
By

Andres Dajles

STATISTICAL ANALYSIS OF SPECIES TREE INFERENCE

RECOMMENDED:

Di_Elizabeth Allman

John Rhodes
Advisory Committee Chair

John Rhodes
lair, Department of Mathematics and Statistics

STATISTICAL ANALYSIS OF SPECIES TREE INFERENCE

A

PROJECT

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

M ASTER OF SCIENCE

By

Andres Dajles, B.A.

Fairbanks, Alaska

May 2016

Abstract

It is known that the STAR and USTAR algorithms are statistically consistent techniques
used to infer species tree topologies from a large set of gene trees. However, if the set of
gene trees is small, the accuracy of STAR and USTAR in determining species tree topologies
is unknown. Furthermore, it is unknown how introducing roots on the gene trees affects
the performance of STAR and USTAR. Therefore, we show that when given a set of gene
trees of sizes 1, 3, 6 or 10, the STAR and USTAR algorithms with Neighbor Joining perform
relatively well for two different cases: one where the gene trees are rooted at the outgroup
and the STAR inferred species tree is also rooted at the outgroup, and the other where the
gene trees are not rooted at the outgroup, but the USTAR inferred species tree is rooted at
the outgroup.

v

Table of Contents

Page

Title P a g e .. iii

A b s t r a c t .. v

Table of C o n ten ts .. vii

List of F ig u res... ix

Chapter 1: Introduction... 1

Chapter 2: The Coalescent M o d e l .. 3
2.1 The Wright-Fisher Model .. 3
2.2 The Coalescent M o d e l .. 5
2.3 Multispecies Coalescent M o d e l... 7

Chapter 3: Inferring Species Trees From Gene Trees Using ST A R and U S-
T A R .. 11

3.1 The STAR Method ... 11
3.2 U S T A R ... 13
3.3 Unweighted Paired Group Method with Arithmetic Means (UPGMA) . . . 14
3.4 Neighbor J o in in g .. 17

Chapter 4: Metrics On Tree S p a c e .. 19

4.1 Robinson-Foulds Split D is ta n c e ... 19
4.2 Robinson-Foulds Clade D istance... 20
4.3 Clade and Split Distances When an Outgroup is P r e s e n t 22

Chapter 5: Methods of Simulation Study ... 27

5.1 Types of Gene Trees Simulated And Species Tree E stim a tion s 27
5.2 Choosing T o p o lo g ie s .. 28
5.3 The True Species Tree Branch L e n g th s .. 30

vii

5.4 Plot Structure ... 31
5.5 Sample Size and Repetitions ... 32

Chapter 6: Analysis of S im u la tio n s ... 37

6.1 Simulations and Observations.. 37
6.2 Future Work ... 43

A p p en d ix .. 44

R eferen ces...83

viii

List of Figures

Page

2.1 A sequence of generations Gi for i € {1, 2, . . . , n } where each generation has
10 individuals, namely where j € { 1 , . . . , 10} and € Gi 4

2.2 A 3-taxon species tree ((a,b),c) showing three sampled gene lineages A,B, and C 7
2.3 Species tree with a near polytomy at the root and a sampled gene tree (red

tree) having a different topology than that of the species tree............................ 9

3.1 Two gene trees on 6 taxa with the STAR node numbering. The root is num
bered with 6, and its descendants with numbers decreasing by 1....................... 12

3.2 A 6-taxon unrooted tree with all edges of length 1.. 13
3.3 Tree with 4 taxa rooted at taxon “D” . This tree is the model tree for a simple

UPGMA example... 14
3.4 First step of UPGMA is to group the taxa corresponding to the smallest entry

in the distance matrix... 15
3.5 Tree where taxa A,B,C have been collapsed and their distance to their most

common recent ancestor is 5 ... 16

3.6 Final tree produced by UPGMA ... 17

3.7 4-taxon tree for which UPGMA fails to recover the correct topology................. 17

4.1 Two 6-taxon unrooted trees with RFsplit distance of 4... 20

4.2 Two 6-taxon rooted trees with RFclade distance of 4 ... 21
4.3 Unrooted topological tree relating four species of frogs, f i , f 2, f 3 and f 4. . . . 22
4.4 Location of a root using an outgroup.. 23

4.5 Resulting tree after rooting at the outgroup.. 23
4.6 Trees where the clade distance is 2 and the split distance is 0............................. 23
4.7 Trees Rooted at “O” ... 24

5.1 Caterpillar.. 29

5.2 Balanced ... 29
5.3 Mixed .. 30

ix

5.4 Sample plot showing the average RFclade distance and average RFsplit dis
tance for rooted and unrooted methods respectively... 31

5.5 Species tree inference error plot showing increasing accuracy of species tree
estimation as the sample size (number of gene trees simulated) changes by
5, 50, 500, and 5000 and the number of repetitions is chosen to be 1. The
plots are organized into 4 rows and 2 columns; the four rows correspond to
the sample sizes, the first row being the sample size of 5 and the fourth being
the sample size of 5000. The left and right columns correspond to the rooted
and unrooted versions respectively. .. 34

5.6 Species tree inference error plot showing the effect of increasing repetitions
on species tree estimation as the number of repetitions changes by 2, 50, 70
and 1000. All of the plots are constructed with a sample size of 10 and a
caterpillar species tree. The plots are organized into 4 rows and 2 columns;
the four rows correspond to the sample sizes, the first row being the sample
size of 2 and the fourth being the sample size of 1000. The left and right
columns correspond to the rooted and unrooted versions respectively. 35

6.1 Species tree inference error plots for a caterpillar species tree. Plots show
results for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees . The
plots are organized into 4 rows and 2 columns; the four rows correspond to
the sample sizes, the first row being the sample size of 1 and the fourth being
the sample size of 10. The left and right columns correspond to the rooted
and unrooted versions respectively. .. 38

6.2 Species tree inference error plots for a balanced species tree. Plots show results
for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees. The plots are
organized into 4 rows and 2 columns; the four rows correspond to the sample
sizes, the first row being the sample size of 1 and the fourth being the sample
size of 10. The left and right columns correspond to the rooted and unrooted
versions respectively. ... 39

x

6.3 Species tree inference error plots for a mixed species tree. Plots show results
for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees. The plots are
organized into 4 rows and 2 columns; the four rows correspond to the sample
sizes, the first row being the sample size of 1 and the fourth being the sample
size of 10. The left and right columns correspond to the rooted and unrooted
versions respectively. ... 40

6.4 Species tree inference error plots for methods A, B and C on balanced, cater
pillar and mixed species trees. The plots are organized into 3 rows and 2
columns; each row correspond to a method, the first being method A and
the last being method B. The left and right columns are rooted and unrooted
versions respectively. Each plot was constructed with 50 repetitions and a
sample size of 10 gene trees... 42

xi

Chapter 1

Introduction

A common goal in genomics research is to find the evolutionary relationship between dif
ferent species. Evidence for this relationship arises from the way genes mutate as they are
transmitted from one generation to the next. Given the sequences of a particular gene from
several species, a phylogenetic gene tree can be inferred using the classical computational
methods for constructing phylogenies. However, it is known that the topology of individual
gene trees does not always match the topology of the species tree for understood biological
reasons. In addition, from a mathematical point of view, we understand gene trees as lineages
within a population that form according to the coalescent model, which also explains the
topological mis-match phenomenon. Now, if the branch lengths of the species tree are long
enough, then the overwhelming majority of gene trees coming from the coalescent model will
have the same topology as the species tree, which means that the species tree estimation will
simply result in the same topology as most of the gene trees. However, if the branch lengths
are short, then many gene trees will not match the species tree topology, and consequently
the species tree topology estimation becomes more difficult.

In light o f this issue, we find that estimating the topology of the species tree from a set of
gene trees requires more elaborate statistical analysis. This is because the standard statistical
approaches o f maximum likelihood or Bayesian analysis can be too computationally intense.
Therefore, we must consider methods that are fast but also statistically consistent. We will
be exploring variants of two methods, namely STAR and USTAR, for inferring species tree
topologies from gene tree topologies that differ in how the root of the trees is located. Thus,
we will simulate gene trees according to the coalescent model, then we will subject these
gene trees and inferred species trees to different ways of rooting, and then we will analyze
their impact on species tree topology estimation.

1

In this paper, we begin by introducing the coalescent model in chapter 2, which is key in
understanding how the gene trees are simulated. Then in chapter 3, we will explain STAR
and USTAR, which are the algorithms used to estimate the species tree topology from a set
of gene trees. Chapter 4 is a stand alone chapter where we explain RFsplit and RFclade
distances, which are the metrics we use to measure differences in tree topologies. Chapter
5 introduces the framework of our simulations and the plots that are used to present our
results. Finally, in chapter 6 we show the results of our simulations and the conclusions we
draw from analyzing them.

2

Chapter 2

The Coalescent Model

Our study involves the simulation analysis o f gene trees to infer a species tree. The topologies
of these gene trees greatly affect our results, which means that we must understand how these
gene trees are formed. The model that describes their formation and underlies their analysis
is known as the multi-species coalescent model.

2.1 The Wright-Fisher Model

The coalescent model states that within a single population, viewed backwards in time on
a suitable time scale, the rate at which any fixed pair o f lineages coalesce into one lineage
is constant, and that in addition, these coalescent events are independent and identically
distributed for each pair of lineages. To better understand the ideas behind this model, let’s
begin with a more intuitive, discrete version of it; the Wright Fisher Model.

Imagine that we have a series of generations Gi , where i E {0 ,1 , 2, 3, . . . ,n} , and where
each generation Gi has a fixed population of 10 individuals; in other words, Gi = { g 1i,g2i . . . g10i},
as shown in Figure 2.1.

Now, consider any two individuals, say g1o and g4o, from the most recent generation, G0.
We wish to know how a particular gene x was transmitted to these individuals from the
previous generation G 1 . Since there are 10 individuals in generation G 1, then we know that
g1o could have inherited gene x from any of those 10 individuals. Without loss of generality,

suppose that g1o inherited gene x from g3l in G 1. Then, there is a — probability that g4o also
inherited gene x from g3l. This occurrence, that a particular gene from various individuals
in one generation comes from the same individual in the previous generation, is known as a
coalescent event.

3

Figure 2.1: A sequence of generations Gi for i E {1, 2 , . . . , n } where each generation has 10
individuals, namely g^ where j E { 1 , . . . , 10} and g^ E Gi

There is also the case where g4o may inherit gene x from an individual other than g3l
in the G 1 generation. In this case, the lineages of gene x for g1o and g4o do not coalesce
in G 1, and the probability of this event is 1 — 1O. Continuing this line of thought, if the
lineages do not coalesce in G 1, then maybe they will coalesce in generation G2. Thus, the
probability that such lineage coalesce in generation G2 is (1 — 10) 10, and the probability
that the two lineages for gene x coalesce in at most two generations before the present is
given by ± + (1 — 11) 11 .

More generally, if we define a random variable X as the number of generations until two
distinct lineages coalesce, and we let N be the population size, then

P (X < n) = £ p (X = 0 = £ U — ±) N = 1 — I 1 — N
i=1 i=1

This result indicates how P (X < n) depends on N. A larger value of N results in a
smaller value of P (X < n), which means that the time for the two lineages to coalesce
becomes longer. As a matter of fact, we find that the expected time to coalescence is given

by ro ro / \ n-1
£ n P (X = n) = £ N A — = N .
n=1 n=1 ̂ '

This result shows that the expected time to coalescence is the value of the population
size, which confirms the intuition that faster and slower coalescence occurs for smaller and

n

4

larger population sizes respectively. This model is known as the Wright-Fisher model, and
it is a discrete treatment of genetic coalescence. The coalescent model treats the same idea
as the Wright-Fisher model, but in a continuous fashion.

2.2 The Coalescent Model

Although the coalescent model can be derived as a certain limit of the Wright-Fisher model,
we will present it here in a more direct way.

The idea that the coalescence of lineages depends on the size of the population naturally
leads to the definition of a coalescent unit. As a more useful unit of time, the coalescent
time scale is defined by

t
U = N ,

where N is the population size, t is time measured in generations and u is time in coales
cent units. For the sake of simplicity, we assume that the population size stays constant
throughout time.

It is important to notice that this definition indicates that the effect on coalescence of
having many generations is indistinguishable from the effect o f having a small population
size. In other words, having a large t will have the same effect on coalescence as having a
small N , a feature we see in the Wright-Fisher model. This allows us to treat the lineages
as coalescing at a constant rate.

To clarify this point, suppose that there are two distinct lineages at the present time
u = 0 , and let h(u) be the probability that those two lineages are still distinct at time u > 0,
where u is in coalescent units. Here, since we want small probabilities to have a small rate
of change, then we must have that h(u) = —h(u). This makes sense because as we move
backwards in time, the probability o f having coalesced must increase, or, in other words,
the probability of not having coalesced should decrease, which implies that h(u) must
be negative. Moreover, since the two lineages are distinct at time zero, then h(0) = 1. A
solution to this differential equation is given by h(u) = e- - . Therefore, the probability that
the lineages did not coalesce between time 0 and time u is h(u) = e- - . This means that
P (u) = 1 — e- - is the probability that the two lineages did coalesce between time 0 and
u. Notice that P (u) can be seen as a cumulative distribution function (CDF); therefore,

5

P '(u) = e- - is the density function for the time to coalescence. In other words, the time
to coalescence (in coalescent units) of two distinct lineages is exponentially distributed with
rate 1.

Now, we have that the expected time to coalescence is given by

uP '(u)du = ue - du = 1.
' o

Notice that the expected time to coalescence does not depend on the population size. The
definition of coalescent units leads to a model in which population size is no longer relevant.

Thus far, we have considered the coalescence of two lineages. However, analysis of phy-
logenies typically involves many taxa and many lineages. Therefore, consider the case where
we have n different lineages at time u = 0. The first coalescent event may occur between
any pair of lineages, which means that there are (n) = n(n~1y possible lineages that could
coalesce. Now, making the assumption that the coalescent events are independent and iden
tically distributed, we have that the rate at which the first coalescent event occurs must be
scaled by the number of possible pairs. In other words, if the probability that all o f those n
lineages are distinct at time u is h(u), then

d u h(u) = - (n) h <u)

which implies that
h(u) = e-(n)u.

Furthermore, using integration by parts, we have that the expected time for n lineages to
coalesce to n — 1 is given by

n W (n W u
2 n(n — 1)

Notice that when we have only two lineages, then the expected time to coalescence is 1, as
shown in previous calculations. However, if there are 8 lineages coalescing to 7 lineages, then
the expected time would be = 2s. This is reasonable since the more lineages, the more
options for a pair to coalesce, which results in the first coalescent event occurring sooner on
average. Finally we can find the expected time for n lineages to coalesce to 1 by adding the

OO D O

0

CO 2

6

expected time for each pair of lineages to coalesce:

Finally, notice that limn^ TO 2 (1 — = 2, which means that as the number of lineages
grows to infinity, the expected time of n lineages to coalesce to 1 lineage is 2 coalescent units.

2.3 Multispecies Coalescent M odel

The multispecies coalescent model is an extension of the coalescent model to species trees.
In a species tree, each branch represents the population of a particular species; therefore,
we represent the branches as pipes from which we draw samples of the population. Also,
since we are using coalescent units to measure the branch lengths, then we are making the
assumption that the population size has been taken into account, which means that the
width of the species tree's pipes are all the same.

Taxon b Taxon c

Figure 2.2: A 3-taxon species tree ((a,b),c) showing three sampled gene lineages A,B, and C

Figure 2.2 shows an example of a simple 3 taxon species tree where we sample one
gene per taxon; namely genes A , B and C from taxon a , b and c respectively. Notice that

7

these three lineages may coalesce to produce any of three possible topological gene trees:
((A , B), C), ((A , C), B) or ((B , C), A)1.

Consider the gene tree ((B , C), A), which has a different topology than the species tree
topology ((a, b), c). Such tree forms only if the lineages B and C coalesce before meeting A.
In other words, lineages A and B must remain distinct as they enter the population of edge
P, and once they reach the population ancestral to the root, B and C must coalesce first.
Notice that once the lineages reach the ancestral root, the probability of B and C coalescing
first is 1 because at this point, each pair of taxa has equal probability of coalescing. Recall
that the probability of two distinct lineages not coalescing on edge P is e - x , where x is the
length of edge P . This means that the probability of A and B not coalescing on edge P is
e-x . Therefore,

P ((B , C) ,A) = P (((B , C),A)|no coalescence on P)P (no coalescence on P) = - e-x .
3

Similarly

P ((A , C) , B) = 3 e-x ,

and finally, since all probabilities must add to 1 , we find

2
P ((A, B), C) = 1 — 3 e-x .

We can also calculate P ((A , B), C) by thinking of this probability as

P (((A , B), C)|no coalescence on P)P (no coalescence on P)

+ P (((A , B), C)|coalescence on P)P(coalescence on P)
1 2

= - e-x + 1 ■ (1 — e-x) = 1 — - e-x .
3 v ; 3

As the number of taxa on a tree is increased, the number of edges on which coalescent
events occur will also increase, and the number of cases we need to consider for the formation
of gene trees grows considerably. Therefore, the calculation shown previously becomes much
more complicated.

