Images of the samples were taken 

only using a 20x lens due to shadows created by the difference in reflectivity between the glass 

and the corundum seeds in lower magnification images. Five to ten images of each sample were 

taken and then analyzed using NIH ImageJ. The images were converted to binaries using 

thresholding, creating black bubble areas and white glass and crystal areas. Following the rules 

of stereology, any bubbles on the edges of the images were excluded (Russ, 1986). However, 

where a coalesced set of bubbles was on the edge, the edge of the bubble completely within the 

area of the image was manually separated from the edge bubble. The area of any crystals in the 

images was subtracted so that the reported porosity represents the porosity of the melt only. 

Figure 5 shows an example of a reflected light image and the resulting segmented binary image. 

Porosity for MCO-TCM-4 and MCO-TCM-12 was measured with the same method but using a 

tomography image slice instead of a reflected light image. The tomography images could not be 

used to measure porosity for the higher quench pressure experiments since the voxel resolution 

of the tomography images resulted in loss of all bubbles
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Table 3. Summary of experimental conditions

Sample Vol. % 
Crystals

Temperature
CC)

Initial
P

(MPa)

Quench 
P (MPa)

Decompression 
time (s)

Decompression 
Rate (MPa/s)

MCO-NEQ-6 0 900 110 110 n/a n/a

MCO-TCM-5 20 900 110 75 140 0.25

MCO-TCM-1 40 900 110 65 180 0.25

MCO-TCM-6* 20 900 110 50 260 0.23

MCO-TCM-2* 40 900 110 50 250 0.24

MCO-TCM-14 20 900 110 30 350 0.23

MCO-TCM-13 40 900 110 30 320 0.25

MCO-TNCM-4 0 900 110 25 390 0.22

MCO-TCM-12* 20 900 110 25 360 0.24

MCO-TCM-20 20 900 110 25 348 0.24

MCO-TCM-22 20 900 110 25 345 0.25

MCO-TCM-4* 40 900 110 25 390 0.22

MCO-TCM-27 40 900 110 25 320 0.27

MCO-TNCM-7* 0 900 110 20 370 0.24

MCO-TCM-26 20 900 110 15 383 0.25

MCO-TCM-17 40 900 110 15 390 0.24

* Experiments that were sent for tomography

<5 p,m in diameter. In the higher quench pressure experiments (Pf >50 MPa), that bubble size 

made up a significant portion of the porosity. Error in the porosity measurement was estimated 

by creating a stitch map of MCO-TCM-5. Images of the entire surface of the sample were taken 

with at least 40% overlap between each image, and Adobe Photoshop was used to stitch the 

images together. The resulting image was analyzed three times following the method described 

above, and the standard deviation between the three measurements is the reported error.
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Figure 5 . Reflected light image and corresponding binary segmented image. The scale is the same for both images, 
and the image comes from MCO-TCM-14.

3.6 Vesicle characterization

Vesicle size distributions were determined by calculating the radius of a circle of 

equivalent area from bubble areas determined in the porosity measurements. One representative 

sample from each crystal series and quench pressure was analyzed. The bin size for the 

histograms was determined using geometric series (Proussevitch and Sahagian, 1998; Shea et al., 

2010) by starting with the largest bubble radius size from all the samples (830 p,m; MCO-TCM- 

4) and multiplying by a factor of 0.67. Each resulting bubble size was multiplied by the same 

factor until the final category was 1.4 p,m. The use of this ratio is more statistically accurate and 

resulted in sufficient divisions between bubble sizes such that changes in bubble size trends were 

apparent without resorting to an unnecessary number of divisions (Shea et al., 2010). The 

number of bubble radii in each sample that fit the bin size were counted and plotted as a 

frequency histogram.

Pore throats of permeable samples were measured from back-scattered electron images 

captured on the Environmental Scanning Electron Microscope (ESEM) located in the University 

of Alaska Fairbanks’ Advanced Instrumentation Laboratory. The ESEM was used since it
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allowed these images to be taken without any polishing or coating necessary, and it produced 

images with a higher resolution than tomography (0.2 ^m/pixel). Two permeable crystal-free 

samples from Lindoo et al. (2016; MC-27 and MC-31) were obtained, and the pore throats of 

these samples were also measured. Images were analyzed using NIH ImageJ by selecting the 

perimeter of the pore throat with the polygon selector tool so that the area of the pore throat was 

most accurately measured. Some pore throats were obscured by the shape of the bubbles or by 

glass debris from cutting the sample, so only completely exposed pore throats were measured. 

The area of the pore throat was measured and that area was converted to the radius of a circle 

with an equivalent area in order to normalize the effect from the differing shapes of the pore 

throats.

3.7 Dissolved water content

Samples were prepared for FTIR analysis by polishing both sides by hand using silicon 

carbide grit and 1 micron diamond grit finishing paste until the sample had a thickness of 25-100 

microns and was highly reflective. The water contents were measured using a Thermo Fisher 

Scientific 6700 Fourier Transform Infrared Spectrometer paired with a Continuum microscope 

that has two liquid nitrogen-cooled MCT-A detectors, one standard and one with a small area 

detector that allows for signal optimization for apertures less than 50x50 microns in size. A 

purge collar contained around the microscope stage flows dry air across the sample and was used 

during all analyses in order to minimize atmospheric effects. Samples were placed on an NaCl 

disk for transmission spectra, which were collected over the wavenumber range of 6500-650 cm- 

1 with an aperture of 30x30 microns. The analyses were conducted with 512 scans at a resolution 

of 4 cm-1. Each sample was measured at 4 or 5 different points, and background spectra were
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collected after each point. Dissolved water concentration (C) was calculated from the Beer- 

Lambert law:

MA
C = ----  (5)

p te

where M is molar mass of the species being analyzed, A is the height of the absorbance peak of 

the species, p  is the density of the glass, t is sample thickness, and e is the molar absorptivity of 

the glass dependent on composition. Depending on the analysis, either the H2Ot peak at 3570 cm- 

1 or the overtone peaks, OH- at 4500 cm-1 and H2Om at 5230 cm-1, were measured. For the 3570 

cm-1 peak, a molar absorptivity of 90 L mol-1 cm-1 was used (Hauri et al., 2002). For the 4500 

cm-1 and 5230 cm-1 peaks, molar absorptivities of 1.42 and 1.75 L mol-1 cm-1, respectively, were 

used (Okumura and Nakashima, 2005). Peak height was measured as the average of 4-6 height 

measurements around highest point of the peak, within ±12 cm-1 (King and Larsen, 2013; Lindoo 

et al., 2016). Glass density was calculated using the model of Lange and Carmichael (1990) 

using equilibrium-predicted water contents, the experimental temperature, and the composition 

of the Mono Craters rhyolite starting powder.