1((A ,B),C) is an example of the Newick representation of a tree topology, where in this case A and B are
joined together first, then followed by C

8

Taxon a Taxon b Taxon c

Figure 2.3: Species tree with a near polytomy at the root and a sampled gene tree (red tree)
having a different topology than that of the species tree.

Notice that if x is infinitely large, then P ((B , C), A) « 0, P ((A , C), B) « 0, P ((A , B), C) =
1, which means that for a long enough branch, the gene tree topology will most likely match
the species tree topology. However, when x is very small, the species tree in Figure 2.2 will
have a near polytomy at the root, and in this case each gene tree topology has a probability
of approximately 3 of occurring. A topological gene tree not matching the topological species
tree is often called incomplete lineage sorting. An example of this phenomenon is shown in
Figure 2.3.

Now, the coalescent model can be used to infer the species tree from a sample of gene
trees. If the branches of the species tree are long enough (no polytomy), then the topology
of most gene trees will match the topology of the species tree; in other words, incomplete
lineage sorting is unlikely to occur. However, we are particularly interested in exploring how
to resolve the case where the species tree has a near polytomy. We will simulate gene trees
according to the coalescent model from a species tree that has very short internal branches.
This will result in a substantial number of our simulated gene trees not having the same
topology as the species tree. Our goal is to explore how different treatments of these gene

9

trees affect the estimation of the species tree topology.

10

Chapter 3

Inferring Species Trees From Gene Trees Using STA R and U ST A R

Since our study analyses the estimation of a species tree topology from a set of gene trees
coming from the coalescent model, we must investigate the construction of such a topological
estimate. Thus, given a set of gene trees relating different taxa, how can we infer the species
tree for these taxa? Maximum Likelihood and Bayesian methods are common statistical
frameworks that can be used to infer species trees, but both are computationally intense and
limited in the number of taxa they can handle. Therefore, we will introduce STAR [LYPE09]
and USTAR, which are algorithms that take collections of gene trees to estimate species trees.
These algorithms are fast and they have been proven to be statistically consistent under the
multispecies coalescent model [ADR13].

3.1 The ST A R Method

STAR begins by assigning a rank to the nodes, or vertices, of the gene trees. This assignment
proceeds by first assigning to the roots some value n, which is usually taken to be the number
of taxa. Then we assign the value n — 1 to the internal nodes that are children of the root.
Their children are assigned n —2, and so on for all other internal nodes. Consider the example
in Figure 3.1.

Notice that the root has a value of 6 for the trees in Figure 3.1 because there are 6 taxa
in total. For the tree to the left on Figure 3.1, we proceed by assigning a value of 5 to node
a4 and continue until we reach a2, which has a value of 2 because the node above a2 has a
value of 3.

Once the nodes have been numbered, we use them to define a metric on the taxa, where
the distance between any two leaves (pendant edges) is twice the number of the node that is

11

Figure 3.1: Two gene trees on 6 taxa with the STAR node numbering. The root is numbered
with 6, and its descendants with numbers decreasing by 1.

their most recent common ancestor. For example, for both trees of Figure 3.1, the distance
between lineage A and lineage B is 6, but the distances from B to C is 4 for the tree on the
left and 8 for the tree on the right. Since the distance from every leaf to the root is simply
the value of the root’s label, this scheme produces an ultrametric tree, which is defined as a
tree with all leaves equidistant from the root.

The second step of STAR is to record these intertaxon distances in a matrix. In the case
of the trees in 3.1, with taxa ordered alphabetically, we have the matrices D Tl and D Tr for
the tree on the left and the right respectively. Keep in mind that the entries of these matrices
are labeled; in other words, the first row and column correspond to A, second B and so on.
This allows for interpreting the entry on the first row and third column to be the distance
between lineage A and lineage C, or the entry on the fourth row and second column to be
the distance between D and B . Hence, these matrices encode the rooted tree topologies.

D Tl =

" 0 6 6 8 10 12 0 6 8 8 10 12
6 0 4 8 10 12 6 0 8 8 10 12
6 4 0 8 10 12

and DTr =
8 8 0 6 10 12

8 8 8 0 10 12 8 8 6 0 10 12
10 10 10 10 0 12 10 10 10 10 0 12
12 12 12 12 12 0 12 12 12 12 12 0

The third step is to build a new matrix by averaging the distance matrices for all gene

12

trees. With a large number of gene trees, produced in accord with the multispecies coalescent
model, this new matrix approximates the distances on some ultrametric version of the species
tree [ADR13]. Therefore, the new matrix can be used to find the species tree topology, though
the distances themselves are not those on the original species tree. The two main algorithms
that are used to build the species tree topology from a distance matrix are UPGMA and
Neighbor Joining. Using its ultrametric properties, UPGMA will estimate the rooted species
tree, while Neighbor Joining will estimate the unrooted species tree. UPGMA and Neighbor
Joining will be discussed in Section 3.3 and Section 3.4 respectively.

3.2 U STA R

USTAR is a method similar to STAR, except that it considers unrooted gene trees instead.
As in STAR, we first have to metrize the gene trees in order to build a distance matrix
characterizing each tree. However, instead of numbering the nodes, USTAR assigns the
length 1 to all edges of the tree, and the distance between any two taxa is simply the
number of edges in the path connecting the two taxa. In other words, the distance matrix
is built by considering the graph-theoretic distance between the taxa [ADR16]. Consider
Figure 3.2.

C

Figure 3.2: A 6-taxon unrooted tree with all edges of length 1.

With taxa ordered alphabetically, the tree T on Figure 3.2 will produce the following

13

matrix:

D t =

0 3 3 3 4 4
3 0 2 4 5 5
3 2 0 4 5 5
3 5 5 3 0 2
4 5 5 3 0 2
4 5 5 3 2 0

We obtain a distance matrix like D t for all unrooted gene trees, and we average them
as done in STAR. Finally, because this average must fit a species tree, but not necessaries
ultrametrically, we use Neighbor Joining to estimate the species tree. Consequently, this
results in an unrooted species tree topology estimate.

3.3 Unweighted Paired Group M ethod with Arithmetic Means (U P G M A)

The Unweighted Paired Group Method with Arithmetic Means is a method of constructing
an ultrametric tree from intertaxon distances. The best way to understand how UPGMA
works is by working through an example. Consider the ultrametric tree of Figure 3.3 with
corresponding distance matrix D.

A B C D

Figure 3.3: Tree with 4 taxa rooted at taxon “D” . This tree is the model tree for a simple
UPGMA example.

14

0 4 10 12
4 0 10 12
10 10 0 12
12 12 12 0

D =

The first step of UPGMA is to look for the smallest nonzero distance in the matrix and
group the corresponding taxa together. Since UPGMA maintains ultrametricity, we divide
such distance by two in order to obtain the distance to the most recent common ancestor.
For example, notice that in matrix D the smallest distance is 4, which is the distance from
A to B . Hence, the distance from A and B to their most recent common ancestor is 2, as
shown in Figure 3.4 :

Figure 3.4: First step of UPGMA is to group the taxa corresponding to the smallest entry
in the distance matrix.

Next, we collapse taxa A and B into a group, which we name A B and build another
matrix by averaging the distance from A and B to all other taxa. For example, the distance
from AB to C is given by

= d (A ' C) + d (B ,C) = = 20 = 10.
v ’ 7 2 2 2

This produces a new distance matrix with AB as a new “taxon” . With ordering A B ,C , D
we have 1

0 10 21

D' = 10 0 12

21 10 0

15

D ' now has a new shortest distance, namely d (A B , C) = 10. Again, we divide this value
in half to obtain the most recent common ancestor and graft in the tree joining A and B .
This leads to the tree in Figure 3.5:

Figure 3.5: Tree where taxa A,B,C have been collapsed and their distance to their most
common recent ancestor is 5

We then average the distances by referring to the initial D matrix. Hence we have that

d(ABC D) = d (A ’ D) + d (B ’ D) + d (C D) = 15 + 16 + 14 = 15
3 3

and this produces the final matrix

D '' = 0 15
15 0

which leads to an estimate of the initial tree, as shown in Figure 3.6
Notice that the estimated tree in Figure 3.6 matches exactly the actual tree shown in

Figure 3.3. This is because UPGMA assumes that the tree to be estimated is ultrametric.
However, if the distance matrix used in the UPGMA calculation does not exactly fit an
ultrametric tree, UPGMA may still predict the right topology, but edge lengths of the
estimated tree will not match the original tree. Furthermore, if the distance matrix is far
from fitting an ultrametric tree, then even the topology estimation of UPGMA may not be
accurate.

16

A B C

Figure 3.6: Final tree produced by UPGMA

3.4 Neighbor Joining

Now, consider an unrooted version of the tree in Figure 3.3 and let’s modify its branch
lengths so that we obtain the tree shown in Figure 3.7

Figure 3.7: 4-taxon tree for which UPGMA fails to recover the correct topology.

This tree leads to the following distance matrix:

0 9 3 10
9 0 10 17
3 10 0 9
10 17 9 0

17

From the distance matrix, we have that d(A, C) = 3 and d(A, B) = 9, which means that
d(A, C) < d (A ,B). Therefore, UPGMA would group lineages A and C first. However, this
would result in the wrong topological tree because A and C are not joined in Figure 3.7.

Neighbor Joining is an algorithm that attempts to fix this problem. To understand
the main idea behind Neighbor Joining, consider again the tree in Figure 3.7. Note that
d(A, B) = 9 and d(C, D) = 9, while d(A, C) = 3 and d(B, D) = 17. Since 9 + 9 < 3 + 17,
then we have that d(A, B) + d(C, D) < d(A, C) + d(B, D). This inequality actually holds for
any value assigned to the branch lengths because this inequality is based on a topological
feature rather than a metric one. In more detail, for any generic 4-taxon tree with topology as
shown in Figure 3.7, the quantity d(A, B) + d(C, D) only counts the edge lengths of the four
edges on which taxa A, B , C and D lie. On the other hand, the quantity d(A, C) + d(B, D)
counts the same edges as described previously, plus twice the central edge connecting the four
taxa. By the same line of reasoning, we have that d(A, C) + d(B, D) = d(A, D) + d(B, C).
From this analysis, we conclude that for any 4-taxon tree with positive edge lengths and
with topology as in Figure 3.7, the following inequalities/equalities hold:

d(A, B) + d(C, D) < d(A, C) + d(B, D) = d(A, D) + d(B, C).

This is known as the 4-point condition. By computing the three terms in the inequalities
above and determining the smallest value among them, we can determine the topology of
a 4-taxon tree. Using an “average” version of the 4-taxon condition coupled with similar
steps as in UPGMA, Neighbor Joining allows us to construct trees from a distance matrix
that may not fit an ultrametric tree. The detailed steps of the algorithm are omitted in this
paper, but Neighbor Joining runs computationally as fast as UPGMA. For further details
on Neighbor Joining, refer to [SK88].

As this paper involves the estimation of species tree topologies by STAR and USTAR,
we will perform both UPGMA and Neighbor Joining. Since the average distance matrix
for STAR is approximately ultrametric, either UPGMA or Neighbor Joining can lead to
statistically consistent inference. And, since the average distance matrix for USTAR is
generally not ultrametric, then only Neighbor Joining can be used with USTAR to obtain
statistical consistency.

18

Chapter 4

Metrics On Tree Space

In our study of the performance of variants of STAR and USTAR methods, we must measure
the error in the inferred species trees, which means that we must choose a metric to determine
how far away phylogenetic trees are from each other. One of the most intuitive and easily
calculated comparisons is known as the Robinson-Foulds distance.

4.1 Robinson-Foulds Split Distance

By a split on a tree, we refer to the bipartition of taxa that results when deleting an edge.
More generally, if we let X be the set of taxa, then a split of X is defined to be any partition
of X into two non-empty disjoint subsets. We write X 0|Xi to denote the split with subsets
X o ,X i. For example, consider the tree on the left side of Figure 4.1. This tree contains
three internal edges, namely a, ft and e. If we remove the edge a, then there are two sets of
taxa that split apart, which are {A , B } and {C , D, E, F }. Therefore, the split induced by a
is {A ,B }| {C , D, E, F }.

Robinson-Foulds split distance, or RFsplit distance, between trees simply counts the
number of splits that are different in each tree. It is important to mention that this paper
only considers the deletion of internal edges. This is because the deletion of terminal edges
results in trivial splits, which appear on all trees and thus do not provide useful information
for determining the difference between trees.

For example, consider again Figure 4.1.

19

Figure 4.1: Two 6-taxon unrooted trees with RFsplit distance of 4.

For the tree on the left hand side of Figure 4.1, we have the following non-trivial splits:

a : {A , B}|{C, E, D, F }

ft : {C , E }|{A , B, D, F }

e : {D , F }| {A ,B ,C ,E }

while for the tree on the right we have:

^ : {A , B}|{C, E, D, F }

9 : {A , B, D }|{C, E, F }

A : {E , F}|{A , B, C, D }

Now notice that the only non-trivial split that these trees have in common is {A , B }|{C , E, D, F }.
This means that there are four different splits that belong to either tree but not both; hence,
the RFsplit distance between the trees in Figure 4.1 is 4.

4.2 Robinson-Foulds Clade Distance

The analysis of splits for the RFsplit distance must be modified when considering rooted
trees. Instead of counting splits, we count clades, where a clade on a rooted tree is all the
taxa descended from a specific node. We call this the RFclade distance.

There are two types of trivial clades: one element clades, which are induced by consider
ing each taxon as a vertex, and the clade containing all taxa, which is induced by considering
the root of the tree. Again, we need not consider trivial clades when determining the dis-

20

A B c D E F

Figure 4.2: Two 6-taxon rooted trees with RFclade distance of 4

tance between trees because these clades do not provide useful information on the difference
between rooted trees.

For example, consider the trees in Figure 4.2. For the tree on the left, under vertices
v1, v2, v3 and v4, we have the clades

{A , B }

{A ,B ,C }

{A ,B ,C , D }

{ E ,F }

respectively. On the other hand, for the tree on the right, we have that under vertices
w1 , w2, w3 and w4, the clades are

{A , B }

{C ,D }

{A ,B ,C , D }

{ E ,F }

respectively. From these clades, we see that both trees share the clades {A ,B ,C , D } and

21

{E , F }, which means that there are four clades that are different between them. Therefore,
the RFclade distance between these two rooted trees is 4.

4.3 Clade and Split Distances W hen an Outgroup is Present

To understand the construction of our tree simulations, we must introduce the concept of an
outgroup. An outgroup is a taxon known to be genetically distant enough to all other taxa
on the tree that we can use it identify a root. For example, suppose we are interested in
finding a phylogenetic tree relating four species of frogs, say f 1, f 2, f 3 and f 4. After analyzing
the data, we hypothetically obtain the tree shown in Figure 4.3.

fl f3

f2

Figure 4.3: Unrooted topological tree relating four species of frogs, f 1, f 2, f 3 and f 4.

Now, we are interested in trying to locate a root for this tree. A common technique is
to choose a species known to be distant from all these frogs, say a chameleon, which we
will call c1. A priori, we must know that as species, the frogs are genetically closer to each
other than to the chameleon. Hence, we expect c1 to coalesce on an edge that leads to the
most recent ancestral frog, thus providing a place for the root, as shown in Figure 4.4. The
resulting rooted tree is shown in Figure 4.5

The simulations conducted in our analysis are built to have an outgroup which we call
“O” . However, when this outgroup is present, the RFclade distance and the RFsplit distance
become indistinguishable, or equal in value. Consider the trees in Figure 4.6.

u

22

Figure 4.5: Resulting tree after rooting at the outgroup.

Figure 4.6: Trees where the clade distance is 2 and the split distance is 0.

23

Note that the clades for the tree on the left are {A , B } ,{C , D }, while the clades for the
tree on the right are {A , B }, {A , B, C }. Thus, the RFclade distance between these two trees
is 2. On the other hand, as unrooted trees, both trees have the splits {A , B}|{C, D }, which
means the RFsplit distance is 0. Now, suppose that we add an outgroup “O” , producing the
picture in Figure 4.7.

Figure 4.7: Trees Rooted at “O”

The splits for the tree on the left of Figure 4.7 are

{A , B }| {C ,D ,O }

{C ,D }| {A ,B ,O }

while the tree on right has splits

{A , B }| {C ,D ,O }

{A , B, C }|{D , O }.

This means that the RFsplit distance is 2. However, we have clades {A , B }, {C , D } and
{A , B }, {A , B, C } respectively, which results in a RFclade distance of 2. This is problematic
because although we added an outgroup, the underlying topologies are different as rooted
trees, yet the RFclade distance is not capturing this feature. The reason this occurs is
because adding an outgroup introduces a new clade, but such clade is shared by both trees
because it is the clade that includes all the taxa except the outgroup. On the other hand,
introducing an outgroup also introduces a new internal edge, which means we have a new
split. This split is different depending on the underlying topologies, which means our RFsplit
distance would increase.