Thicknesses of the samples at the measurement points were determined using reflectance 

spectra. Samples were transferred from the NaCl disk to a reflective gold mirror (Tamic et al., 

2001; Nichols and Wysoczanski, 2007). Reflectance spectra were collected over the same 

wavenumber range as the transmission spectra, and background reflectivity was collected off the 

gold mirror after each measurement. The spectra were collected over 512 scans with a resolution 

of 4 cm-1. If the sample is sufficiently thin (<150 microns), the reflectance spectra will produce 

interference fringes which have a wavelength proportional to the thickness of the sample
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(Nichols and Wysoczanski, 2007). Thus the thickness can be calculated with the following 

equation:

Where m is the number of fringes in a given wavenumber interval, n is the refractive index of the 

glass, and (V2-V1) is the wavenumber interval. Only fringes in the 2700-2100 cm-1 wavenumber 

range were considered since the wavelength of the fringes changes outside this interval 

(Wysoczanski and Tani, 2006). The refractive index for rhyolitic glasses is 1.491 (King and 

Larsen, 2013).

4.0 Results

4.1 Permeability and porosity

The porosity measurements follow the expected exponential increase in porosity with 

decreasing quench pressure (Figure 6 ; Table 4). The error on the porosity measurements was 

calculated to be ±0.5 vol. %, and this value was applied to all porosity measurements. The 

porosities increase from 30.1 vol. % (Pf = 75 MPa) to 69.4 vol. % (Pf = 15 MPa) for the 20 vol.

% crystals series and from 16.7 vol. % (Pf = 65 MPa) to 69.3 vol. % (Pf = 15 MPa) for the 40 

vol. % crystals series. Predicted equilibrium porosity based on water solubility can be calculated 

from Gardner et al. (1999):

where pm  is melt density, Z  is molecular weight of the gas species, Vw is the molar volume of 

water at the final pressure, and wo and wf are the weight fractions of water at the original and

2 n ( v 2 — v 1) (6)

=
^ r V w (W0 —WF)

(7)
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Table 4. Summary of results

Sample Vol. % 
Crystals

Porosity 
(vol. %)

log k1 (m2)3’ b log k2 (m) Dissolved 
H2O (wt. %)c

log
nmelt

(Pa s)

log
nbulk

(Pa s)

MCO-NEQ-6 0 13.9 B.D.L. B.D.L. 3.89 (0.3) 4.54 4.54

MCO-TCM-5 20 30.1 B.D.L. B.D.L. n.d. 4.94 5.38

MCO-TCM-1 40 16.7 B.D.L. B.D.L. n.d. 5.09 6.28

MCO-TCM-6 20 40.9 B.D.L. B.D.L. 2.00 (0.7) 5.34 5.78

MCO-TCM-2 40 41.2 B.D.L. B.D.L. 2.30 (0.2) 5.34 6.53

MCO-TCM-14 20 51.9 B.D.L. B.D.L. n.d. 5.79 6.23

MCO-TCM-13 40 51.9 B.D.L. B.D.L. 1.40 (0.2) 5.79 6.98

MCO-TNCM-4 0 62.9 B.D.L. B.D.L. n.d. 5.95 5.95

MCO-TCM-12 20 62.2 -13.87 (0.47) -12.33 (1.23) n.d. 5.95 6.39

MCO-TCM-20 20 54.9 B.D.L. B.D.L. 1.60 (0.1) 5.95 6.39

MCO-TCM-22 20 56.3 -13.42 (0.37) -9.03 (0.66) n.d. 5.95 6.39

MCO-TCM-4 40 57.1 -13.94 (0.06) -11.14 (0.22) n.d. 5.95 7.14

MCO-TCM-27 40 60.5 -14.00 (0.11) -11.48 (0.09) n.d. 5.95 7.14

MCO-TNCM-7 0 69.7 B.D.L. B.D.L. n.d. 6.13 6.13

MCO-TCM-26 20 69.4 -12.81 (0.12) -9.72 (0.23) n.d. 6.36 6.80

MCO-TCM-17 40 69.3 -13.02 (0.33) -10.51 (0.28) n.d. 6.36 7.55

a B.D.L means the measured permeability was below the detection limit of the laboratory permeameter 

b 1c standard deviations reported in parentheses 

c n.d. means the sample was not measured with FTIR, so there is no data

final pressures, respectively. The porosity of the lower quench pressure samples (Pf < 50 MPa)

are all at or very close to equilibrium, within error, but the higher quench pressure samples (Pf >

50 MPa) tend to have a higher porosity than equilibrium would predict, regardless of crystal

content, likely a result of hydration bubbles and experimental method. Since powder was used as

starting material instead of a solid slab, hydration bubbles were present in the experiments,

which contributed to the increased porosity relative to predicted equilibrium porosity in the

higher quench pressure experiments (Pf > 50 MPa; Gardner et al., 1999; Larsen and Gardner,

2000). The hydration bubble population in these experiments was determined to be 13.9 vol. %

from an experiment conducted at the initial starting conditions and quenched without
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decompression. The measured porosity of MCO-NEQ-6 (13.9 vol. %) was subtracted from 

experiments quenched at Pf >50 MPa since these experiments are more dominated by bubble 

nucleation and thus most affected by the excess in porosity produced by hydration bubbles and 

the small decompression at the start of the run. This correction brings the higher quench pressure 

samples very close to or on the equilibrium line (Figure 6).

Measured permeabilities (Equation 4) of the experiments changed as a function of 

decreasing quench pressure and increasing vesicularity in both the 20 and 40 vol. % crystals 

series (Table 4). Crystal-bearing experiments were generally impermeable at Pf >25 MPa. One 

20 vol. % experiment, MCO-TCM-20, was impermeable at Pf =25 MPa, with a porosity of 54.9 

vol. %. All the crystal-free experiments had permeabilities below the detection limit of the 

laboratory permeameter (k1 =10-15 m2) to quench pressures as low as 20 MPa. Once permeability 

was measurable, the experiments showed a minimum log permeability of k 1= -14.0 and k2= -

11.48 (MCO-TCM-27; Pf =25 MPa) and a maximum log permeability of k 1= -12.81 and k2= - 

9.72 (MCO-TCM-26; P f=15 MPa). Both k1 and k2 generally increase with decreasing quench 

pressure and with increasing porosity. The percolation threshold for both the 20 and 40 vol. % 

crystals series appears to lie between 54.9 vol. % porosity and 56.3 vol. % porosity, the 

difference between the impermeable experiment MCO-TCM-20 and permeable experiment 

MCO-TCM-22.
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Figure 6 . Plot of quench pressure versus measured porosity. The arrows indicate the 13.9 vol. % porosity from 
hydration bubbles and bubble nucleation that was subtracted from experiments in which these processes 
significantly impacted the measured porosity. Light grey circles represent the porosity values after the correction has 
been applied.

4.2 Vesicle structure

Bubble size distribution histograms are shown in Figure 7. The experiments which had 

their bubble size distributions determined from reflected light images have an arrow above the 

bar representing the smallest bubble size. This arrow indicates that there are more bubbles 

measured within that bubble size than shown in the frequency diagram. Many of the particles 

that were categorized as the smallest bubble size during the reflected light analysis were just 

single pixels that were missed during image analysis and thus do not represent actual bubbles. 

While these single pixels do not contribute significantly to the porosity since they do not 

contribute significantly to the measured bubble area, they skew the frequency diagram since the 

frequency diagram counts the number of them. Thus, the smallest bubble size bar was cut off in 

order to not misrepresent the actual distribution of bubbles present within the sample. For the 

samples which had porosity measured from the tomography images, the smallest diameter
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bubble that could possibly be measured is 5 pm. This corresponds to a radius of 2.5 pm, which is 

larger than the two smallest bubble size divisions, so those two samples do not show any bubbles 

for that size division.

Bubble Radius ( n m f

Figure 7 . Frequency histograms of bubble sizes. The arrow above the smallest bubble size category indicates that 
there are more bubbles within that category that are not shown on the diagram. The “M” is above the bubble size 
category in which the calculated median bubble size is located.

Calculations of median bubble size and standard deviation excluded all bubbles in the

smallest bubble size category. Ignoring the distributions of the two highest quench pressure 

experiments (MCO-TCM-5 and MCO-TCM-1) where hydration bubbles and bubble nucleation 

skew the plots, all three series show a shift of the median bubble radius peak to the right and the 

broadening of the peak as quench pressure decreases. The 40 vol. % series shows a shift from
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median bubble radius at Pf = 50 MPa of 4.98 pm with a standard deviation of 17.48 pm to 

median bubble radius at Pf = 25 MPa of 21.49 pm with a standard deviation of 73.78 pm. The 20 

vol. % series shows a shift from median bubble radius at Pf = 50 MPa of 4.63 pm with a standard 

deviation of 17.60 pm to median bubble radius at Pf = 25 MPa of 18.82 pm with a standard 

deviation of 54.04 pm. The two crystal-free experiments show a shift from median bubble radius 

at Pf = 25 MPa of 14.53 pm with a standard deviation of 38.47 pm to median bubble radius at Pf 

= 20 MPa of 18.95 pm with a standard deviation of 73.78 pm. At a quench pressure of 25 MPa, 

the 40 vol. % series showed the largest median bubble radius peak, likely a result of more 

extensive bubble coalescence forming larger bubbles.

-12.5
0 0.5 1 1.5 2 2.5

r„„n (pm)
Figure 8 . Plot of Darcian permeability versus minimum pore throat radius. The minimum pore throat radius tends to 
increase with increasing permeability and with increasing crystal content.

The minimum pore throat radius tended to increase with increasing permeability, as 

would be expected (Figure 8). The smallest pore throat was in MC-27 at a radius of 0.97 pm and 

the largest pore throat was in MC-31 at a radius of 123.52 pm (Table 5). The average
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Figure 9 . Selected BSE images from each sample imaged. Corundum does not show a different brightness than 
surrounding glass, but has a far different texture, as seen in the image representing MCO-TCM-4. Smaller bright 
particles are Fe-Ti oxides, and larger bright particles are remnant polishing compound grains. Individual scale bars 
for each image are displayed.

pore throat radius also generally increases with increasing permeability. The minimum pore

throat measurements range from 2.0-3.2 pm in the 20 vol. % crystals series and from 2.5-4.0 pm 

in the 40 vol. % crystals series. The maximum pore throat measurements range from 34.4-41.9 

pm in the 20 vol. % crystals series and from 26.9-58.1 pm in the 40 vol. % crystals series (Table 

5). The 40 vol. % crystals series appears to have larger minimum pore throat measurements, but

the trend in the maximum pore throat measurements is less clear. A set of the BSE images
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captured from each sample is shown in Figure 9. One important thing to note in the BSE images 

is the presence of Fe-Ti oxides but in a proportion less than 1 vol. %.

Table 5. Pore throat measurement summary

Sample Number
Average
Radius

(pm)

Minimum  
Radius (pm)

Maximum  
Radius (pm)

Median
Radius

(pm)

MCO-TCM-12 99 10.48 2 35.19 8.72
MCO-TCM-22 91 10.16 2.26 41.87 7.83
MCO-TCM-4 25 10.16 2.47 26.88 8.14
MCO-TCM-27 54 7.27 1.54 20.36 7.11

MC-27 159 8.63 0.92 106.49 6.07
MC-31 84 16.38 2.07 123.521 10.88

MCO-TCM-26 110 12.02 3.2 34.36 11.42
MCO-TCM-17 43 17.05 3.97 58.07 14.84

4.3 Dissolved water content

Micro-FTIR analyses of dissolved water were collected on five samples - 25 MPa Pf, 30 

MPa Pf, two 50 MPa Pf, and 110 MPa Pf (Table 6). Since both crystal series appeared to follow 

equilibrium degassing and had similar porosities at the same quench pressures, it was assumed 

that the water contents should be similar between the two series as well. Sample thickness 

measurements showed good consistency at each point, with a standard deviation of <2 pm at 

each specific point. MCO-NEQ-6 (Pf = 110 MPa; Table 4) was used to assess whether the 

samples were saturating completely during the 24 hour hold period. Five points were measured 

across the whole of the sample with an average water content of 3.9 ±0.3 wt. %, which is within 

error of the equilibrium solubility value calculated by Moore et al. (1998) of 4.15 wt. %. Only 

one sample (MCO-TCM-13; 40 vol. % crystals; Pf = 30 MPa) showed significant 

undersaturation with a measured water content of 1.4 ±0.2 wt. % compared to the equilibrium 

predicted value of 2.0 wt. % (Figure 10; Table 6). One issue discovered with these measurements
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Figure 10. Dissolved water content versus quench pressure. Equilibrium water content is calculated using the 
equilibrium porosity equation from Gardner et al. (1999) and the water solubility model of Moore et al. (1998).

is that if  the measurement is collected too close to a corundum seed crystal, the resulting water 

content was far lower than other measurements. This is likely a result of the corundum proximity 

changing the index of refraction slightly and thus changing the estimation of the thickness. The 

measured undersaturation for MCO-TCM-13 is likely a result of one or more points having been 

collected too close to a corundum seed crystal.