24

Therefore, our simulation analysis must take this observation into account. The way
we incorporate the RFclade distance into our analysis is by first removing the outgroup
from both the actual species tree topology and the estimated species tree topology. The
result is a rooted topology among all taxa except the outgroup. In other words, instead of
considering Figure 4.7, we consider trees as shown in Figure 4.6. The RFclade distance on
these outgroup-free topologies will result in the more useful clade difference.

25

Chapter 5

Methods of Simulation Study

This study focuses on analyzing different variants of species trees inferred by STAR and
USTAR. By variants, we mean different ways in which we can root the gene trees simulated
from a species tree according to the coalescent model, and different ways in which we can
root the resulting inferred species trees. We perform such gene tree simulations from species
trees that have very short branch lengths, which induce errors as a result of incomplete
lineage sorting. Our final goal is to determine which of these variants results in the best
inference of the initial species tree.

5.1 Types of Gene Trees Simulated And Species Tree Estimations

The simulations in our study were conducted using the programming language R. In par
ticular, we use the statistical packages “ape” [ape15], “phangorn” [pha16], and “phybase”

[phy 14].
In our study, we simulated gene trees according to the coalescent model. We did this by

feeding a particular metric species tree, which we call the true species tree, into the phybase
function “sim.coal.sptree” which then outputs simulated rooted gene trees. This species
tree is designed to have taxon “O ” as the outgroup. Once we obtain the gene trees from
the coalescent model, we unroot them using the ape function “unroot.” We do this because
even if there is an outgroup present, the inference of gene trees from sequence data results
in unrooted trees. Since incomplete lineage sorting may occur, especially if the species tree
branch lengths are short, then it is possible that rooting by the outgroup would be erroneous.
Therefore, our methods vary in the rooting by the outgroup “O ” . In other words, since we
are interested in exploring the effects on species tree estimation produced by rooting gene

27

trees, we consider different variants of the gene trees that deal with how the root is treated.
The following are the different variants and the names we have assigned to the corresponding
species tree estimation:

A-rooted : Species trees built by rooting the gene trees at the outgroup “O” . We then
apply STAR with Neighbor Joining, which produces an unrooted species tree. Finally, we
root the resulting species tree by “O” .

A-unrooted : Species trees built by rooting the gene trees at the outgroup “O” and
applying STAR with Neighbor Joining, which produces an unrooted species tree (Notice this
is the same as A-rooted, except we do not root the estimated species tree at the outgroup).

B-rooted : Species trees built by applying USTAR with Neighbor Joining to the unrooted
gene trees, which produces an unrooted species tree. We then root the resulting species tree
at the outgroup “O” .

B-unrooted : Species trees built by applying USTAR with Neighbor Joining, which
produces an unrooted species tree (Notice this is the same as B-rooted, except we do not
root the species tree at the outgroup).

C-rooted : Species trees built by rooting the gene trees by the outgroup “O” and applying
STAR with UPGMA, which produces a rooted species tree.

C-unrooted : Species trees built by simply unrooting the species tree produced from
C-rooted.

D-unrooted : Species trees built by rooting the gene trees by “O” , and then “label
rooting” them with taxon “RO O T” . This label root procedure simply involves attaching an
extra taxon called “RO O T” to the root of the rooted gene trees, which makes the gene trees
have one extra taxon, but we can technically view them as unrooted trees. Finally, we apply
USTAR with Neighbor Joining to produce an unrooted species tree, and remove the taxon
“RO O T” from this inferred species tree.

D-rooted : Species trees built by taking the species trees produced from D-unrooted and
rooting them at “RO O T” before removing such taxon.

5.2 Choosing Topologies

Analyzing phylogenetic trees can be a daunting task because of the many possible topologies
that can arise with relatively few taxa. In fact, for n > 3 taxa, there are (2n — 5)!! =

28

1 ■ 3 ■ 5 ■ ■ ■ (2n — 5) different topologies. For a simulation study, we hope to choose a small
number of trees to analyze such that the results capture the overall behavior for any topology.
Also, we must clarify how the simulations in our study are constructed and how they will be
displayed in our results. In this paper, we will arbitrarily choose trees with 8 taxa plus an
additional outgroup. This means we should consider 5198 different tree topologies. However,
we want to capture the most important features of all these topologies by analyzing a small
subset of them. We will consider three different topologies as shown in Figures 5.1, 5.2,
5.3: a caterpillar tree, a balanced tree and a mixed tree that is perhaps more typical of a
“random” topology.

We choose the caterpillar and the balanced tree because they represent the most extreme
features, and we choose the mixed tree because it lies somewhere in between. A measure o f
balance quantifies this “extremeness” by taking the absolute value of the difference between
the number of taxa to the left and to the right of each node, and then adding the result over
all nodes. For example, consider the tree topologies of Figures 5.1, 5.2 and 5.3.

Figure 5.1: Caterpillar Figure 5.2: Balanced

29

Figure 5.3: Mixed

Since “O” is the outgroup and we are mainly interested in the underlying topology, we
ignore “O” in our measure of balance. For the balanced tree, each node has equal number
of taxa to the left and to the right, which means that the measure of balance is 0. For the
caterpillar, beginning at the node corresponding to the most recent common ancestor of A
and H , we have

|1 - 7| + |1 - 6 | + |1 - 5| + |1 - 4| + |1 - 3| + |1 - 2| + |1 - 1| = 21,

and for the mixed tree we have

|3 - 5| + |2 - 1| + |1 - 1| + |3 - 2| + |2 - 1| + |1 - 1| + |1 - 1| = 5.

Notice that the smallest measure is 0, for the balanced tree, the biggest is 21, for the
caterpillar, and it is easy to see that there is no tree with more extreme measure of balance
than these.

5.3 The True Species Tree Branch Lengths

Now, consider a species tree with a caterpillar topology, as shown in Figure 5.1. Notice that
this tree has 7 internal edges, which means that there are 7 places where lineages can coalesce
to form the caterpillar tree. However, if these edges are very small, then it is very likely that
incomplete lineage sorting will occur. As indicated before, we are interested in answering

30

Figure 5.4: Sample plot showing the average RFclade distance and average RFsplit distance
for rooted and unrooted methods respectively.

the following question: if we collect a set of gene trees simulated from a true species tree
with small internal edges, which variant of STAR or USTAR best estimates the topology of
the true species tree?

We will perform simulations with internal branch lengths of equal size, and ranging from
2-8 up to 21 coalescent units by factors of 2. We choose these branch lengths because for all
the 8 methods above, if the internal branches of the true species tree are long enough (e.g.,
if they are as long as 4 coalescent units), then incomplete lineage sorting is very unlikely to
occur, which means that almost all gene trees will match the topology of the species tree. In
turn, STAR and USTAR will estimate a species tree with the right topology. As the branch
lengths decrease towards 0, however, the probability of incomplete lineage sorting increases,
and it should become increasingly difficult to infer the correct species tree.

5.4 Plot Structure

Since our goal is to compare the estimated species trees we obtain from the 8 methods
above to the true species tree, we must use RFsplit and RFclade distances to quantify their
difference. We present our results through plots that show these distances, as displayed in
Figure 5.4.

Each plot is constructed as follows: first, we choose a specific true species tree topology,
which can be either a caterpillar, balanced, or mixed topology. Second, we specify the
number of gene trees we wish to simulate, which we will refer to as sample size; these are
the gene trees that will be used in the 8 methods discussed previously to infer a species tree.
Third, we specify the number of repetitions, which is the number of times we wish to repeat

31

the first and second steps. In other words, the repetitions are the number of times we wish to
simulate gene trees, vary their rooting, and use them to estimate the true species tree. Our
code calculates the RFsplit or RFclade distance between the inferred and the true species
tree for each repetition, and then averages these distances over all repetitions. Therefore, for
each indicated sample size and number of repetitions, we obtain two plots, one showing the
average RFclade distance and the other showing the RFsplit distance, for the rooted and
unrooted methods A,B,C, and D respectively.

Now, for each individual plot, we consider different true species tree internal branch
lengths that vary from 2-8 to 21 coalescent units. In order to make the interpretations of
the plots more reasonable, we label the horizontal axis, from left to right, with the integers
n G { - 1 , . . . , 8} that correspond to branch lengths 2-n . In other words, the tick marks, from
left to right, on the horizontal axis correspond to branch lengths of 21, 22, . . . , 2-8 coalescent
units. The vertical axis corresponds to the average RFsplit or RFclade distance, over all
repetitions, between the true species tree and the STAR/USTAR estimated species tree.

Another important aspect of the plots is the variance. Specifying the number of rep
etitions allows us to determine how many data points we wish to obtain for the average
RFclade and RFsplit distance corresponding to each size of internal branch lengths. Using
the function “var” from R, we calculate the variance of the RFclade and RFsplit distance for
each size of internal branch lengths, and then we take the square root to obtain the standard
deviation. Therefore, the vertical lines on each point of the plot correspond to the average
RFclade or RFdistance plus or minus its standard deviation.

Finally, in order to make the plots cleaner, we horizontally shifted the points on the graph
corresponding to the methods A,B,C and D. Therefore, if four dots have the same vertical
value, but appear to have different horizontal values, then that means all those four dots are
on top of each other on the same point.

5.5 Sample Size and Repetitions

As mentioned previously, if the internal branch lengths of the true species tree are long
enough, we expect most of the simulated gene trees to have the same topology as the true
species tree, which means that STAR/USTAR will estimate such topology as well. Therefore,
if we consider the case where all internal edges are very small, then we would expect lineage

32

sorting to occur frequently, which means that STAR/U STAR will not necessarily estimate
the right true species tree topology. However, even with small internal edges, if we simulate
a large number of gene trees, then STAR/U STAR will estimate the correct species tree
topology. The evidence for this claim is shown in Figure 5.5 , where we use the 8 taxon
caterpillar tree with 1 repetition in each trial, and we show the results for sample sizes of 5 ,
50, 500 and 5000. Figure 5.5 has two columns of plots: the left column corresponds to plots
showing the average RFclade distance, while the right column corresponds to plots showing
the average RFsplit distance. Also, the rows correspond to the sample sizes; in this case, the
first row corresponds to sample size 5 and the last row to sample size 5000. Notice that each
time, the curve flattens to the right, indicating that the STAR/U STAR estimate for very
short internal branches becomes more accurate as we increase the number of gene trees.

Since we know that for a large number of gene trees, STAR predicts the right topology,
we will investigate the effects of a small number of gene trees on species tree estimation.
In this paper, we will explore sample sizes of 1, 3, 6 and 10 gene trees. Now, since we will
be varying the number of gene trees, we must choose a particular number of repetitions.
Consider the plots on Figure 5.6. Notice that the plots using 50, 70 and 1000 repetitions
do not really have a significant difference in their shape; they all seem to flatten at about
n = 4. Therefore, we will set the number of repetitions to 50 for all of our plots.

33

Figure 5.5: Species tree inference error plot showing increasing accuracy of species tree
estimation as the sample size (number of gene trees simulated) changes by 5, 50, 500, and
5000 and the number of repetitions is chosen to be 1. The plots are organized into 4 rows
and 2 columns; the four rows correspond to the sample sizes, the first row being the sample
size of 5 and the fourth being the sample size of 5000. The left and right columns correspond
to the rooted and unrooted versions respectively.

34

Figure 5.6: Species tree inference error plot showing the effect of increasing repetitions on
species tree estimation as the number of repetitions changes by 2, 50, 70 and 1000. All of
the plots are constructed with a sample size of 10 and a caterpillar species tree. The plots
are organized into 4 rows and 2 columns; the four rows correspond to the sample sizes, the
first row being the sample size of 2 and the fourth being the sample size of 1000. The left
and right columns correspond to the rooted and unrooted versions respectively.

35

Chapter 6

Analysis of Simulations

Now that we understand the general framework of the plots, we will make simulations to
explore the effects of our proposed methods on the estimation of the true species tree topol
ogy.

6.1 Simulations and Observations

Figures 6.1, 6.2 and 6.3 show the results of a simulation for the caterpillar, balanced and
mixed trees respectively. It is clear that, with the exception of D-unrooted, there are not
large differences in the performance between methods. However, analysis of their minor
differences can provide useful insights about the behavior of these methods.

Consider the case for the caterpillar tree as shown in Figure 6.1, and focus first on the
rooted methods. We can see that if we only have 1 gene tree, all variants perform the same.
However, as we increase the sample size, we see that C-rooted performs slightly better for
mid-size species tree branch lengths. In fact, it is clear to see the out-performance of C-
rooted with a sample size of 10, where there is a distinct line connecting values of C-rooted
from n = 2 to n = 5. Now, for the unrooted methods, we see that C-unrooted does better
on average than all the other methods. However, D-unrooted performs significantly worse,
regardless of the sample size. Finally, for both, rooted and unrooted methods, the variance
is larger for values between n = 1 and n = 4, and then it decreases for values larger than
n = 5. Hence, when the internal branches are very small, we do not have a highly accurate
estimate of the caterpillar species tree topology, but the variance of the estimation is small
compared to cases for the relatively larger internal branch lengths.

Consider the case for the balanced tree as shown in Figure 6.2. Here, we see that the

37

Figure 6.1: Species tree inference error plots for a caterpillar species tree. Plots show results
for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees . The plots are organized
into 4 rows and 2 columns; the four rows correspond to the sample sizes, the first row being
the sample size of 1 and the fourth being the sample size of 10. The left and right columns
correspond to the rooted and unrooted versions respectively.

38

Figure 6.2: Species tree inference error plots for a balanced species tree. Plots show results
for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees. The plots are organized
into 4 rows and 2 columns; the four rows correspond to the sample sizes, the first row being
the sample size of 1 and the fourth being the sample size of 10. The left and right columns
correspond to the rooted and unrooted versions respectively.

39

-r

(• > ' "

T

0 e 8

unrooted_method s
—: A-un rooted

■ ■1 B-un rooted
r© C-un rooted

- ■ D-unrooted

Figure 6.3: Species tree inference error plots for a mixed species tree. Plots show results
for 50 repetitions and sample sizes of 1, 3, 6 and 10 gene trees. The plots are organized
into 4 rows and 2 columns; the four rows correspond to the sample sizes, the first row being
the sample size of 1 and the fourth being the sample size of 10. The left and right columns
correspond to the rooted and unrooted versions respectively.

40

opposite behavior of that observed with the caterpillar occurs; the C-rooted variant does
worse than all the other rooted methods, and additionally, D-rooted performs best. For
the unrooted methods, we see again that D-unrooted performs significantly worse than all
other variants. On the other hand, unlike the caterpillar, C-unrooted does not perform as
strongly; in fact, variants A-unrooted and B-unrooted perform equally and better than all
other variants. As noted in the case for the caterpillar species tree, these simulations also
show the same pattern with variances. They are large for mid-size branch lengths, but as the
internal branches become smaller, the estimate becomes more inaccurate and the variance
decreases significantly.

Finally, consider the case for the mixed tree as shown in Figure 6.3. For the rooted
methods, C-rooted does slightly worse on average. It is difficult to see the behavior of
C-rooted for a sample size of 3, but for a sample size of 10 gene trees, it is clear that C-
rooted does worst, and in addition, it is clear that D-rooted outperforms all other variants.
For the unrooted versions, we still see that D-unrooted does significantly worse than other
variants, and again A-rooted and B-rooted seem to perform equally and better than the rest.
Therefore, the behaviors of the variants observed in the simulations where the species tree
is a balanced tree are the same as those observed where the species tree is a mixed tree.

From these observations, we can outline some general conclusions. We see that the
relative performance of C-rooted shows an apparent dependence on the topology of the
species tree. By relative performance we mean performance in comparison to the other
methods. In this case, relative to methods A-rooted, B-rooted and D-rooted, method C-
rooted performs best if the true species tree is a caterpillar; otherwise, it performs the worst.
Because of such variability in performance, this indicates that C-rooted is not a reliable
method for inferring a true species tree topology.

To clarify this point further, consider Figure 6.4. Notice that the average RFclade dis
tance for each method differs according to the species tree topology. Therefore, we cannot
make any generalizations about the overall performance of each method across all topologies;
we can only compare the methods relative to each other. It is also worth noticing that in
Figure 6.4, the mixed tree topology seems to have the best results for methods A,B, and C.
In other words, the average RFclade and RFsplit distance for methods A,B, and C are the
smallest if the species tree topology is mixed. This result is reassuring in the sense that the
majority of the gene tree topologies from real data would result in a mixed tree topology,

41

I

m / -

rooted_methods
ABalanced-rooted
ACatarpillar-rooted

AMixed-rooted

Figure 6.4: Species tree inference error plots for methods A, B and C on balanced, caterpillar
and mixed species trees. The plots are organized into 3 rows and 2 columns; each row
correspond to a method, the first being method A and the last being method B. The left
and right columns are rooted and unrooted versions respectively. Each plot was constructed
with 50 repetitions and a sample size of 10 gene trees.

which means that the analysis of real data could potentially have optimal results.

Another obvious observation is the under-performance of D-unrooted on the different
simulation studies. It is clear from the plots that regardless of the true species tree topology,
D-unrooted does poorly compared to other variants. This may be caused by the extra error
that we added to this variant by attaching an extra taxon “RO O T” .