5.0 Discussion

5.1 Experimental porosities, hydration bubbles, and bubble nucleation

According to the experimental method, bubble nucleation likely occurred prior to the 

main decompression, introducing a population of small bubbles during the hold period before 

decompression. The experiments were pressurized to 90 MPa then allowed to equilibrate in

28



Table 6. Summary of FTIR measurements

Sample Measurement Thickness
(pm)a A3570 A 4500 A 5230

Total 
Water 
(wt. %)

MCO-NEQ-6 1 56.4 (1.0) 0.016 (0.001) 0.026 (0.001) 3.62

2 63.8 (0.8) 0.020 (0.001) 0.035 (0.001) 4.19

3 82.5 (1.2) 0.026 (0.001) 0.043 (0.002) 4.05

4 60.3 (0.2) 0.016 (0.001) 0.030 (0.001) 3.70
Avg 3.89 (0.3)

MCO-TCM-2 1 79.8 (2.1) 0.021 (0.001) 0.021 (0.001) 2.58
2 42.2 (0.3) 1.016 (0.005) 2.13
3 33.3 (0.1) 0.868 (0.003) 2.31

4 31.4 (0.3) 0.716 (0.002) 2.02
Avg 2.26 (0.2)

MCO-TCM-6 1 67.5 (0.2) 0.012 (0.001) 0.018 (0.001) 2.21

2 52.6 (0.4) 0.009 (0.001) 0.009 (0.001) 1.61

3 70.8 (1.7) 0.013 (0.000) 0.008 (0.001) 1.87

4 70.3 (1.1) 0.011 (0.001) 0.007 (0.001) 1.23

5 36.1 (0.5) 0.012 (0.001) 0.011 (0.001) 3.15

Avg 2.02 (0.7)

MCO-TCM-13 1 48.8 (0.3) 0.795 (0.004) 1.43

2 42.9 (0.9) 0.776 (0.003) 1.59

3 45.4 (0.6) 0.682 (0.003) 1.32

4 46.6 (1.4) 0.582 (0.001) 1.10

Avg 1.36 (0.2)

MCO-TCM-20 1 76.6 (0.9) 1.218 (0.015) 1.39

2 63.6 (1.3) 1.243 (0.010) 1.71

3 56.0 (0.8) 0.981 (0.006) 1.53

4 76.2 (0.8) 1.448 (0.016) 1.67

Avg 1.58 (0.1)

a Numbers in parentheses are the 1c standard deviations

temperature with the furnace. Heating the vessel caused gas expansion, so by the end of the 

temperature equilibration the pressure typically rose to around 120 MPa. The extra 10 MPa was 

bled off, and the experiment held for 24 hours from that point. However, as seen in the BSE and 

tomography images (Figures 9 and 11, respectively), some Fe-Ti oxides are present in the
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experiments. It only takes a decompression of 5 MPa to nucleate bubbles on these oxides, so 

likely some nucleation occurred during that small decompression (Hurwitz and Navon, 1994).

MCO-TCM-4 MCO-TCM-12 MCO-TNCNT7 0 vol. % crystals

Figure 11. Selected tomography slices. Block A is an area where bubbles are larger due to coalescence and Block B 
is an area where bubbles are smaller due to less coalescence. Corundum crystals are the lighter grey, glass is the 
darker grey, and void spaces are black. The brighter spots are likely Fe-Ti oxides. The scale is the same for all three 
images.

As described previously, the powder starting material introduced hydration bubbles 

before the experiments were decompressed. Thus, growth of the hydration bubbles likely 

occurred during the initial decompression to bring the experiments to their desired hold pressure 

of 110 MPa. Since the rhyolites are so viscous, the 24-hour hold period is unlikely to be long 

enough for the bubbles to completely collapse and resorb. The initial hydration and nucleated 

bubbles can be seen in the bubble size distribution plots (Figure 7). The highest quench pressure 

samples in each crystal series show a distribution that is shifted to the right relative to the next 

lowest quench pressure sample. At higher quench pressures, the peak of the distribution should 

be shifted to the left as bubble nucleation is the dominant process and produces smaller bubbles. 

However, this pattern is not seen because hydration bubbles tend to be much larger than 

nucleated bubbles during the early stages of the decompression process, thus shifting the peak to 

the right. Once the growth rate of the main decompression-induced bubbles has caught up to the 

hydration bubbles, the bubble size distributions show the expected patterns.
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Hydration bubbles were unlikely to influence the permeability results reported here. 

Lindoo et al. (2016) ran experiments with both powdered and solid slab starting materials and 

noted no difference between the two in terms of permeability results. Solid slabs were not an 

option as starting materials for this study since the phenocryst content of the experiments needed

However, since this study was concerned with processes occurring after the hydration bubbles 

were no longer an influence, they were an acceptable factor. The affected porosity measurements 

(e.g., experiments with Pf >50 MPa) could be corrected, as was demonstrated (Figure 6).

Both melt and bulk viscosities were approximated for each experiment. Melt viscosity 

(no) was calculated from the model of Giordano et al. (2008), and bulk viscosity (n) was 

calculated using the Einstein-Roscoe equation:

where <P is the fraction of particles, <Pm is the maximum close packing threshold, and n is a 

power-law constant. For these calculations, <P was the vol. % crystals that were present in the 

specific experiment, and the common values of <Pm = 0.6 and n = 2 were used as constants. The 

approximated viscosity values were used in later model calculations.

5.2 Experiments as a representation of nature

An important consideration with experiments is whether they accurately model what 

happens in nature. Corundum has been determined to be a good analogue to typical phenocrysts 

found in rhyolites (e.g., quartz and feldspars). Typical phenocrysts found in rhyolite magmas, 

like plagioclase, are poor nucleation sites with acute wetting angles (Hurwitz and Navon, 1994;

to be strictly controlled, and that could only be achieved by seeding the experiments manually.

(8)
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Gardner et al., 2000), so the corundum should also be a poor nucleation site in rhyolites to ensure 

the results are not skewed by an artificial nucleated bubble population. Wetting angles measured 

from tomography images of two samples yield values of 47°±10 (MCO-TCM-2, n=21) and 

45°±8 (MCO-TCM-6, n=18). An example of one measured wetting angle is shown in Figure 12. 

The acute values indicate that the melt wets the crystals strongly and thus nucleation is not 

favored. These values also agree well with the 46°±14 angles measured on corundum from 

Okumura et al. (2012). Thus, using corundum as the phenocryst did not skew the results by 

promoting nucleation.

Figure 12. Example of measured bubble wetting angle on a corundum crystal. Image comes from a tomography 
slice, so the greyscale scheme is the same as described in Figure 11.
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Another indication that the experiments can be applied to natural systems is the pore 

throat radii measurements. The maximum pore throat radii of the permeable experiments agree 

well with measurements from natural samples from Yokoyama and Takeuchi (2009; Figure 13). 

However, their porosimiter analyses could only measure the largest pore throat although 

permeability is dependent upon the smallest pore throat.

The measured k2/k1 ratios (Equation 4) of the experimental samples also match well with 

the measured k2/ k  ratios in natural samples (Figure 14). This ratio has been used to indicate 

whether experiments can be scaled up to apply to nature despite their smaller size (e.g., Rust and 

Cashman, 2004; Lindoo et al., 2016). Inertial permeability has been suggested to be more

-15

-14 

^-13
<N 

£

-12
00 o

-11

-10

-9 
l.<

Figure 13. Plot of Darcian permeability versus maximum pore throat radius. Solid black line indicates the division 
between microlite-dominated and phenocryst-dominated fields. Solid grey line indicates the division between 
phenocryst contents within the phenocryst-dominated field. ND = no crystal content data, PR = phenocryst-rich, MR 
= microlite-rich.
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sensitive to changes in pore structure due to the typically larger variation in order of magnitude 

(Rust and Cashman, 2004). As the tortuosity, or curviness, of the hydraulic pathways increase, 

inertial permeability will decrease (Rust and Cashman, 2004). In order to scale this effect with 

the overall permeability of the sample, the k2/k1 ratio is used and in natural samples has a power- 

law relationship (Rust and Cashman, 2004; Lindoo et al., 2016). Since this ratio follows the 

natural trend in the experiments, the hydraulic pathways developed in the experimental samples 

should be similar to what would be found in nature.

One aspect that the experiments cannot capture is large-scale features, such as bubbles 

larger than 2-3 mm in diameter. Coarsely vesicular material can be observed in natural effusive 

rhyolitic features, such as Obsidian Dome in the Inyo Domes complex, CA. This material has

Figure 14. Plot of Darcian versus inertial permeability. Light grey markers indicate natural samples, solid black 
markers indicate other experimental samples, and open symbols indicate experiments from this study.
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bubbles as large as several centimeters in diameter, which far surpasses the scope of what can be 

represented in the small experimental samples. However, lower quench pressure samples (<25 

MPa) with 40 vol. % phenocrysts have shown the start of larger bubbles (~3 mm diameter), so 

these larger-scale features seem to start developing in high-crystallinity systems at low pressures. 

Since these features seem to develop after permeability, they likely do not play a significant role 

in gas escape, which is what this study is concerned with. More likely, the larger bubbles seen in 

Obsidian Dome are related to the diapir rise mechanism proposed by Fink (1983). Therefore, the 

larger bubbles seen in Obsidian Dome are less significant for hydraulic pathways. The k1/k2 ratio 

trend shows that the experiments follow a similar hydraulic pathway trend as natural samples, so 

the lack of larger-scale features does not appear to influence permeability development.

5.3 Permeability and porosity

The percolation threshold of these crystal-bearing samples appears to be a sharp threshold 

at ~55 vol. % vesicularity (Figure 15), which is a decrease of 15 vol. % from the crystal-free 

percolation threshold of 70 vol. % vesicularity. An experiment without measurable permeability 

had a porosity of 54.9 vol.% whereas an experiment with measurable permeability had a porosity 

of 56.3 vol.%. There does not appear to be a significant difference in percolation threshold 

between the 20 and 40 vol. % crystal series. The crystal-free experiments did not show 

measurable permeability, with a maximum porosity of 69.7 vol. % at a quench pressure of 20 

MPa. This is consistent with the results from Lindoo et al. (2016).

The decrease in percolation threshold seen in the crystal-bearing samples is likely a result 

of the crystals inducing coalescence. As seen in the analogue experiments conducted by 

Oppenheimer et al. (2015), suspended particles behave rigidly and force the vesicles to grow in 

pathways between the particles. Bubbles nucleate and begin growing in free space, moving the
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Figure 15. Percolation threshold of natural and experimental samples. Points plotted within the shaded area do not 
have permeability measurable by the laboratory permeameter (lower limit of detection: log ki = -15). The error bars 
for the porosity measurement apply to all other porosity measurements from this study plotted in other figures.

melt out of the way. However, once the bubbles grow large enough to impinge on crystals, the

bubbles do not have the force to move both the melt and the crystals. The bubbles will then be

forced to expand into regions of the melt without crystals. If other bubbles are nearby, they will

also be forced to grow into these crystal-free spaces. This will induce coalescence earlier on

since the bubbles will impinge on one another much sooner than if they were allowed to grow

freely in a radial direction (Figure 16). Evidence for this process can be seen qualitatively in the

tomography images in Figure 11. The few larger bubbles that have almost certainly undergone

coalescence tend to be concentrated between corundum crystals (Figure 11a), whereas crystal-

free areas of the melt tend to have a larger proportion of smaller bubbles (Figure 11b). The
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threshold at which the transition in bubble growth occurs appears to be ~20 vol. % crystals. At 

20 vol. % crystals, the system is likely approaching a random loose packing arrangement where 

the crystals start to form a touching network (Oppenheimer et al., 2015). This touching network 

greatly increases the yield strength of the magma and makes it difficult for the bubbles to push 

the magma and crystals out of the way as they grow. The next rheological threshold would be at 

random close packing, which is likely above 40 vol. % particles, the maximum used in this 

study, since both the 20 and 40 vol. % series appear to behave the same.