Additionally, the relative performance of A-rooted/A-unrooted and B-rooted/B-unrooted
is uniformly good throughout all simulations. There does not seem to be a difference in the
performance of A variants compared to B variants, regardless of the species tree topology
being inferred. Therefore, we can conclude that if we root a set of gene trees at the outgroup
“O,” infer a species tree from such set of gene trees using STAR with Neighbor Joining, and
then root the species tree by “O,” this would have the same effect on the accuracy of the
true species tree estimation as if we instead do not root the gene trees at the outgroup “O,”

42

infer a species tree from such set of gene trees using USTAR with Neighbor Joining, and
then root the resulting species tree by “O .” We can draw the same conclusion if we do not
root the inferred species trees by “O;” in other words, the unrooted versions of method A
and B work comparatively well. In contrast, if we root a set of gene trees at the outgroup
“O” and then infer a species tree from such set of gene trees using STAR with UPGMA,
then the accuracy of the species tree estimation relative to the accuracy of A and B will vary
depending on the true species tree topology. Finally, introducing more error by attaching
extra taxa beyond the outgroup only worsens the species tree estimation, as shown in the
D-unrooted methods.

6.2 Future Work

In this paper, all the gene trees we obtained came from the coalescent model using a known
species tree topology. In other words, these gene trees had no computational error in them,
which means we had a perfectly designed sample. However, in practice, DNA sequences do
not always fit a phylogenetic tree; therefore, inferring gene trees from sequences of DNA data
results in gene trees with errors. An important follow up study will consist of simulating
gene trees and DNA sequences evolving on such gene trees. These DNA sequences can be
used to infer gene trees by standard phylogenetic methods. This set of inferred gene trees
will contain errors, and we would want to observe the behavior of our proposed methods
when inferring a species tree from such set of gene trees. The performance of the variants of
STAR and USTAR on this simulation study will have a stronger meaning for evaluating the
usefulness of our proposed methods on real data.

43

Appendix

Listing 6.1: Codes Required to P lo t R F split and RFclade D istances

#The following set of functions are compiled so that we can use the function

#"distplotnshort ," which is the function that plots the average RClade and RFsplit distance

for the method we discussed in Chapter 5 of this paper.

‘s p s i m u l a t i o n ‘ <-
f u n c t i o n (s p t r e e ,N s a m p l e s , Nsimulations)
#This code simulates gene trees using the coalescent model.

#Nsample is the number of lineages per taxon.

#This code requires loading package ’a p e ’.

genetrees<- rep("", Nsimulations)

for (j in 1:Nsimulations)

#Inputs required by sim.coaltree.sp

sp na me <-s pec ies.name(sptree)
name <- spname
ns pe cies<- length(spname)
n o d e m a t r i x < - r e a d . t r e e . n o d e s (s p t r e e , spname)$nodes
rootnod e<- 2*n sp eci es - 1
se q< -r ep(Nsamples,nspecies)

Simulate gene trees

g e n e t r e e s [j] <- s i m . c o a l t r e e .s p (r o o t n o d e , n o d e m a t r i x ,nspe ci es, seq ,s pna me)$g t
}

#Inputs required by star.sptree
spe ci es nam e<- sp eci es .na me(ge net re es[1])
taxaname<- sp eci es nam e
matrixnu mbe r= length(speciesname)
s p e c i e s .stru ctu re <-m atr ix (0, nc ol= ma tr ixn um ber ,n row = m a t r i x n u m b e r)
d i a g (s p e c i e s .structure)<-1

Build Species tree using STAR

infsptree.nj<-paste("Neigh bo ru Joining:", s t a r .s p t r e e (g e n e t r e e s , speciesname, t a x a n a m e ,
s p e c i e s . s t r u c t u r e , outgroup="O", method="nj"), sep="")

infs pt re e.u pgm a< -pa st e(" UPG MA :", s t a r .s p t r e e (g e n e t r e e s , speciesname, taxaname, species.
structure, outgroup="O", method="upgma"), sep="")

tree1= s t a r .s p t r e e (g e n e t r e e s , speciesname, taxaname, species.structure, outgroup="O", method
=" n j ")

}

#The following are functions that are required by "s p s i m u l a t i o n " and "countmethods.RF".

‘s i m . c o a l t r e e . s p ‘ <-
f unction(rootn o d e , n o d e m a t r i x , n s p e c i e s , s e q , n a m e)
{
t h e t a < - n o d e m a t r i x [r o o t n o d e ,5]

if(roo tn ode <= nsp eci es){
{if(seq[rootnode] == 1){
z<-list(gt="", height=as.matrix, n o d e = a s .matrix)
z$gt<-name[rootnode]
z$height <-0
z$node<- nod ema tr ix
return(z)}
else{
treestr< -pa ste (n ame [r oot nod e] ,"s" ,1:seq[rootnode] ,sep="")
i<-seq[rootnode]
height <-rexp(1,rate = i*(i-1)/theta)
brlens<-rep(0, i)
father<-nod em atr ix [ro ot nod e,1]
f atherheight <-node.he i g h t (f a t h e r ,nodematrix,nspecies)

while(height <f a t h e r h e i g h t){
n o d e m a t r i x [r o o t n o d e ,6]<-nodematri x[roo tn ode ,6]+1
##randomly choose two nodes
b<-sample(1:i,2)

##update groups

newname < - p a s t e (" (" ,treestr [b [1]] ,s e p = " ")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,r o u n d (height-brlens[b[1]] ,6) ,sep="")
newname <- pas te (ne wname,",",sep="")
newname <- pas te(newname,treestr[b[2]] ,sep="")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,r o u n d (height-brlens[b[2]] ,6) ,sep="")
newname < - p a s t e (n e w n a m e , ") " ,sep="")
t r e e s t r [b [1]]<-newname
brlens[b [1]]<-height

##update d i s t > tr eestr> and branch length
i n d e x < - 1:i
index[b [2]] <-0

45

i n d e x < - i n d e x [index >0]
trees tr<-treestr [index]
brlens<-brlens[index]
if(i==2)
break
i<-i-1
height <-height + rexp (1 , rate = i* (i-1) / theta)
}
z < - l i s t (g t = " " , height = a s .matrix,node = a s .matrix)
z$gt <-treestr
z$height <-brlens
z$ no de <-n ode ma tri x
return(z)
}
}

}
if(rootno de> nsp ec ies){
s o n 1 < - n o d e m a t r i x [r o o t n o d e ,2]
s o n 2 < - n o d e m a t r i x [r o o t n o d e ,3]
l e f t s t r < - s i m . c o a l t r e e .s p (r o o t n o d e = s o n 1 ,nodematrix=nodema tr ix, ns pec ies ,s eq, na me)
nodematr ix <-l eft st r$n od e
r i g h t s t r < - s i m .c o a l t r e e .sp(rootnode=son2,node m a t r i x = n o d e m a t r i x , n s p e c i e s , s e q , n a m e)
nodematri x< -ri gh tst r$n od e
i < - l e n g t h (l e f t s t r $ g t) + l e n g t h (r i g h t s t r $ g t)

treestr <-1:i
t r e e s t r [1:l e n g t h (leftstr$gt)] <-leftstr$gt
treestr [(length(leftstr$gt) + 1) :i]<-rightstr$gt

brlens <-1:i
b r l e n s [1:l e n g t h (l e f tstr$height)]<-leftstr$height
br le ns [(l eng th(leftstr$height)+1):i]<-ri ghtstr$height

height < - r e x p (1 , r a t e = i * (i - 1) / t h e t a) + n o d e .h e i g h t (r o o t n o d e ,no dem at rix,nspecies)
f a t h e r < - n o d e m a t r i x [r o o t n o d e ,1]
if(father == -9 | father == -8)
fatherh eig ht< -1 000 00 else
f atherheight <-node.he i g h t (f a t h e r ,no dematrix,nspecies)
brlens

while(height <f a t h e r h e i g h t){
n o d e m a t r i x [r o o t n o d e ,6]<-nodematri x[roo tn ode ,6]+1
##randomly choose two nodes
b<-sample(1:i,2)

46

##update groups

newname < - p a s t e (" (" ,treestr [b [1]] ,s e p = " ")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,r o u n d (height-brlens[b[1]] ,6) ,sep="")
newname <- pas te (ne wname,",",sep="")
newname <- pas te(newname,treestr[b[2]] ,sep="")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,r o u n d (height-brlens[b[2]] ,6) ,sep="")
newname < - p a s t e (n e w n a m e , ") " ,sep="")
t r e e s t r [b [1]]<-newname
b r l e n s [b [1]]<-height

##update dist,t r e e s t r , and branch length

i n d e x < - 1:i
index[b [2]]<-0
in d e x < - i n d e x [index >0]
treestr<-treestr [index]
brlens<-brlens[index]
if(i==2)
br e ak
i<-i-1
height <-height + r e x p (1,rate = i*(i-1)/theta)
}
if(nodematr ix[ro otn od e,1]== -9 | n o d e m a t r i x [r o o t n o d e ,1]=
tr e e s t r < - p a s t e (t r e e s t r ,";" ,sep="")
z < - l i s t (g t = " " , height = a s .matrix,node = a s .matrix)
z$gt<-treestr
z$node <- nod ema tr ix
z$he ight<-brlens
return(z)
}

= -8)

}

‘n o d e . h e i g h t ‘ <-
f u n c t i o n (i n o d e ,nod ema trix,nspecies)
{
if(inode <=nspecies)
height <-0
if(inode >nspecies)
{
s o n 1 < - n o d e m a t r i x [i n o d e ,2]
height <-node.he i g h t (s o n 1 ,nodematrix,nspec ies)+ nod em atr ix[so n1 ,4]
}
r e t u r n (h e i g h t)
}

‘s t a r . s p t r e e ‘ <-

47

function (trees, speciesname, taxaname, species.structu re ,ou tg rou p, method="nj")
{
ntree <- length(trees)
nspecies <- length(speciesname)
nt ax <- length(taxaname)
dist <- matrix(0, nrow=ntree, ncol=ntax*ntax)

for (i in 1:ntree)

ranktree1 <- rea d.t ree.nodes(trees[i])
thistr ee tax a< -ra nkt re e1$ na mes
ntaxaofthistr ee <-l en gth (th is tre et axa)
rank tr ee< -ra nk tre e1 $no des
thistreenode<-rep(-1, ntaxaofthistree)

for(j in 1: ntaxaofthistree)

thistreenode[j]<-w hi ch(ta xan ame == thi s t r e e t a x a [j]) # these names, taxanme and thistreetaxa
arent the same

i f (l e n g t h (thistreenode[j])==0)

p r i n t (p a s t e (" w r o n g u t a x a n a m e " , t h i s t reetaxa[j],"inugene",i))
r e t u r n (0)
}
}

i f (!i s .rooted t r e e (r a n k t r e e))
{
root <-which (t his tre et axa == o u t group)
if(length(root) == 0)
warn in gs(pas te ("o ut groupuisumissinguatut ree",i))
else
rankt re e<- roo t. tre e(ran ktr ee ,ro ot)
}

a<-rep(0 , 2 * n t a x a o f t h i s t r e e -1)
rankno de <-rank.nodes(ranktree,rootoftree (ranktree),ntaxaofthistree, ntax,a)

dist1 <- matrix(0, ntax, ntax)

for(j in (n t a x a o f t h i s t r e e +1):(2*ntaxaofthistree-1))
{
s o n 1 < - o f f s p r i n g . n o d e s (r a n k t r e e [j ,2],ra nkt ree ,n taxaofthistree)
son1<-son1[so n1 <=n ta xao ft his tre e]
son2 <-offspring.n od es(ra nkt ree [j ,3] ,rank tr ee, ntaxaofthistree)
son2<-son2[so n2 <=n ta xao ft his tre e]
for(k in 1:length(son1))

48

for(l in 1:length(son2))
{
dist1[th ist ree no de[so n1 [k]] ,thistreenode [s on2 [l]]] <-r an kno de[j] *2
}
}
d ist[i,] < - a s . n u m e r i c (d i s t 1 + t (d i s t 1))

}
dist[dis t== 0]< -N A
d i s t 2 < - m a t r i x (a p p l y (d i s t , 2 , m e a n , n a .r m = T R U E) ,ntax,ntax)
d i a g (d i s t 2) <-0
if (s u m (i s . n a n (d i s t 2)) >0)
{
p r i n t ("missin gu s p e c i e s !")
d i s t 2 [i s .n a n (d i s t 2)] <-10000
}

dist3 <- pair.dis t. mul se q(d ist 2, species.structure)
dist <- dist3

if(method == "upgma") sptree2 <- upgmaR(dist,sp ec ies nam e) $tr ee str
if(method == "nj")
{
s p t r e e < - w r i t e .tr e e (n j (d i s t))
s p t r e e 1 < - r e a d . t r e e . n o d e s (s p t r e e ,speciesname)$nodes
root <-w hi ch(taxaname==outgroup)
r o o t < - s p e c i e s .structure [,root]
root <-which(root==1)
sptree2<-ro ot .tr ee (sp tr ee1 ,ro ot)
a<-sptree2 [,4]
b<-which(a<0)
if(length(b) > 1)
spt r e e 2 [b [1 : (l e n g t h (b) -1)] ,4]<-0
s p t r e e 2 < - w r i t e .subt r e e (r o o t o f t r e e (s p t r e e 2) , s p t r e e 2 ,specie sn ame ,ro ot oft re e(s ptr ee 2))
}

#else pr in t("choose either upgma or nj")

}

sptree<-sptree2
return(sptree)
}

49

read.tree.nodes <-function(str,name="")
{
#eliminate the content between []
str<- g s u b (" \ \ [. * \ \] " , " " ,str)
no br l e ns < - 0
i f (l e n g t h (g r e p (" :",str))==0)
{
no br l e ns < - 1
s t r < - g s u b (" ,"," :1.0," ,str)
str<-gsub(")"," :1.0)",str)
str<-gsub(";"," :1.0;",str)
}
string <- unl is t(strsplit(str, NULL))
le ft pa r<- which(string==" (")
r i g h t p a r < - w h i c h (s t r i n g = = ")")
if(length(leftpar) != length(leftpar))
s t o p ("Theunumber uof uleft uparenthesis u isuNOTu equalutouth eu num be r uof uright u u p a r e n t h e s i s ")

speciesname<-s o r t (s p e c i e s . n a m e (s t r))
ns pe ci es< -le ng th(sp eci esn am e)

{i f(le ngth(leftpar) == (nspe cie s-1))
rooted<-TRUE
else if(length(leftpar) == (nspecies-2))
rooted<-FALSE
else
s t o p ("Theunumber uof u c ommau inutheutreeu stringu i s u w r o n g !")}

if (l en gth(name)>1 & (nspecies != length(name)))
st op ("Wrongunumber u o f u s p e c i e s y n a m e s !")

i f (l e n g t h (n a m e) >1)
speciesname <-name
{if(rooted)
nNodes < - 2*nspecies-1
else
nNodes < - 2*nspecies-2
no de s< -matrix(-9,nrow=nNodes,ncol=7)}

str1<-str
if(length(grep(" [a-z]",speciesname ,i g n o r e .case = T R U E)))
s t r 1 < - n a m e 2 n o d e (s t r 1 ,speciesname)
father<-nspecies+1

while(father < (nNodes+1))

50

string <- unl is t(s trsplit(str1, NULL))
leftpar < - w h i c h (s t r i n g = = "(")
ri g h t p a r < - w h i c h (s t r i n g = = ")")
c o l o n < - w h i c h (s t r i n g = = ":")

{if(le ngth(leftpar) == 1) substr <- past e(str ing [leftpar[sum(leftpar < rightpar[1])]:
rightpar [1]],

sep = "" , collapse = "")
else substr <- pa ste (st ri ng[le ftpar[sum(leftpar < rig htp ar [1])]: (c olo n[which(colon>rightpa r

[1]) [1]]-1)] ,
sep = "", collapse = "")}

subst ri ng< -un li st(st rsp lit (s ubs tr , NULL))
c o l o n < - w h i c h (s u b s t r i n g = = ":")
c o m m a < - w h i c h (s u b s t r i n g = = ",")
p o u n d < - w h i c h (s u b s t r i n g = = "#")
percent <-wh i c h (s u b s t r i n g = = "%")
combin e< -wh ic h(s ubs tr ing == "," | substring==")" | substring=="#" | substring=="%")

n o d e 1 < - a s . i n t e g e r (p a s t e (s u b s t r i n g [2:(c olon[1]- 1)] , sep="",collapse=""))
n o de2<-as.integer(paste(substring[(comma [1] + 1) :(colon [2]-1)] ,sep="",collapse = ""))

i f (l e n g t h (c o m m a) >1)
node3<-as.integer(paste(substring[(c omma [2] + 1) :(colon[3]- 1)],sep="",collapse = ""))

#branch length

i f (l e n gth(colon)==0)

node1Branch<--9;
node2Branch<--9;
}
i f (l e n g t h (c o l o n) >0)
{
x 1 < - c o m b i n e [s u m (combine <colon [1])+1]-1
x2<-combine [s u m (combine <colon [2])+1]-1
i f (l e n gth(colon)==3)
{
x 3 < - c o m b i n e [s u m (combine <colon [3])+1]-1
n o d e s [n o d e 3 ,4]<-as.doub le (pa ste (s ubs tr ing [(c ol on[3] + 1) :x3],sep="",collapse=""))
}
n o d e 1 B r a n c h < - a s .d o u b l e (p a s t e (substring [(colon[1] +1) :x1] ,sep="",collapse = ""))
n o d e 2 B r a n c h < - a s .d o u b l e (p a s t e (substring[(colon[2] + 1) :x2],sep="",collapse=""))
}

#mutation rates
if(length(percent) ==0)

node1mu<--9
node2mu<- -9

51

}
if (le ng th(percent)= = 1)
{
i f (p e r c e n t [1]<comma [1])
{
n o d e 1 m u < - a s .double (pa ste (s ubs tr ing [(percent[1] + 1) :(comma [1]- 1)] ,sep="",collapse=""))
node2mu <- -9
}
else

n o d e 2 m u < - a s .d o u b l e (p a s t e (s u b s t r i n g [(p e r c e n t [1] + 1) :(length (s u b string) - 1)] ,sep="",collapse=""
))

node1 mu <- -9
}
}
if(length(percent)==2)

n o d e 1 m u < - a s .double (pa ste (s ubs tr ing [(p er cen t[1] + 1) :(comma [1]- 1)] ,sep="",collapse=""))
n o d e 2 m u < - a s .d o u b l e (p a s t e (s u b s t r i n g [(p e r c e n t [2] + 1) :(l e n g t h (substring)- 1)],sep="",collapse=""

))
}
if(length(percent)==3)

n o d e 1 m u < - a s .double (pa ste (s ubs tr ing [(p er cen t[1] + 1) :(comma [1]- 1)] ,sep="",collapse=""))
n o d e 2 m u < - a s .double (pa ste (s ubs tr ing [(p er cen t[2] + 1) :(comma [2]- 1)] ,sep="",collapse=""))
n o d e 3 m u < - a s .d o u b l e (p a s t e (s u b s t r i n g [(p e r c e n t [3] + 1) :(l e n g t h (substring)- 1)],sep="",collapse=""

))
n o d e s [n o d e 3 ,5]<-node3mu
}

#population size
if(length(percent) == 0)

i f (l e n gth(pound)==0)

no de 1t heta<--9
node2 th eta <- - 9
}
if (length(pound)==1)
{
i f (p o u n d [1]<comma [1])
{
n o d e 1 t h e t a < - a s .double (p ast e(s ub str in g[(pou nd [1] +1) :(comma [1]- 1)] ,sep="",collapse = ""))
node2 th eta <- - 9
}
else
{
n o d e 2 t h e t a < - a s .d o u b l e (p a s t e (s u b s t r i n g [(pound [1]+1) :(length (substring)-1)] ,sep="",collapse = "

"))

52

node1 th eta <- - 9
}
}
i f (l e n gth(pound)==2)
{
node 1t heta<-as . double (paste(substring [(pound [1]+1) :(comma [1]- 1)],sep="
node 2t heta<-as . doubl e(paste(substring [(pound [2]+1) :(l ength (s u b string) -

"))
}
i f (l e n gth(pound)==3)
{
node 1t heta<-as . double (paste(substring [(pound [1]+1) :(comma [1]- 1)],sep="
node 2t heta<-as . double (paste(substring [(pound [2]+1) :(comma [2]- 1)],sep="
node 3t heta<-as . doubl e(paste(substring [(pound [3]+1) :(l ength (s u b string) -

"))
nodes[node3 ,5] <-node3theta
}
}
if(length(percent) >0)
{
i f (l e n gth(pound)==0)

node1 th eta <- - 9
node2 th eta <- - 9
}
if (length(pound)==1)
{
i f (p o u n d [1]<comma [1])
{
n o d e 1 t h e t a < - a s .do ub le(pa ste (substring[(pound [1]+1) :(percent [1]- 1)] ,sep
node2 th eta <- - 9
}
else
{
n o d e 2 t h e t a < - a s .do ub le(pa ste (substring[(pound [1]+1) :(percent [2]-1)] ,sep =
node1 th eta <- - 9
}
}
i f (l e n gth(pound)==2)
{
n o d e 1 t h e t a < - a s .do ub le(pa ste (substring[(pound [1]+1) :(percent [1]- 1)] ,sep
n o d e 2 t h e t a < - a s .do ub le(pa ste (substring[(pound [2]+1) :(percent [2]- 1)] ,sep
}
i f (l e n gth(pound)==3)
{
n o d e 1 t h e t a < - a s .d o u b l e (p a s t e (s u b s t r i n g [(p o u n d [1] + 1) :(p e r c e n t [1]- 1)] ,sep
n o d e 2 t h e t a < - a s .double (pa ste (s ubs tr ing [(pound [2]+1) :(p e r c e n t [2]- 1)] ,sep
n o d e 3 t h e t a < - a s .do ub le(pa ste (substring[(pound [3]+1) :(p e r c e n t [3]- 1)] ,sep
n o d e s [n o d e 3 ,5]<-node3theta

" , collapse =" "))
1)] ,sep="",collapse="

" , collapse =" "))
" , collapse =" "))
1)] ,sep="" ,collapse = "

= "" , collapse = ""))

"" , collapse = ""))

= " " , col l a p s e = " "))
= " " , col l a p s e = " "))

= " " , col l a p s e = " "))
= " " , col l a p s e = " "))
= " " , col l a p s e = " "))

53

}
}
n o d e s [n o d e 1 ,1]<-father
n o d e s [n o d e 1 ,4]<-node1Branch
n o d e s [n o d e 1 ,5]<-node1theta
n o d e s [n o d e 1 ,6]<-node1mu

n o d e s [n o d e 2 ,1]<-father
n o d e s [n o d e 2 ,4]<-node2Branch
n o d e s [n o d e 2 ,5]<-node2theta
n o d e s [n o d e 2 ,6]<-node2mu

i f (l e n g t h (c o m m a) >1)

n o d e s [n o d e 3 ,1]<-father
nodes [father ,4]<-node3
}

nodes [father ,2]<-node1
n o d e s [f a t h e r ,3]<-node2

rightpar1 <- whi ch(su bst ri ng == ")")
if (rightpar1 < length(substring))
{
postprob <- p a s t e (s ubstring[(rightpar1+1):length(sub string)],sep = "", collapse = "")
nodes[father, 7] <- as.numeric(postprob)
}

substr < - g s u b (" [(]","[(]",substr)
substr < - g s u b (" [)]","[)]",substr)
substr <-gsub("\ \ + " , " " , s u b s t r)
s t r 1 < - g s u b (" \ \ + " ,"" ,str1)
str1<-gsub(s ub str ,f ath er ,st r1)
father<-father+1
}

if(l en gth(grep("%",str1)))
nodes[nNodes ,6]< - a s .d o u b l e (g s u b (";"," ",g s u b (" .*\\ % " ,"" ,str1)))
if(l en gth(grep("#",str1)))
{
if(l en gth(grep("%",str1)))
n o d e s [n N o d e s ,5]< - a s .d o u b l e (g s u b (" .*\\ # " ,"",gsub (" \\%.*","",str1)))
else
nodes[nNodes ,5]< - a s .d o u b l e (g s u b (";"," ",g s u b (" .*\\ # " ,"" ,str1)))
}
i f (!rooted)
n o d e s [n N o d e s ,1]<--8
if(nobrlens == 1) node s[,4]<--9

54

z <- list(nodes = matrix(0, nNodes, 5), names ="", root=TRUE)

z$ nodes<-nodes
z$names <- spe ci esn ame
z$root< -r oot ed
z
}

‘o f f s p r i n g . n o d e s ‘ <-
f u n c t i o n (in o d e ,no de mat rix,nspecies)
{
s t r i n g < - o f f s p r i n g . n o d e s .s t r i n g (i n o d e ,nodematrix,nspecies)
offspr ingnodes < - a s . n u m e r i c (u n l i s t (s t r s p l i t (string,split = "u")))
i f (n o d e m a t r i x [i n o d e ,1] == -8)
offspr in gno des <- dim (n ode mat ri x) [1] :1
r e t u r n (a s .n u m e r i c (u n l i s t (s t r s p l i t (s t r i n g ,s p l it="u"))))
}

‘s p e c i e s . n a m e ‘ <-
function(str)
{
str<-gsub("[u]", "", str)
str<-gsub(" [; .]","" ,str)
str<-gsub(" : [0-9e-]*" ,"",str)
str < - g s u b ("# [0-9e-]* " , " " , str)
str<-gsub(") [0 - 9e-]*","",str)
str<-gsub(" [()]","",str)
str<-gsub("[u]", "", str)
name < - s o r t (u n l i s t (s t r s p l i t (s t r ,split = " ,")))

r e t u r n (n a m e)
}

‘r o o t o f t r e e ‘ <
function (nodematrix)
{
i f (s u m (n o d e m a t r i x [,1]< 0) >1)
stop (" moreuthanutwouroots! ")
nodes < - s u m ((n o d e m a t r i x [, 1] < 0) * (1 : l e n g t h (n o d e m a t r i x [,1])))
re t u r n (n o d e s)
}

55

‘root . tree ‘ <-
f u n c t i o n (n o d e m a t r i x ,outgroup)
{

node < - c h a n g e . r o o t (n o d e m a t r i x ,n o d e m a t r i x [outgroup ,1])
no de s< -node$nodes
oldroot<-node$ ro ot nod e

r o o t n o d e < - m a t r i x (- 9 , 1 , d i m (n o d e m a t r i x) [2])
rootnode [1,2]<-outgroup
r o o t n o d e [1,3]<-oldroot

if(nodes[old ro ot, 2] ==o ut gro up)
nodes[oldroot ,2] <-nodes [oldroot ,4]
if(nodes[oldroot ,3]==outgroup)
nodes[oldroot ,3] <-nodes[oldroot ,4]

n o d e s [o l d r o o t ,4]<- n o d e s [o u t g r o u p ,4]/2
nodes [o u tgroup,4]<-nodes [o u tgroup,4]/2

n o d e s [o l d r o o t ,1]<- d i m (n o d e s) [1]+1
nodes [outgroup , 1] <-dim (nodes) [1]+1

roottree < - r b i n d (n o d e s ,rootnode)

return(roottree)

}

’s p s t r u c t u r e ’<-
funct i o n (n u m s g e n e n o d e s)
{

nspecies< -l eng th (nu msg en eno de s)
ntaxa <-s u m (n u m s g e n e n o d e s)
s p < - m a t r i x (0,nrow=nspe ci es, nc ol= nta xa)
index<-matrix (0 ,nr ow =nt ax a,n col =2)
index[,2]<-1:ntaxa

b<-1
for(i in 1:nspecies)
{
for(j in 1:numsgenenodes [i])

i n d e x [b ,1]<-i

56

b<-b+1
}
}
s p [index]<-1
return(sp)
}

‘i s .r o o t e d t r e e ‘ <-
function(tree)

i f (i s .c h a r a c ter(tree))
{
string <- unl is t(s trsplit(tree, NULL))
leftpar < - w h i c h (s t r i n g = = "(")
r i g h t p a r < - w h i c h (s t r i n g = = ")")
c o m m a < - w h i c h (s t r i n g = = ",")
if(length(leftpar) != length(leftpar))
s t o p ("Theunumber uof uleft uparenthesis u isuNOTu equalutouth eu num be r uof uright u p a r e n t h e s i s ")
if(length(leftpar) == length(comma))
rooted<-TRUE
else if(length(leftpar) == (length(comma)-1))
rooted<-FALSE
else
s t o p ("Theunumber uof u c ommau inutheutreeu stringu i s u w r o n g !")
}
else
{
rooted<-TRUE
if (t re e[r ootoftree(tree),1] == -8)
rooted<-FALSE
}
return(rooted)
}

‘r a n k .n o d e s ‘ <-
function(treenode, inode, ntaxa, start, rank)
{
if(inode > ntaxa)
{
l e f t < - t r e e n o d e [i n o d e ,2]
right < - t r e e n o d e [i n o d e ,3]
rank[inode] <-start
rank[left]<-start-1
r ank[rig h t] < - s t a r t -1
r a n k < - r a n k .n o d e s (t r e e n o d e , l e f t , n t a x a , r a n k [l e f t] ,r a n k)
r a n k < - r a n k .n o d e s (t r e e n o d e ,r i g h t , n t a x a ,ran k [r i g h t],r a n k)
r e t u r n (r a n k)
}

57

else

r e t u r n (r a n k)
}
}

‘ node2name ‘ <-
function(treestr , name=" ")
{
str<-treestr
speciesname< -s pec ie s.n am e(s tr)

o l d < - p a s t e (1 : l e n g t h (n a m e) ,":",s e p = "")
new <-p a s t e (n a m e ,"$",s e p = "")
for(i in l e n g t h (n a m e) :1)
s t r < - g s u b (old [i] ,new[i] ,str)
s t r < - g s u b (" \ \ $ " , " : " ,str)

str

}

‘n a m e 2 n o d e ‘ <-
funct i o n (t r e e s t r ,n a m e = "")
{
str<-treestr
i f (le n g t h (n a m e) <2)
speciesname<-s o r t (s p e c i e s . n a m e (s t r))
else
speciesname <-name

new < - 1 : l e n g t h (spec i e s name)
old<-speciesname
strlength<-nchar(old)
inputorder <-o r d e r (r a n k (s t r l e n g t h ,t i e s .m e t h o d = "r a n d o m ") ,decreasing = T R U E)
for(i in 1:l e n g t h (speci e s n a m e))
str<-gsub(ol d[i np ut o r d e r [i]] ,n e w [input order[i]] ,str)

str

}

58

‘o f f s p r i n g . n o d e s . s t r i n g ‘ <-
f u n c t i o n (i n o d e ,nod ema trix,nspecies)
{
if(inode<1 | inode>dim(nodematrix) [1]){
a <-paste("The uno deu nu mbe ru shouldu be ybe tw een u1u a n d " ,dim(nodematrix) [1])
st op (a)
}
if(inode <=nspecies)
return(paste(inode))
if(inode >nspecies){
s o n 1 < - n o d e m a t r i x [i n o d e ,2]
son2 < - n o d e m a t r i x [i n o d e ,3]
str1<-offspr ing.nodes.string (so n1, no dem at rix ,ns pe cie s)
str2<-offspr ing.nodes.string (so n2, no dem at rix ,ns pe cie s)
str<-paste(inode)
s t r < - p a s t e (s t r ,str1)
r e t u r n (p a s t e (s t r ,st r 2))
}
}

‘p a i r . d i s t . m u l s e q ‘ <-
f u n c t i o n (d i s t ,s p e c i e s .structure)
{
for(i in 1:di m(spe ci es. st ruc tur e) [1]){
s p e c i e s .s t r u c t u r e [i ,]< - s p e c i e s .s t r u c t u r e [i ,]/s u m (s p e c i e s .structure[i,])
}

d i s < - r o u n d ((s p e c i e s .s t r u c t u r e) % * % d i s t % * % t (s p e c i e s .structure) ,8)
d i a g (d i s) <-0
di s
}

‘c h a n g e . r o o t ‘ <-
f u n c t i o n (n o d e m a t r i x , newroot)
{

root<-rootof tr ee(no dem at rix)

if(newroot != root){
##unroot the tree

i f (n o d e m a t r i x [r o o t ,1] == -9)
nodes <-u nro ot tree(nodematrix) else

59

nodes<-n od ema tr ix
nspecies <-dim(nodes) [1] /2+1
##new root should be the internodes

if(newroot <=nspecies)
st o p ("newu root u shouldub e u theu inter n o d e s ! ")

a n c < - a n c e s t o r (n e w r o o t ,nodes)
nanc < - 1 ength (anc)
##update old root
a < - n o d e s [d i m (n o d e s) [1] ,2:4]
a[a== a n c [nanc- 1]] <-a[3]
n o d e s [d i m (n o d e s) [1] ,2:4]<-a