The aspect ratios of the corundum seeds used in this study were quite low, with an 

average of 1.8 ±0.6. Since little work has been done to constrain the role of crystals in degassing, 

only the simplest case of low aspect ratio phenocrysts was considered in this study. However,

Figure 16. Schematic diagram showing bubble growth relative to phenocryst networks. The black squares with a 
“C” represent crystals. The length of the arrows on the right indicate magnitude of possible bubble growth in 
specific directions. Not to scale.

analogue experiments suggest that crystal shape influences the thresholds of random loose 

packing and random close packing (Mueller et al., 2011). As aspect ratio increases, the threshold 

for random loose packing will decrease, and the effects on porosity observed in these
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experiments could occur at lower than the 20 vol. % crystals predicted at the low aspect ratios in 

this study (Mueller et al., 2011). For example, the presence of high aspect microlites could 

produce this effect.

The permeability results from this study differ from the results of Okumura et al. (2012). 

They reported no measured permeability even with phenocryst percentages up to 50 vol. % and 

measured vesicularities up to 61 vol. %. In contrast, this study measured permeability in both 20 

and 40 vol. % phenocryst experiments with vesicularities as low as 56.3 and 57.1 vol. %, 

respectively. This difference can likely be explained by differences in experimental technique. 

Okumura et al. (2012) decompressed their samples by instantaneously dropping the pressure to 

the desired Pf then holding the experiment at that pressure for either 1 or 10 hours in order to 

allow the melt to come to equilibrium. In contrast, the experiments in this study were 

decompressed continuously at a constant rate then quenched within 10 seconds of reaching the 

desired Pf. The melt relaxation timescale is an important consideration with a longer hold time at 

Pf. This value describes how long it takes a deformed bubble to return to its original spherical 

shape and can be described with the equation from Toramaru (1995):

zr ~  ^  (9)

where n is melt viscosity, Rdec is bubble equivalent radius, and o is surface tension. Using values 

of n = 2x106 Pa s from the melt viscosity at 25 MPa and o = 0.06 N/m calculated for a hydrated 

rhyolite from Larsen and Gardner (2000) and a bubble radius of 50 pm as a representative bubble 

size from permeable sample MCO-TCM-12, a relaxation time scale of -27  minutes is obtained. 

Thus, even the shorter 1 hour hold time is more than twice the time needed for the bubbles to 

return to their original spherical shape. This could result in collapse of the pore apertures, which
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then results in a lack of measurable permeability while still preserving the porosity. Lindoo et al. 

(2016) documented this phenomenon in low viscosity basaltic andesite experiments, in which 

they reported no measurable permeability in experiments with porosities up to 63 vol. %. 

However, their calculated melt relaxation time scale was 0.3 seconds, much faster than the 

possible quench time of 2-3 seconds. Thus, they concluded that the basaltic andesites must have 

become permeable, degassed, and then permeable pathways collapsed once the gas was no 

longer propping them open. Since the experiments in this study were quenched faster than the 

relaxation timescale, any permeability that developed during decompression was preserved.

5.4 Vesicle structure

The maximum pore throat radius versus permeability trend in these samples matches well 

with natural sample measurements from Yokoyama and Takeuchi (2009) and samples from the 

2006 eruption of Augustine Volcano, Alaska (J. Larsen, unpublished data) despite differing 

methods of measurement (Figure 13). The natural samples were measured using porosimetry, 

which involved applying pressure to a water-saturated sample and noting at what pressure the 

first bubble of air was expelled, whereas the experiments were measured using images from one 

surface. It is possible the measurements reported for the experiments do not reflect the actual 

maximum or actual minimum pore throat radii since it is possible the one surface measured did 

not intersect that particular pore throat. However, since the measurements agree well both with 

natural samples and expected trends, it is unlikely that there is a large error associated with the 

differing method.

The experiments tend to have larger pore throat radii at a given k 1 value than the natural 

samples, particularly the crystal-free experiments. For example, at comparable log k 1 values, 

MC-27 (log k1 = -13.7) has a maximum pore throat radius of 106.5 pm, MCO-TCM-22 (log k1 =
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-13.4) has a maximum pore throat radius of 41.9 pm, and a natural sample (log k1 = -13.4) has a 

maximum pore throat radius of 12 pm (Table 5). Natural samples are not quenched as rapidly as 

the experiments, so there is a window of time after fragmentation when expansion, vesicle 

collapse, clast deformation on impact, and melt relaxation processes can influence vesicle 

structure. Depending on the initial size of the ejected pyroclast, melt relaxation and deformation 

may be more prevalent. Larger pyroclasts could have insulated centers that remain above the 

glass transition temperature for longer periods of time, allowing for more influence on vesicle 

structure from melt relaxation and deformation, thus resulting in smaller pore throats than were 

originally present at the time of fragmentation.

Another apparent control on pore throat radius is crystal content and crystal type (e.g., 

phenocrysts versus microlites; Figure 13). The Augustine samples have a significant amount of 

microlites, >50 vol. % except for one sample that only has 21 vol. %, and these samples along 

with all the microlite-rich samples from Yokoyama and Takeuchi (2009), except for one, have 

systematically smaller pore throats than the samples dominated by phenocrysts. Additionally, 

samples with >20 vol. % phenocrysts tend to have larger pore throats than samples with <20 vol. 

% phenocrysts. The presence of microlites seems to restrict the size of pore throats, whereas the 

presence of at least 20 vol. % phenocrysts seems to promote the formation of larger pore throats. 

Thus, it would be expected that a phenocryst-rich magma would be more permeable than a 

microlite-rich magma. This trend in pore throat size could be related to crystal packing and 

crystals restricting bubble growth. The pore throats in microlite-rich samples are likely smaller 

because the small microlites can pack closer together and thus restrict the size of the bubbles by 

decreasing the melt available for the bubbles to grow in. Analogue experiments conducted by 

Cimarelli et al. (2011) show that, in polydisperse crystal size distributions, increasing the fraction
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of small prolate particles (e.g., microlites) increases the viscosity of a magma, likely as a result 

of the packing of the microlite-like particles. As discussed above, the bubbles cannot push 

crystals and melt out of the way while they are growing, particularly when the crystals are tightly 

packed together, thus the bubbles can only grow in areas of pure melt. Tightly packed microlites 

will restrict the available melt area, and bubbles will coalesce when they are much smaller, thus 

resulting in smaller pore throats. The difference between the two different phenocryst contents is 

similarly related to the random loose packing threshold. Having at least 20 vol. % phenocrysts 

was demonstrated earlier to induce more wide-spread coalescence, which likely also promotes 

larger pore throats relative to phenocryst-poor samples as well. Since none of the natural samples 

available are reported to be crystal-free, it is unclear whether the much larger pore throats seen in 

the two crystal-free experiments is also reflected in natural samples. However, the larger pore 

throats could be related to the fact that the bubbles in these experiments had to grow much larger 

before they coalesced, which would result in larger pore throats.