##reverse the ancestral history
if (nanc==2){
##reverse son, father, and branch length

brlens<- no des [a nc [1] ,4]
n o d e s [a n c [1],4]< - a n c [2]
nodes[anc [2] ,1]<-anc [1]
nodes[anc [2] ,4] <-brlens
}

if(nanc >2){
##reverse son

brlens<- no des [a nc [1] ,4]
n o d e s [a n c [1],4]< - a n c [2]
for(i in 2:(nanc-1)){
if(nodes[anc[i] ,2]==anc[i-1])
n o d e s [anc [i] ,2]<-a n c [i + 1]
else
n o d e s [anc [i] ,3]<-anc [i + 1]
}
##reverse son and branch length

n o d e s [a n c [2:n a n c] ,1] < - a n c [1:(n a n c -1)]
n o d e s [a n c [2:n a n c] ,4] < - n o d e s [a n c [1:(n a n c -1)] ,4]
n o d e s [a n c [2],4]<-brlens
}
n o d e s [n e w r o o t ,1]<--8
} else {
nodes<-n od ema tr ix
}

z <- list(nodes = matrix(0, d i m (n o d e s) [1], 5), r o o t n o d e = a s .integer)

z$nodes<-nodes
z$rootnode< -n ewr oo t
z
}

60

‘w r i t e . s u b t r e e ‘ <
function (inode, nodematrix, taxaname, root)
{
i f (n o d e m a t r i x [i n o d e ,2] > 0)
{
son1 <- n o d e m a t r i x [i n o d e ,2]
son2 <- n o d e m a t r i x [i n o d e ,3]
x <- p a s t e (" (" , w r i t e . s u b t r e e (s o n 1 , n o d e m a t r i x ,t a x a n a m e , r o o t) ," :",node m a t r i x [s o n 1 ,4],",",

w r i t e .s u b t r e e (s o n 2 ,n o d e m a t r i x ,t a x a n a m e ,r o o t) , " : " , n o d e m a trix[son2,4],")",sep="")
}
else x <- taxaname[inode]
if(inode == root) x <- paste(x,";",sep="")
return(x)
}

‘a n c e s t o r ‘ <-
function(inode,nod em atr ix)
{
i f (!i s .root e d t r e e (n o d e m a t r i x))
{
w a r n i n g s ("Theutreeu isunot u r o o t e d !")
}
rootnod e<- roo to ftr ee (no dem at rix)
nnodes<-dim(no dem at rix) [1]

if(inode == rootnode)
ancestor<-rootnode
else
{
a n c e s t o r < - r e p (0 ,n n o d e s)
a n c e s t o r [1]<-inode
i<-1
while(ancestor[i] ! = rootnode)
{
a n c e s t o r [i + 1] < - n o d e m a t r i x [a n c e s t o r [i] ,1]
i<-i+1
}
}
r e t u r n (a n c e s t o r [ancestor >0])
}

’N J s t ’<-
fu n c t i o n (g e n e t r e e s , taxaname, spname, species.structure)
{

ntre e< -le ngth(genetrees)

61

ntaxa <-1 e n g t h (t a x a n a m e)
dist <- matrix(0, nrow = n t r e e , ncol = ntaxa * ntaxa)

for(i in 1:ntree)

genetree1 <- r e a d .t r e e .nod e s (g e n e t r e e s [i])
thistreetaxa <- genetree1$names
nt axaofthistree <- length(thistreetaxa)
thistreenode <- rep(-1, ntaxaofthistree)
dist1<-matrix (0 ,nt ax a,n ta xa)
for (j in 1:ntaxaofthistree)
{
th istree n o d e [j] <- whi ch (taxaname == thistree t a x a [j])
if (le n g t h (this t r e e n o d e [j]) == 0)
{
p r i n t (p a s t e ("wrongut a x a n a m e ", thistr ee tax a[j], "in ug ene ", i))
r e t u r n (0)
}
}
dist1 [thistreenode , thistre e n o d e] <-nancdist(genetrees[i] ,thistreetaxa)$dist
d i s t [i ,] < - a s . n u m e r i c (d i s t 1)
}

dist[dist == 0] <- NA
dist2 <- m a t r i x (ap p l y (d i s t , 2, mean, n a .rm = TRUE), ntaxa, ntaxa)
diag(dist2) <- 0
if (sum (is . nan (dist 2)) > 0)
{
pr i nt (" mi ss i ng u spe c i e s ! ")
dist2 [is . nan(dist2)] <- 10000
}
speciesdistance <- p a i r .d i s t .m u l s e q (dist2 , s p e c i e s .s t r ucture)

t ree<-wri te. tre e(nj(sp eci esd is tan ce))
n o d e 2 n a m e (t r e e ,name = spn a m e)
}

’n a n c d i s t ’<-
f u n c t i o n (t r e e , taxaname)
{
ntaxa <-1 e n g t h (t a x a n a m e)
nodematr ix <-re ad. tre e. nod es (tree,taxaname)$nodes
i f (i s .root e d t r e e (n o d e m a t r i x)) nodematrix< -u nro ot tre e(n od ema tr ix)
di s t < - m a t r i x (0, ntaxa,ntaxa)
for(i in 1:(ntaxa-1))
for(j in (i+1):ntaxa)
{
anc1< -a nce st or(i,n od ema tr i x)
a n c 2 <-a n c e s t o r (j ,nodematrix)

62

n<-sum (which (t(matrix (rep(anc 1 ,length(anc 2)), ncol = length(anc 2)))-anc2==0, arr. ind=TRUE) [1,])
-3

if(n==-1) n<-0
dist[i, j] <-n
}
di s t < - di s t + t (di s t)
z < - l i s t (d i s t = a s .m a t r i x , t a x a n a m e = a s .vector)
z$dist<-dist
z$taxaname <-taxaname
z
}

‘u p g m a R ‘ <-

This function takes a distance matrix and produces an ultrametric tree using UPGMA.

NOTE: method "min" from phybase has been REMOVED

f u n c t i o n (d i s t ,name,method="a ve rag e")
{
nspecies<-length (n ame) # Number of species

treestr<-name # Names to be used and modified to build Newick format

tree .

brlens<- re p(0 ,n spe cie s) # Vector of distance from leaves to MRCA of clade (initially

zero for 1-clades)

cladesize<- rep(1, nspecies) # Vector of counts of number of taxa in each clade already
grouped (initially all 1s).

b<-rep(0,2) # This will be location of the smallest positive

entry in dist

for(i in 1:(nspecies-1)){
Find the minimum distance , determining clades to be amalgamated
diag(dist)<-NA

diagonal of the distance matrix to NA so that the minimum number is not
position <- which(dist == min(dist, na.rm = TRUE))[1] # Find the the first

the smallest n u m b e r , searching column-wise.
b[1] <- fl oo r(p os iti on /le ngt h(dis t[1,])) # This

column index.

b[2] <- position - b[1] * length(dist[1,]) # This

index.
if (b[2] == 0)

position is at the bottom of the column, then we must adjust
b[2] <- length(dist[1,])
else b [1] <- b[1] + 1

Amalgamate clades and collapse to smaller distance matrix

halfdist12= dist[b[2], b[1]]/2 # Save half the smallest value in the matrix

if(method == "average"){

Change the

0
occurrence of

wi l l b e t he

wi l l be the row

If the

63

dist[b[1],]= (dist[b[1],]*clad es ize [b[1]] + dist[b[2],]*c la des ize [b [2]]) /(c lad es ize [b[1]] +
cladesize[b[2]]) # Compute weighted average using clade size for new row/ column of
distance matrix

dist[,b[1]]= t(dist[b[1],])
}
if (me t ho d == " mi n") {
bdist <- dist [b[2], b[1]]
dist[, b[1]] <- pmin(dist[, b[1]], dist[, b[2]])
dist[b[1],] <- pmin(dist [b[1],], dist[b[2],])
}
Remove a column and row
index <- 1: (nspecies + 1 - i)
index[b [2]]<-0
in d e x < - i n d e x [index >0]
di s t < - di s t [i nde x , i nde x]

##Build a Newick tree

newname < - p a s t e (" (" ,treestr [b [1]] ,s e p = " ")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,round((ha lfd is t12 -b rle ns[b[1]]) ,5) ,sep="")
newname <- pas te (ne wname,",",sep="")
newname <- pas te(newname,treestr[b[2]] ,sep="")
newname <- pas te (ne wname,":",sep="")
newname < - p a s t e (n e w n a m e ,round((ha lfd is t12 -b rle ns[b[2]]) ,5) ,sep="")
newname < - p a s t e (n e w n a m e , ") " ,sep="")
t r e e s t r [b [1]]<-newname
brlen s[b]< -ha lf dis t1 2

##Update clade sizes.

cladesi ze [b[1]] <- cladesize[b[1]] + cladesize[b[2]]
c l ade s i z e [b [2]] < - 0
cladesize<- cladesize[cladesize >0]

##

treestr<-treestr[index]
brlens<-brlens[index]
}

Display results

tr e e s t r < - p a s t e (t r e e s t r ,";" ,sep="")
z<-list(nodes=mat ri x,t ree st r=" ", nam e=" ")
n o d e < - r e a d . t r e e . n o d e s (t r e e s t r ,n a m e)
z$node s< -no de$ no des
z$name<-node $name
z$treestr< -t ree st r
z
}

64

#This function takes a NON -METRIC rooted tree in Newick, adds a label called ROOT and
produces a rooted

#tree with the label ROOT in Newick format. New edges have arbitrary lengths.

{ tree1<- r e a d .t r e e (te xt= t r e e)

Ma k e s u r e t h e t r e e i s r o o t e d
if(is.rooted (t r e e 1) = = T R U E)
{
tree<- s u b (";", "", tree)
tree<- paste("(", tree, sep="")
tree<- p a s t e (t r e e ,",R O O T) ;", sep="")
}
else

p r i n t (" E r r o r : u C a n ’t u p l a c e u R O O T u o n y u n r o o t e d y t r e e ")
}

tree
}

’l a b e l t o p o r o o t ’<- f u n c t i o n (t r e e)

’R F c l a d e s ’<-
function (tree1, tree2)
#This function takes two rooted trees in Newick format, attaches a label called ”R O O T ” and
#performs a Robinson F o u l d ’s Distance. This distance is interpreted as the clade distance.

No t e : t re e s c a n n o t h a v e
any edge lengths

#Attach label ”R O O T ” to the trees
tree1<- la b e l t o p o r o o t (t r e e 1)
tree2<- la b e l t o p o r o o t (tr e e 2)

#Cnvert trees to phylo format (neccesary for RF.dist)
tree1<- r e a d .t r e e (te xt= tree1)
tree2<- r e a d .t r e e (t e x t = t r e e 2)
#Compute Robinson Foulds Distance.
distance<- R F .d i s t (tre e1, tree2)
distance

}

65

#This function takes a METRIC rooted tree in Newick, adds a label called ROOT and produces a
rooted

#tree with the label ROOT in Newick format. New edges have arbitrary lengths.

{ tree1<- read.tree(text=tree)

if(is.rooted (t r e e 1) = = T R U E)
{
tree<- s u b (";", "", tree)
tree<- paste("(", tree, sep="")
tree<- p a s t e (t r e e , " : 0 . 1 , R 0 0 T : 0 . 0 0 1);", sep="")
}
else
{
print(" E r r o r : u C a n ’tupl a c e u R00Tu onu unroo t e d u t r e e ")
}

tree
}

’l a b e l r o o t ’<-
f u n c t i o n (t r e e)

‘m e a n c o u n t m e t h o d s .R F ‘ <-
f unct io n(s pt ree ,t opo log y, Nsa mp les , Nsimulations, repetition)
Purpose: This function simulates gene trees according to the coalescent model, then

takes these gene trees and estimates

#the species tree using STAR, and it computes the mean Robinson F o u l d ’s distance as well as
its variance .

##This function requires loading packages ’a p e ’ and ’p h a n g o r n ’

Due to sim.coal.sptree, species trees must be ultrametric.

##Nsample is the number of lineages per taxon.

repetition is the number of data points you want to collect.

##Nsimulations indicates the number of simulated gene trees you want from the coalescent
code .

Aunrooted :unroot gene trees, reroot at O and run STAR to produce an unrooted species
tree .

66

Arooted: unroot gene trees, reroot at O, run STAR and then reroot the resulting species

tree at O.

Bunrooted: unroot gene trees and run USTAR to produce an unrooted species tree.

Brooted: unroot hene trees, run USTAR and then reroot the resulting species tree at 0.

Crooted: unroot gene trees, reroot at O, run STAR using UPGMA to produce a rooted species

t ree .

Cunrooted: unroot Crooted.

#Dunrooted: USTAR on gene trees rerooted at ”O ” and then root labeled: reroot at o, then

label root and then unroot to run USTAR.

#Inputs required by sim.coaltree.sp
spname < - s p e c i e s .n a m e (s p t r e e)
name <-spname
ns pe cies<- l e n g t h (spna m e)
nodematr ix <-r e a d . t r e e . n o d e s (s p t r e e , spna m e)$nodes
root no de <-2 *ns pe cie s - 1
s e q < - r e p (N s a m p l e s ,nspecies)

#Label ROOT the topological tree and convert it to phylo format

labelto p o l o g y <- sub(";", "", topology)
l a b e l t o p o l o g y < - p a s t e ("(", labeltopology, sep="")
labelto p o l o g y <- p a s t e (la b e l t o p o l o g y ,",R O O T) ;", sep="")
labeltopo lo gy< - read.tree(t ex t=l ab elt op olo gy)

#Convert the original topological tree (no label ROOT) from Newick format into phylo format

rootedtopo lo gy< -r ead .t ree (te xt =to po log y)

#Unroot the topological tree (phylo)
unroot edt opology <-unroot(rootedtopology)

#Unroot the label ROOT topological tree (phylo)
un r o o t e d l a b e l t o p o l o g y <- unr oot(labeltopology)

#Allocate space for vectors in the following loop
genetrees<- rep("", Nsimulations)
labelro ot edg ene tr ees <- rep ("" , Ns imulat i o n s)
re r o o t e d = r e p ("" , Nsimulations)
unroot edtruetree = r e p ("", Ns imulat i o n s)
reroo te dla bel ge net re es = r e p (" ", Ns imulat i o n s)

#Allocate space for count vectors.

A r o o t e d .co u n t <- c()
A u n r o o t e d .count<- c()

67

Broote d. cou nt <- c()
Bu nr oo ted .co un t<- c()
Croote d. cou nt <- c()
Cu nr oo ted .co un t<- c()
D r o o t e d .count <-c()
D u n r o o t e d .count <-c()
for (i in 1: repetition)

{

SIMULATE GENE TREES

for (j in 1:Nsimulations)
{

#simulate genee trees according to coalescent model

g e n e t r e e s [j] <- s i m . c o a l t r e e .s p (r o o t n o d e , n o d e m a t r i x ,nspe ci es, seq ,s pna me)$g t
l a b e l r o o t e d g e n e t r e e s [j]<-labelroot(genet rees[j])

#Trees used in A and C: unroot genetrees and reroot them at ”O ” (outgroup).

phyloroo t e d < - r e a d . t r e e (t e x t = g e n e t r e e s [j]) # Convert the gene trees from the coalescent model
into phylo format.

phyloroo te d<- roo t(phy lo roo ted , "0", reso l v e . r o o t = T R U E) # Unroot the phylo formatted gene
trees and reroot them at the outgroup ''O''.

rerooted[j]<-w ri te. tr ee(phy lo roo te d) # Convert the phylo rerrooted trees back to Newick
format and store them in a vector.

#Trees used in B: Unroot the gene trees from the coalescent model.

unro oted<- read.tree(text = gen e t r e e s [j]) # conert gene trees to phylo
unro oted<- unroot(unrooted) # Unroot the gene trees

u n r o o t e d t r u e t r e e [j] < - w r i t e .tree(unrooted) # Convert back to Newick.

prin t(unr oot ed tru et ree)

#Trees used in D :USTAR on gene trees rerooted at "O" and then root labeled: reroot at o,

then label root and then unroot to run USTAR.:

Z<- labelroot(rerooted[j])
Z<-read.tree(text=Z)
A<-unroot(Z)
reroo te dla bel ge net re es [j]<- w r i t e .tree(A)

}

INPUTS REQUIRED BY "star.sptree" AND NJst.

68

Fo r t r e e s w i t h o u t l a b e l R O O T .
spe ci es nam e<- sp eci es .na me(ge net re es[1])
ta x a n a m e < - speciesname
matri x n u m b e r = length(speciesname)
s p e c i e s .stru ctu re <-m atr ix (0, nc ol= matr ixnumber ,nrow= matr i x n umber)
d i a g (s p e c i e s .str u c t u r e) <-1

Fo r t r e e s wi t h l a b e l R O O T .

spec ies name2 < - s p e c i e s .n a m e (l a b e l r o o t e d g e n e t r e e s [1])
nspec ies2 = length(speciesname2)
taxanam e2 <-s pec ie sna me 2
matr ixnumb er2 = l e n g t h (speciesname2)
s p e c i e s .struc tur e2 <-m at rix (0, nc ol= matr ixnumber2 ,nrow= matr ixnum ber 2)
d i a g (s p e c i e s .struc t u r e 2) <-1

BUILD SPECIES TREES USING STAR AND NJst (USTAR). THE TREES ARE BUILT WITH NEIGHBOR JOINING

AND U P G M A .

#The following are comparisons among rooted gene trees

Arooted:

A r o o t e d < - s t a r .s p t r e e (r e r o o t e d , speciesname, taxaname, s p e c i e s .s t r u c t u r e , ou t g r o u p = "O ",
me t ho d = " nj ")

Aroote d< -re ad. tr ee(te xt= Aro ot ed)

Aunrooted:

Aunrooted<-unr oo t(A ro ote d)
A r o o t e d < - d r o p .t i p (A r o o t e d , c("O"), t r i m .internal=FALSE) #Drop O from Arooted tree

Bu n ro o t e d

B u n r o o t e d < - N J s t (u n r o o t e d t r u e t r e e , taxaname, speciesname, s p e c i e s .s t r ucture)
Bunrooted<- read .t ree (t ext=Bunrooted)
#Brooted

Brooted<- r o o t (B u n r o o t e d , "O", r e s o l v e .root=TRUE)
#Crooted

C r o o t e d < - s t a r .s p t r e e (r e r o o t e d , speciesname, taxaname, s p e c i e s .s t r u c t u r e , ou t g r o u p = "O ",
me t h o d = " u p g m a ")

Crooted<- re ad.tree(text=Crooted)
#Cunrooted

Cunrooted<- unroot(Crooted)
C r o o t e d < - d r o p .t i p (C r o o t e d , c("O"), t r i m .internal=FALSE) #Drop O from Crooted tree
#Dunrooted: USTAR on gene trees rerooted at ”O ” and then root labeled: reroot at o, then

label root and then unroot to run USTAR.

D u n r o o t e d < - N J s t (r e r o o t e d l a b e l g e n e t r e e s ,t a x a n a m e 2 , s p e c i e s n a m e 2 , s p e c i e s .structure2)
D u n r o o t e d < - r e a d . t r e e (text=Dunrooted)
D r o o t e d < - r o o t (D u n r o o t e d , "ROOT", r e s o l v e .root=TRUE)

69

#Arooted RF distance (Using RFclades)
t opolo gy 1< -re ad. tr ee(te xt= top ol ogy)
topol og y1< -d rop .ti p(top ol ogy 1, c("0"), tri m.i nternal=FALSE) # Drop "O" from topology
Arooted1= Ar oot ed
A rooted1$edge .le ngt h< -NU LL #Remove the edge lengths

Arooted=write .t ree (A roo te d1)
t o p o l o g y 1 = w r i t e .tree(topology1)
A r o o t e d .d i s t < - R F c l a d e s (A r o o t e d , topology1)

#Aunrooted RF distance

Aunroo te d<- dr op. tip (A unr oo ted , c("0"), tr im.internal=FALSE)
u n r o o t e d t o p o l o g y 1 < - d r o p . t i p (u n r o o t e d t o p o l o g y , c("0"), trim.internal=FALSE) #Unr oo tedtopology

without ’O ’

A u n r o o t e d .d i s t < - R F .d i s t (Aunroot e d ,unrootedt opology1)

#Brooted RF distance (Using RFclades)

Brooted= drop.tip(Brooted, c("0"), trim.internal=FALSE)
Brooted1< -Br oot ed
Brooted1$edge. len gth <- NUL L #Remove the edge lengths
Brooted<- write.tree(Brooted1)
Broote d.dist<- RFclades(Brooted, topology1)

#Bunrooted RF distance

Bunrooted<- d r o p . t i p (B u n r o o t e d , c("0"), trim.internal=FALSE)
Bunrooted<- u n r o o t (B u n r o o t e d) ### NOTE :Not sure why R requires this
unrootedto p o l o g y 1 < - u n r o o t (u n r o o t e d t o p o l o g y 1)###
Bu nr oo ted .di st <- RF. dist(Bunrooted, unrootedtopology1)

#Crooted RF distance (Using RFclades)

Cr oo te d1<-Crooted
C rooted1 $ e d g e . l e n g t h < - N U L L #Remove the edge lengths
Crooted<- wr ite.tree(Crooted1)
Croot ed.dist<- RFclades(Crooted, topology1)

#Cunrooted RF distance

Cunro ot ed< -d rop .ti p(Cun ro ote d, c("0"), tri m.internal=FALSE)
Cunrooted<-u nr oot (C unr oo ted)
Cu nr oo ted .di st <- RF. dist(Cunrooted, unrootedtopology1)

#Dunrooted RF distance #Should it be RFclades(reroo te d) instead?

Dunrooted1 <-D un roo ted
D u n r o o t e d 1 $ e d g e .length<-NULL
D u n r o o t e d 1 < - d r o p .t i p (D u n r o o t e d 1 , c("R00T"), trim.internal=FALSE)
Du n r o o t e d 1 < - u n r o o t (D u n r o o t e d 1)

70

Dunrooted <- Dun ro ote d1
Du nrooted . dist<-RF . dist (Dunrooted , unroot ed top olo gy)

#Drooted

Dr oo te d1< -Dr oo ted
D r o o t e d 1 $ e d g e .length<-NULL
Droote d1 <-d ro p.t ip(Dr oot ed 1, c("R00T"), trim.internal=FALSE)
Droote d1 <-d ro p.t ip(Dr oot ed 1, c("0"), trim.internal=FALSE)
Drooted<-Drooted1
D r o o t e d < - w r i t e .tree(Drooted)
D r o o t e d .dist<- R F c l a d e s (D r o o t e d ,top o l o g y 1)

#Build a vector of distance counts from Robinson Foulds

Aroote d. cou nt [i] <- Arooted.dist
A u n r o o t e d .count[i]<- Aunrooted.dist
Broote d. cou nt [i] <- Brooted.dist
B u n r o o t e d .count[i]<- Bunrooted.dist
Croote d. cou nt [i] <- Crooted.dist
C u n r o o t e d .count[i]<- Cunrooted.dist
Drooted. co unt [i] <- Drooted.dist
D u n r o o t e d .count[i]<- Dunrooted.dist

}

m e a n 1 = m e a n (A r o o t e d .c o u n t)

m e a n 2 = m e a n (A u n r o o t e d .co unt)

mean3 = m e a n (B r o o t e d .c o u n t)

m e a n 4 = m e a n (B u n r o o t e d .co unt)

mean5 = m e a n (C r o o t e d .c o u n t)

m e a n 6 = m e a n (C u n r o o t e d .co unt)

mean7= mean(Drooted.count)

mean8=mean(Dunrooted.count)

va r 1 = v a r (A r o o t e d . c o u n t)
sd1 = s q r t(var1)

v a r 2 = v a r (A u n r o o t e d .cou n t)
sd2=sqrt(var2)

71

v ar 3 = v a r (B r o o t e d . c o u n t)
sd3 = s q r t (var3)

v a r 4 = v a r (B u n r o o t e d .cou n t)
sd4= s q r t (var4)

v ar 5 = v a r (C r o o t e d . c o u n t)
sd5 = s q r t (var5)

var6 = v a r (C u n r o o t e d .cou n t)
sd6 = s q r t (var6)

var7= v a r (D r o o t e d .cou n t)
sd7 = s q r t (var7)

var8=var(D u n r o o t e d .co u n t)
sd8 = s q r t (var8)

vector1=c(m e a n 1 ,m e a n 2 ,m e a n 3 ,m e a n 4 ,m e a n 5 ,m e a n 6 , m e a n 7 , mean8)

vector2=c(s d 1 , s d 2 ,s d 3 ,s d 4 ,s d 5 ,s d 6 ,s d 7 ,sd8)
B = l i s t (v e c t o r 1 , vector2)
return(B)

}

"b u i l d t r e e 8 g e n e r a l "<- f u n c t i o n (p o p s i z e ,b r a n c h l e n g t h 1 , b r a n c h l e n g t h 2 , b r a n c h l e n g t h 3 ,
b r a n c h l e n g t h 4 ,b r a n c h l e n g t h 5 ,b r a n c h l e n g t h 6 ,b r a n c h l e n g t h 7)

#This function takes the tree with Newick notation given by ((((((A,B), C),(D,E)),F),(G,H)),

O) and adds the indicated branchlengths. It also ensures the tree is ultrametric.

N=popsize
X = b r a n c h l e n g t h 1
Y=br an chlength2
Z=branchlength3
K=branchl en gth 4
L= branchlength5
M= br an chlength6
P= branchlength7
tree= s p r i n t f ("((((((A :% g # % g ,B :%g#%g) :% g # % g ,u C :%g#%g) :% g # % g ,(D :% g # % g ,E :%g#%g) : %g#%g) :% g # % g ,F

:%g#%g) :% g # % g ,(G :% g # % g ,H :%g#%g) :%g#%g) :% g # % g ,O :% g # % g) # % g ;", X, N, X,N,Y,N,X+ Y, N, Z,N ,X, N,
X ,N , Y+Z,N, K, N,X +Y+ Z+ K,N ,L ,N, X,N , X, N,Y+Z+K+L,N, M ,N ,X + Y + Z + K + L + M ,N ,N)

topology3<- " ((((((A,B) ,uC) ,(D,E)) ,F) ,(G,H)) ,uO);"
b o t h t r e e s = c (t r e e , topology3)

72

}

"buildtree8B"<- f u n c t i o n (p o p s i z e , b r a n c h l e n g t h 1 , b r a n c h l e n g t h 2 , branchle ngt h3 ,br anc hl eng th 4)
#This function takes the tree with Newick notation given by ((((A ,B),(C,D)) ,((E, F), (G, H))), O

) and adds the indicated branchlengths. It also ensures the tree is ultrametric.

{

N=popsize
X=branchlength1
Y=br an chlength2
Z=branchlength3
K=branchl en gth 4
tree= s p r i n t f (" ((((A : % g # % g ,B :% g # % g) :% g # % g , (C : % g # % g , D :% g # % g) :% g # % g) : % g # % g , ((E : % g # % g ,F :%g#%g)

:%g#%g,(G:%g#%g,H:%g#%g) :%g#%g) :%g#%g) :%g #% g,0:%g#%g)#%g;", X,N,X ,N ,Y, N,X ,N ,X, N, Y,N ,Z, N,
X,N,X,N,Y,N,X ,N ,X, N, Y,N ,Z, N, K,N , X+Y+ Z+ K,N ,N)

topology3<- "((((A ,B) ,(C ,D)), ((E,F),(G, H))), 0); "
bothtrees=c(tree, topology3)

}

"buildtree8C"<- f u n c t i o n (p o p s i z e , b r a n c h l e n g t h 1 , b r a n c h l e n g t h 2 , b r a n c h l e n g t h 3 , b r a n c h l e n g t h 4 ,
b r a n c h l e n g t h 5 , b r a n c h l e n g t h 6 , b r a n c h l e n g t h 7 , branchlength8)

#This function takes the tree with Newick notation given by ((((((((A, B), C) ,D) ,E),F),G), H), O
) and adds the indicated branchlengths. It also ensures the tree is ultrametric.

{

N=popsize
X=branchlength1
Y=br an chlength2
Z=branchlength3
K=branchl en gth 4
L=branchlength5
M=br an chlength6
0=branchlength7
P=branchlength8
tree= s p r i n t f (" ((((((((A : % g # % g ,B :% g # % g) :% g # % g ,C :% g # % g) :% g # % g , D :% g # % g) :% g # % g ,E :% g # % g) :% g # % g ,F

:%g#%g) : % g #%g,G:%g#%g) :%g#%g,H:%g#%g) :%g#%g,0:%g#%g) :#%g;",X,N,X,N ,Y ,N, X, N,Z ,N ,X,N,K,N,
X , N , L , N , X , N , M ,N,X,N,0,N,X,N,P,N,X+Y+Z+K+ L+M+0+P,N,N)

topology3<- "((((((((A,B) ,C) ,D) ,E) ,F) ,G) ,H) ,0) ;"
bothtrees=c(tree, topology3)

#Te following are the functions that plot the images displayed in the paper.

73

"d i s t p l o t n s h o r t "<- f u n c t i o n (b r a n c h 1 , branch2 ,branch3, b r a n c h 4 , b r a n c h 5 , b r a n c h 6 , b r a n c h 7 ,
e x p o n e n t s h o r t , Nsimulations, repetitions)

#Requires the following packages: ape, p h a n g o r n , ggplot2, gridExtra

#branch1, branch 2. ..b ra nch l are the lenghts of the internal branches

#exponentshort is the range of sizes one wishes make in order to hae a short edge.

#We choose the species tree topology by uncommenting the tree of interest. The code
presented here has the Balanced tree uncommented.

n=lengt h(exp one nt sho rt)
shortbranch= 2~ (-e xp one nt sho rt)
Arooted<-rep(NA, n)
Aunroot e d < - r e p (N A ,n)
Brooted<-rep(NA, n)
Bunrooted<-rep(NA, n)
Crooted<-rep(NA, n)
Cunrooted<-rep(NA, n)
Drooted<-rep(NA, n)
Dunrooted<-rep(NA, n)
s t d 1 < - r e p (N A , n)
s t d 2 < - r e p (N A , n)
s t d 3 < - r e p (N A , n)
std4<-rep(NA, n)
s t d 5 < - r e p (N A , n)
s t d 6 < - r e p (N A , n)
std7<-rep(NA, n)
s t d 8 < - r e p (N A , n)
for (i in 1: n)
{
1) Mi x e d Tr e e S p e c i e s Tr e e

s p tree< - buildtree8general(2, shortbranch[i], shortbranch[i], shortbranch[i], shor tb ran ch [
i], shortbranch[i], shortbranch[i], shortbranch[i])[1]

t o pology< - buildtree8general(2, shortbranch[i], shortbranch[i], shortbranch[i],
shortbranch[i], shortbranch[i], shortbranch[i], shortbranch[i])[2]

#2) Balanced Tree Species Tree

s p t r e e < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h ortbranch[i])[1]
t o p o l o g y < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i])

[2]

#3) Caterpilar Tree Species Tree

s p tree< - buildtree8C(2, shortbranch[i], shortbranch[i], shortbranch[i], shortbranch[i],
shortbranch[i] ,sh or tbr an ch[i], shortbranch[i], s h o r t b r a n c h [i]) [1]

t o pology< - buildtree8C(2, shortbranch[i], shortbranch[i], shortbranch[i], shortbranch[i],
shortbranch[i] ,sh or tbr an ch[i], shortbranch[i], s h o r t b r a n c h [i]) [2]

74

t emp1 =m ean co unt me tho ds. RF (sp tr ee, topology, 1, Nsimulations , repetitions)[[1]]
temp2= meancountme th ods .R F(s pt ree , topology, 1, Nsimulations, repetitions)[[2]]

Arooted[i]= temp1[1]
Aunrooted[i]= temp1[2]
Brooted[i]= temp1[3]
Bunrooted[i]= temp1[4]
Crooted[i]= temp1[5]
Cunrooted[i]= temp1[6]
Drooted [i] = temp1 [7]
Dunr ooted[i]= temp1[8]

std1[i]= temp2[1]
std2[i]= temp2[2]
std3[i]= temp2[3]
std4[i]= temp2[4]
std5[i]= temp2[5]
std6[i]= temp2[6]
std7[i]= temp2[7]
std8[i]= temp2[8]

}
#Build a data frame that will be included in the ggplot commands.