Disregarding the highest quench pressure distributions (discussed above), the 

distributions show the expected patterns based on shifts from bubble nucleation to bubble growth 

and coalescence. At the highest quench pressures, the 40 vol. % crystals series shows a 

distribution shifted more to the right than the 20 vol. % crystals series as well as bubbles in 

larger size divisions. Thus, the crystals appear to influence vesicle structure by increasing bubble 

size, likely by inducing coalescence. As seen in Figure 7, there is an obvious increase in bubble 

size with increasing crystal content at comparable quench pressures.

5.5 Implications for volcanic eruption style

Based on Figure 6 and the lack of supersaturation in FTIR measurements (Figure 10), the 

experiments degassed in equilibrium even at the fast decompression rate of 0.25 MPa/s.
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Assuming a lithostatic pressure gradient of 23 MPa/km, this corresponds to an ascent rate of 9 

m/s. This is an incredibly fast ascent rate to maintain equilibrium degassing, particularly for a 

rhyolite melt, and is contrary to results from Gardner et al. (1999). However, that study 

considered crystal-free rhyolites, so the presence of phenocrysts likely aided in maintaining 

equilibrium degassing even at the fast ascent rate. Thus, even at slower ascent rates, other 

crystal-rich magmas should also maintain equilibrium degassing, and the results from this study 

can be applied to these ascent rates.

Since the percolation threshold for magmas containing at least 20 vol. % phenocrysts 

shows a decrease by 15 vol. % porosity, the question remains whether this decrease in 

percolation threshold significantly affects magma degassing and transitions in eruption style in 

natural systems. The summary of this can be seen in Figure 17. The amount of water in wt. % 

that should still be within the system (Mt) after a period of water diffusing out is calculated from 

Zhang (1999):

16 D r-
Mt = M 0 - M 0 \ ^ j j J t  (10)

where Mo is the initial water wt. %, D  is water diffusivity in cm2/s, L  is length in cm, and t is 

time in seconds. Water diffusivity is calculated from Nowak and Behrens (1997):

(3378 -  483C +  46.9C2 +  47.5P) 
logD = ( -4 .8 1  -  0.045C +  0.027C2) -  - --------------------- - --------------------------   (11)

where C is water concentration in wt. %, P  is pressure in kbars, and T is temperature in K. The 

calculated water diffusivity (8.3x108 cm2/s) used the pressure at which the crystal-bearing 

samples become permeable (25 MPa) and the Mo and C is the equilibrium water solubility at 25
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Figure 17. Conduit model of outgassing. The graphs represent the depths at which the crystal-bearing magma (left 
side of conduit) is permeable but the crystal-free magma (right side of conduit) is not. A) represents the case when 
only vertical outgassing is considered, and b) represents the case when only horizontal outgassing is considered. The 
conduit schematic is not to scale.

MPa (1.76 wt. %) based on the solubility model of Moore et al. (1998) for the Mono Craters

rhyolite. Only two methods of gas escape were considered -  all gas escape is horizontal through
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permeable conduit walls or all gas escape is vertical up the conduit through the permeable 

pathway. However, in real eruptions, a combination of gas escape directions is possible and the 

direction of gas escape can change over the course of an eruption, as discussed in the 

Background section. Another important assumption associated with this model is the rate of gas 

escape. This model assumes that all volatiles instantaneously escape as soon as they enter the 

permeable pathway. In contrast, there is likely a delay period between the time when the 

volatiles enter the permeable pathway and when the volatiles wholesale outgas from the magma. 

However, these complications present a modeling problem that is beyond the scope of this study, 

so the calculations presented are a first-order approximation of what is occurring in the conduit. 

Additionally, these calculations only model what is happening in a crystal-rich magma in the 

depth range where a crystal-rich magma would be permeable and a crystal-poor magma would 

not be permeable.

As seen in Figure 17, explosive ascent rate conditions (9 m/s and 1 m/s) do not allow for 

efficient gas escape, no matter which direction of gas loss is considered. At the most, these 

conditions show a loss of ~5% of the remaining water, which will not significantly change 

eruption style. However, at effusive ascent rates (0.5 m/s, 0.05 m/s, and 0.01 m/s), up to 50% of 

the remaining water can be lost, as long as the conduit walls are permeable. Thus, if  a slowly 

ascending magma is crystal-rich, it could lose a significant portion of its water deep within the 

conduit. If it loses a large portion of its water deep within the conduit, that would decrease the 

amount of overpressure produced and will thus decrease the likelihood of fragmentation. 

However, if  the conduit wall rocks are impermeable and all gas loss must be vertical, then only 

~2-13% of the remaining water can be lost. These results imply that magma permeability, ascent 

rate, and permeability of the conduit wall all play an important role in determining gas escape.
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The results of these experiments also have implications beyond rhyolitic systems. As 

dacitic and andesitic magmas crystallize, the matrix melt becomes increasingly silicic, and 

crystal-rich andesites have been shown to have rhyolitic matrix melt compositions (Martel and 

Iacono-Marziano, 2015). These conditions match the experiments in this study, with large crystal 

contents and rhyolite matrix melt, so the results from the experiments should be applicable to 

these systems as well. One of the more common explosive eruption styles seen in andesites is 

Vulcanian (e.g., Wright et al., 2012). These eruptions are characterized by gas-rich magma 

becoming trapped in the conduit below an impermeable lava plug and building pressure until the 

lava plug fails explosively. The typical yield strength of these lava plugs is 10-20 MPa (Wright 

et al., 2007).

In order to determine if the decrease in percolation threshold would relieve enough 

pressure in this situation, the amount of pressure bled off in the outgassing depth was calculated, 

only considering the pressure added to the bubbles during the outgassing period. The pressure 

within the bubbles can be estimated using the ideal gas law:

PV = nRT  (12)

where P  is pressure, V is volume, n is number of moles of gas, R  is the ideal gas constant, and T  

is temperature. Since the experiments showed equilibrium porosity, the volume occupied by gas 

was calculated from the equilibrium porosity predicted at each depth. The number of moles of 

gas in the pores was calculated from the weight percent water that should have diffused into the 

bubbles (see above). Since the experiments were decompressed isothermally, this calculation 

also assumed an isothermal decompression at 900°C. The overpressure in the conduit was 

calculated by subtracting the lithostatic pressure from the calculated gas pressure (e.g., Diller et 

al., 2006).
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Figure 18. Gas pressure calculations relative to outgassing. Solid line represents 10 MPa threshold necessary for 
fragmenting an andesite lava plug. Times above the lines represent the time at which a magma would reach the 10 
MPa threshold based on the various ascent rates. A) represents the case in which only vertical outgassing is 
considered, and b) represents the case in which only horizontal outgassing is considered.

In all cases considered, the timescale needed to dissipate at least 10 MPa is similar 

regardless of ascent rate, excluding cases where the conditions did not produce 10 MPa in gas 

pressure in the depth range considered (Figure 18). For example, in the vertical gas escape case, 

only the effusive ascent rates reach 10 MPa, but all three ascent rates reach this pressure 

threshold between 567-610 seconds. In the horizontal gas escape case, all five ascent rates reach 

the 10 MPa threshold between 35-38 seconds. Thus, ascent rate does not seem to affect the 

timescale of gas pressure escape but it does affect the depth at which it occurs. These results also 

confirm that horizontal gas escape is critical in dissipating gas pressure since the rate of gas 

escape is around 20x faster than in the vertical gas escape case.

These gas escape calculations can be placed in the context of Vulcanian eruption 

dynamics by comparison with a model of lava plug formation by Diller et al. (2006). This model 

considers lava plug formation as a function of gas escape direction, magma permeability
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development, and ascent rate and was calibrated with data from the 1997 series of Vulcanian 

eruptions at Soufriere Hills volcano, Montserrat. A lava plug was only formed if a magma was 

permeable and all the gas could escape; the gas escape resulted in collapse of vesicles, thereby 

forming a dense lava plug. Their results produced three possible cases: 1) In the case of slower 

ascent rate and pure vertical gas escape, no lava plug was ever formed 2) In the case of slower 

ascent rate and allowing horizontal gas escape through permeable conduit walls, a lava plug 

formed, with thickness depending on depth of permeability development 3) In the case of rapid 

ascent rate and allowing horizontal gas escape, a lava plug is formed, though much thinner than 

any plug produced in Case 2. Case 2 was determined to be most applicable to the eruption of 

Soufriere Hills, but all three cases can be examined based on the calculations from this study. 

Important to note is the continued confirmation that horizontal gas escape is critical for 

producing effusive lava flows.

Case 1 is most relevant to the scenarios in which only vertical gas escape is considered. 

These explosive ascent rate scenarios in particular have very little gas loss in the 1.1-0.7 km 

depth range, which means it would be unlikely for the magma to completely degas and then 

collapse to form a lava plug in the remaining 700 m before the surface. In this case, if there was 

already a plug in place, the overpressure from the trapped gas would likely fragment the plug and 

produce a Vulcanian explosion. Case 2 is most relevant to all the ascent rates, except 9 m/s, 

where horizontal gas escape is considered. These scenarios have significant pressure dissipation 

relatively deep within the conduit (>1 km depth), so the likelihood that the magma will degas 

enough to produce collapse of vesicles and thus a lava plug is much higher. Case 3 is most 

relevant to the 9 m/s ascent rate where horizontal gas escape is considered. The magma still 

manages to lose a significant amount of pressure, but it occurs much shallower in the conduit

47



(~750 m) than the scenarios in Case 2. With the shallower degassing, a thinner lava plug should 

be formed based on the Diller et al. (2006) results.

Typical Vulcanian sequences, such as at Soufriere Hills, have explosions that last for a 

few minutes and then repose periods that last for hours (Diller et al., 2006). While the timescales 

of gas pressure dissipation calculated here cannot completely explain these times, they fit with 

observations. As long as the conduit wall rocks remain permeable, the gas should be able to 

escape fairly rapidly relative at all ascent rates considered here. Thus, a crystal-rich magma 

should continue to extrude effusively as a dome, as seen during repose periods. However, once 

the conduit walls become impermeable, such as through precipitation of quartz from all the water 

vapor escaping through the conduit walls (Edmonds et al., 2003), pressure dissipation is far less 

efficient in the vertical direction, particularly if an impermeable lava plug has built up at the 

mouth of the conduit. The pressure from the trapped gas will rapidly exceed the yield strength of 

an andesite plug, explosively blowing the plug out. During the explosive phase, the conduit walls 

will likely become permeable again, either from wall fracture or the precipitated quartz getting 

scraped out, and the ascending magma will again be able to lose gas pressure efficiently.

6.0 Conclusions

This study found that the presence of phenocrysts at a population of at least 20 vol. % 

results in a reduction of the percolation threshold from 70-80 vol. % porosity in a crystal-free 

rhyolite to 55 vol. % porosity. These results are consistent with experiments from Lindoo et al. 

(2015) and analogue experiments from Oppenheimer et al. (2015). The differing results of 

Okumura et al. (2012) can be explained by differences in experimental technique. The likely 

mechanism for this decrease in percolation threshold is phenocrysts inducing more widespread 

coalescence by forcing bubbles to grow in specific pathways, as predicted by the analogue
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experiments of Oppenheimer et al. (2015). Phenocryst contents of >20 vol. % are rheologically 

significant for producing this effect because it takes around 20 vol. % phenocrysts for them to 

form a touching network, which makes it difficult for growing bubbles to push both the melt and 

crystals out of the way.

These results have implications for transitioning explosive-effusive eruptions, 

particularly in the context of Vulcanian eruptions. A crystal-rich magma, commonly seen in 

hydrous intermediate compositions, will become permeable and start to lose gas deeper within 

the conduit and earlier in the degassing process than a crystal-free magma. Calculations of the 

magnitude of gas loss show that there is a strong dependence on whether gas is capable of 

escaping through the conduit walls. If horizontal gas escape is not possible, the timescale for gas 

escape through the vertical permeable pathway is almost 20x slower. The transition between 

effusive and explosive phases of Vulcanian eruptions can be explained by changes in 

permeability of the conduit wall rocks. As long as the conduit walls are permeable, a crystal-rich 

magma should be able to lose enough gas from the decreased percolation threshold to form an 

effusive lava extrusion, the thickness of which is dependent on ascent rate. Once conditions 

change and the conduit walls are no longer permeable, gas escape is far less efficient and 

overpressures will quickly reach a magnitude that is capable of blowing out the lava plug formed 

during the effusive phase. Thus, the presence of phenocrysts within a highly silicic magma, 

along with ascent rate and permeability of conduit wall rocks, have an important impact on the 

degassing process and help control eruption style.
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