L= length(Arooted)
m=max(Arooted, Aunrooted, Brooted, Bunrooted, Crooted, Cunrooted)+1
short_branch= r e p (e x p o n e n t s h o r t , 8)
roote d_values= c(Arooted, Brooted, Crooted, Drooted)
prin t (l e n g t h (r o o t e d _ v a l u e s))
rooted_m et hod s= c("A-rooted", "B-rooted", "C-rooted", "D-rooted")
r o o t e d _ m e t h o d s = r e p (r o o t e d _ m e t h o d s , each=L)
stdrooted= c(std1, std3, std5, std7)
maxrooted= rooted_values + stdrooted
minrooted= ro ot ed_values- stdrooted
rooted_data=da ta .fr am e(s hor t_ bra nc h, rooted_values, r o o t e d _ m e t h o d s , m i n r o o t e d , maxrooted)
unroot ed _va lu es= c(Aunrooted, Bunrooted, Cunrooted, Dunrooted)
un ro ot ed_ met ho ds= c("A-unrooted", "B-unrooted", "C-unrooted", "D-unrooted")
u n r o o t e d _ m e t h o d s = r e p (u n r o o t e d _ m e t h o d s , each=L)
stdunrooted= c(std2, std4, std6, std8)
minunroo ted = un ro ote d_ values-stdunrooted
maxunroo ted = un ro ote d_ values+stdunrooted
unrooted_data=data. fra me (sh ort _b ran ch , unrooted_values, unrooted_methods, minunrooted,

maxunrooted)
print (rooted_data)

#Compare Rooted Distances

rootplot =g gpl ot (ro ote d_ dat a, aes(x=short_branch, y=rooted_values, c o l o r = r o o t e d _ m e t h o d s ,

75

linetype = rooted_methods , ymin=minrooted, ymax = maxrooted))
rootplot= rootplot +ge om_point(size=5, alpha=0.3, positi on =po si tio n_ dod ge(wi dth =0 .5))
rootplot= rootplot +geom_l in e(s ize =0 .9, al pha =0. 5)
rootplot= rootplot + geom _er ro rba r(siz e=1 ,a lph a= 0.5 , pos iti on=position_dodge(width=0.1))+

theme_bw() + xlab("n")+ y l ab("Averageu RF cladesuDistance")
#Compare Unrooted Distances

unrootplot= ggp lot(unrooted_data, aes(x=short_branch, y=unrooted_values, col or=unrooted_
methods, linetype=unroo te d_m eth od s, y m i n = m i n u n r o o t e d , ymax=maxunrooted))

unrootplot= unrootplot +geom_point(size=5, alpha=0.3, position=po sit io n_d od ge(wid th =0. 5))
unrootplot= unrootplot + geom_line(size =0 .9, alp ha =0. 5)
unrootplot= unr oo tplot+ geom_er ro rba r(siz e=1 ,a lph a= 0.5 , po si tio n= pos ition_dodge(width=0.1))+

theme_ bw()+ xla b(" n")+ ylab("u Ave ra geu RFs pl itu Di sta nce ")
g r i d . a r r a n g e (r o o t p l o t , u n r o o t p l o t)
}

"distploti mp ose dA "<- f u n c t i o n (b r a n c h 1 , branch2 ,branch3, branch4, b r a n c h 5 , branch6, b r a n c h 7 ,
e x p o n e n t s h o r t , Nsimulations, repetitions)

#This code plots the results for method A on ca terpillar, balanced and mixed species trees.
#Requires the following packages: a p e , p h a n g o r n , ggplot2, gridExtra

b r a n c h 1 , branch 2. ..b ra nch 7 are the lenghts of the internal branches

#exponentshort is the range of sizes one wishes make in order to hae a short edge.

n=lengt h(exp one nt sho rt)
shortbranch= 2~ (-e xp one nt sho rt)
ACrooted<-rep(NA,n)
ACunrooted<-rep(NA,n)
ABrooted<-rep(NA,n)
ABunrooted<-rep(NA,n)
AMrooted<-rep(NA,n)
AMunrooted<-rep(NA,n)
std1AC<-rep(NA, n)
std2AC<-rep(NA, n)
std1AB<-rep(NA, n)
std2AB<-rep(NA, n)
std1AM<-rep(NA, n)
std2AM<-rep(NA, n)

for (i in 1: n)

sptreeM<-bui ld tre e8 gen er al(2, shortbranch[i], shortbranch[i], shortbranch[i], shortbranch[
i] , shortbranch[i] , shortbranch[i] , shortbranch[i]) [1]

topo lo gyM <-b ui ldt re e8g ene ra l(2 , shortbranch[i], shortbranch[i], shortbranch[i],
shortbranch[i], shortbranch[i], shortbranch[i], shortbranch[i])[2]

76

s p t r e e B < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h ortbranch[i])[1]
t o p o l o g y B < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbra n c h [i])

[2]

s p t r e e C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
s h o r t b r a n c h [i] ,s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i]) [1]

t o p o l o g y C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
shortbranch[i] ,shortbranch[i] , shortbranch[i] , shortbranch[i]) [2]

te m p 1 A C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 2 A C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 1 A B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 2 A B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 1 A M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo
te m p 2 A M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo

logyC , , Nsimulations , repetitions) [[1]]
logyC , , Nsimulations , repetitions) [[2]]
logyB , , Nsimulations , repetitions) [[1]]
logyB , , N s i m u l a t i o n s , repetitions) [[2]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[1]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[2]]

ACrooted[i]= temp1AC [1]
A C u n r o o t e d [i]= temp1AC [2]
ABrooted[i]= temp1AB[1]
A B u n r o o t e d [i]= temp1AB[2]
AMrooted[i]= temp1AM[1]
A M u n r o o t e d [i]= temp1AM[2]

std1AC [i] =
std2AC [i] =
std1AB [i] =
std2AB [i] =
std1AM [i] =
std2AM [i] =

temp2AC [1]
temp2AC [2]
temp2AB [1]
temp2AB [2]
temp2AM [1]
temp2AM [2]

}
L= length(ACrooted)
short_branch= r e p (exponentshort , 6)
rooted _values= c(ACrooted, A B r o o t e d , AMrooted)
rooted_m et hod s= c ("A C a t e r p i l l a r - r o o t e d " , "A B a l a n c e d - r o o t e d " , "A M i x e d - r o o t e d ")
r o o t e d _ m e t h o d s = r e p (r o o t e d _ m e t h o d s , each=L)
stdrooted= c(s t d 1 A C , s t d 1 A B , std1AM)
maxrooted= rooted_values + stdrooted
minrooted= rooted_ v a l u e s - stdrooted
ro o t e d _ d a t a = d a t a .f r a m e (s h o r t _ b r a n c h , r o o t e d _ v a l u e s , r o o t e d _ m e t h o d s ,m i n r o o t e d , maxrooted)
unroot ed .va lu es= c (A C u n r o o t e d , A B u n r o o t e d , AMunrooted)
un ro ot ed_ met ho ds= c ("A C a t e r p i l l a r - u n r o o t e d " , "A B a l a n c e d - u n r o o t e d ", "A M i x e d - u n r o o t e d ")
u n r o o t e d _ m e t h o d s = r e p (u n r o o t e d _ m e t h o d s , each=L)
stdunrooted= c(std2AC, s t d 2 A B , std2AM)
minunroo ted = un ro ote d_ values-stdunrooted

77

maxunroo ted = un ro ote d_ values+stdunrooted
unrooted_data=data. fra me (sh ort _b ran ch , unrooted_values, unrooted_methods, minunrooted,

maxunrooted)
#print (rooted_ data)

#Compare Rooted Distances

rootplot= gg plo t(roo ted _d ata , aes(x=short_branch, y=rooted_values, c o l o r = r o o t e d _ m e t h o d s ,
l i n e t y p e = r o o t e d _ m e t h o d s , ymin=minrooted, ymax=maxrooted))

rootplot= rootplot +ge om_point(size=5, alpha=0.3, positi on =po si tio n_ dod ge(wi dth =0 .5))
rootplot= rootplot +geom_l in e(s ize =0 .9, al pha =0. 5)
rootplot= rootplot + geom _er ro rba r(siz e=1 ,a lph a= 0.5 , pos iti on=position_dodge(width=0.1))+

theme_bw() + xlab("n")+ yla b(" Ave ra geu RF cla des uD ist an ce")
#Compare Unrooted Distances

unrootplot= ggp lot(unrooted_data, aes(x=short_branch, y=unrooted_values, col or=unrooted_
methods, linetype=unroo te d_m eth od s, y m i n = m i n u n r o o t e d , ymax=maxunrooted))

unrootplot= unrootplot +geom_point(size=5, alpha=0.3, position=po sit io n_d od ge(wid th =0. 5))
unrootplot= unrootplot + geom_line(size =0 .9, alp ha =0. 5)
unrootplot= unr oo tplot+ geom_er ro rba r(siz e=1 ,a lph a= 0.5 , po si tio n= pos ition_dodge(width=0.1))+

theme_ bw()+ xla b(" n")+ ylab("u Ave ra geu RFs pl itu Di sta nce ")
g r i d . a r r a n g e (r o o t p l o t , u n r o o t p l o t)
}

"distploti mp ose dB "<- f u n c t i o n (b r a n c h 1 , branch2 ,branch3, branch4, b r a n c h 5 , branch6, b r a n c h 7 ,
e x p o n e n t s h o r t , Nsimulations, repetitions)

#This code plots the results for method B on ca terpillar, balanced and mixed species trees.
#Requires the following packages: a p e , p h a n g o r n , ggplot2, gridExtra

b r a n c h 1 , branch 2. ..b ra nch 7 are the lenghts of the internal branches

#exponentshort is the range of sizes one wishes make in order to hae a short edge.

n=lengt h(exp one nt sho rt)
shortbranch= 2~ (-e xp one nt sho rt)
BCrooted<-rep(NA,n)
BCunrooted<-rep(NA,n)
BBrooted<-rep(NA,n)
BBunrooted<-rep(NA,n)
BMrooted<-rep(NA,n)
BMunrooted<-rep(NA,n)
std1BC<-rep(NA, n)
std2BC<-rep(NA, n)
std1BB<-rep(NA, n)
std2BB<-rep(NA, n)
std1BM<-rep(NA, n)
std2BM<-rep(NA, n)

for (i in 1: n)

78

s p t r e e M < - b u i l d t r e e 8 g e n e r a l (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbranch[
i] , s h o r t b r a n c h [i] , shortbranch[i] , shortbra n c h [i]) [1]

t o p o l o g y M < - b u i l d t r e e 8 g e n e r a l (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbra n c h [i])[2]

s p t r e e B < - b u i l d t r e e 8 B (2, shortbranch[i] , shortbranch[i] , shortbranch[i] , s h ortbranch[i]) [1]
t o p o l o g y B < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbra n c h [i])

[2]

s p t r e e C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
s h o r t b r a n c h [i] ,s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i]) [1]

t o p o l o g y C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
shortbranch[i] ,shortbranch[i] , shortbranch[i] , shortbranch[i]) [2]

te m p 1 B C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 2 B C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 1 B B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 2 B B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 1 B M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo
te m p 2 B M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo

logyC , , Nsimulations , repetitions) [[1]]
logyC , , Nsimulations , repetitions) [[2]]
logyB , , Nsimulations , repetitions) [[1]]
logyB , , N s i m u l a t i o n s , repetitions) [[2]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[1]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[2]]

BCrooted[i]= temp1BC [3]
B C u n r o o t e d [i]= temp1BC [4]
BBrooted[i]= temp1BB[3]
B B u n r o o t e d [i]= temp1BB[4]
BMrooted[i]= temp1BM[3]
B M u n r o o t e d [i]= temp1BM[4]

std1BC [i] =
std2BC [i] =
std1BB [i] =
std2BB [i] =
std1BM [i] =
std2BM [i] =

temp2BC [3]
temp2BC [4]
temp2BB [3]
temp2BB [4]
temp2BM [3]
temp2BM [4]

}
L= length(BCrooted)
short_branch= r e p (exponentshort , 6)
rooted _values= c(BCrooted, B B r o o t e d , BMrooted)
rooted_m et hod s= c ("B C a t e r p i l l a r - r o o t e d " , "B B a l a n c e d - r o o t e d " , "B M i x e d - r o o t e d ")
r o o t e d _ m e t h o d s = r e p (r o o t e d _ m e t h o d s , each=L)
stdrooted= c(s t d 1 B C , s t d 1 B B , std1BM)
maxrooted= rooted_values + stdrooted
minrooted= rooted_ v a l u e s - stdrooted

79

r ooted_data=d at a.f ra me(sho rt _br an ch, rooted_values, r o o t e d _ m e t h o d s , m i n r o o t e d , maxrooted)
unroot ed _va lu es= c(BCunrooted, BBunrooted, BMunrooted)
un ro ot ed_ met ho ds= c("BCa te rpi ll ar- un roo ted ", "BBalanced-unrooted", "BMixed-unrooted")
u n r o o t e d _ m e t h o d s = r e p (u n r o o t e d _ m e t h o d s , each=L)
stdunrooted= c(std2BC, std2BB, std2BM)
minunroo ted = un ro ote d_ values-stdunrooted
maxunroo ted = un ro ote d_ values+stdunrooted
unrooted_data=data. fra me (sh ort _b ran ch , unrooted_values, unrooted_methods, minunrooted,

maxunrooted)
#print (rooted_ data)

#Compare Rooted Distances

rootplot =g gpl ot (ro ote d_ dat a, aes(x=short_branch, y=rooted_values, c o l o r = r o o t e d _ m e t h o d s ,
l i n e t y p e = r o o t e d _ m e t h o d s , ymin=minrooted, ymax=maxrooted))

rootplot= rootplot +g eo m_point(size=5, alpha=0.3, positi on= po sit ion _d odg e(wid th= 0. 5))
rootplot= rootplot +geom_li ne (si ze= 0. 9,a lp ha= 0.5)
rootplot= rootplot + geo m_ err or bar (s ize =1, al pha =0 .5, po si tio n=position_dodge(width=0.1))+

theme_bw() + xlab("n")+ yla b(" Ave ra geu RF cla des uD ist an ce")
#Compare Unrooted Distances

unrootplot= ggp lot(unrooted_data, aes(x=short_branch, y=unrooted_values, col or=unrooted_
methods, linetype=unroot ed _me tho ds , y m i n = m i n u n r o o t e d , ymax=maxunrooted))

unrootplot= unrootplot +geom_point(size=5, alpha=0.3, position=po si tio n_d od ge(wi dth =0. 5))
unrootplot= unrootplot + geom_line(size =0 .9, alp ha =0. 5)
unrootplot= unr oo tplot+ geom_er ro rba r(siz e=1 ,a lph a= 0.5 , po si tio n= pos ition_dodge(width=0.1))+

theme_ bw()+ xla b(" n")+ ylab("u Ave ra geu RFs pl itu Di sta nce ")
g r i d . a r r a n g e (r o o t p l o t , u n r o o t p l o t)
}

"distploti mp ose dC "<- f u n c t i o n (b r a n c h 1 , branch2 ,branch3, branch4, b r a n c h 5 , branch6, b r a n c h 7 ,
e x p o n e n t s h o r t , Nsimulations, repetitions)

#This code plots
#Requires the fol
b r a n c h 1 , branch2
#exponentshort is

the results for met
lowing packages: ap

... branch7 are the
the range of siz

hod C on caterpil
e, p h a n g o r n , ggpl
lenghts of the in

es one wishes make

l a r , balanced and
o t 2 , gridExtra
ternal branches
in order to hae

mixed species trees

a short edge.

n=lengt h(exp one nt sho rt)
shortbranch= 2~ (-e xp one nt sho rt)
CCrooted<-rep(NA,n)
CCunrooted<-rep(NA,n)
CBrooted<-rep(NA,n)
CBunrooted<-rep(NA,n)
CMrooted<-rep(NA,n)

80

CMunrooted<-rep(NA, n)
s t d 1 C C < - r e p (N A , n)
s t d 2 C C < - r e p (N A , n)
s t d 1 C B < - r e p (N A , n)
s t d 2 C B < - r e p (N A , n)
s t d 1 C M < - r e p (N A , n)
s t d 2 C M < - r e p (N A , n)

for (i in 1: n)

s p t r e e M < - b u i l d t r e e 8 g e n e r a l (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbranch[
i] , s h o r t b r a n c h [i] , shortbranch[i] , shortbra n c h [i]) [1]

t o p o l o g y M < - b u i l d t r e e 8 g e n e r a l (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
shortbranch[i] , s h o r t b r a n c h [i] , shortbranch[i] , shortbra n c h [i]) [2]

s p t r e e B < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h ortbranch[i])[1]
t o p o l o g y B < - b u i l d t r e e 8 B (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , shortbra n c h [i])

[2]

s p t r e e C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
shortbranch[i] ,shortbranch[i] , shortbranch[i] , shortbranch[i]) [1]

t o p o l o g y C < - b u i l d t r e e 8 C (2, s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i] ,
s h o r t b r a n c h [i] ,s h o r t b r a n c h [i] , s h o r t b r a n c h [i] , s h o r t b r a n c h [i]) [2]

te m p 1 C C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 2 C C = m e a n c o u n t m e t h o d s .R F (s p t r e e C , topo
te m p 1 C B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 2 C B = m e a n c o u n t m e t h o d s .R F (s p t r e e B , topo
te m p 1 C M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo
te m p 2 C M = m e a n c o u n t m e t h o d s .R F (s p t r e e M , topo

logyC , , Nsimulations , repetitions) [[1]]
logyC , , Nsimulations , repetitions) [[2]]
logyB , , Nsimulations , repetitions) [[1]]
logyB , , N s i m u l a t i o n s , repetitions) [[2]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[1]]
logyM , , N s i m u l a t i o n s , r e p e t i t i o n s) [[2]]

CCrooted[i]= temp1CC [5]
C C u n r o o t e d [i]= t e m p 1 C C [6]
CBrooted[i]= temp1CB[5]
C B u n r o o t e d [i]= temp1CB[6]
CMrooted[i]= temp1CM[5]
C M u n r o o t e d [i]= temp1CM[6]

std1CC [i]= temp2CC [5]
std2CC [i]= temp2CC [6]
std1CB[i]= temp2CB [4]
std2CB[i]= temp2CB [6]
std1CM [i]= temp2CM [5]
std2CM [i]= temp2CM [6]

81

}
L= length(CCrooted)
short_branch= r e p (e x p o n e n t s h o r t , 6)
rooted _values= c(CCrooted, CBrooted, CMrooted)
rooted_met hod s= c("CCaterpil la r-r oot ed ", "CBalanced-rooted", "CMixed-rooted")
r o o t e d _ m e t h o d s = r e p (r o o t e d _ m e t h o d s , each=L)
stdrooted= c(std1CC, std1CB, std1CM)
maxrooted= rooted_values + stdrooted
minrooted= ro ot ed_values- stdrooted
ro oted_data=da ta .fr am e(s hor t_ bra nc h, rooted_values, r o o t e d _ m e t h o d s , m i n r o o t e d , maxrooted)
unroot ed _va lu es= c(CCunrooted, CBunrooted, CMunrooted)
un ro ot ed_ met ho ds= c("CCa te rpi ll ar- un roo ted ", "CBalanced-unrooted", "CMixed-unrooted")
u n r o o t e d _ m e t h o d s = r e p (u n r o o t e d _ m e t h o d s , each=L)
stdunrooted= c(std2CC, std2CB, std2CM)
minunroo ted = un ro ote d_ values-stdunrooted
maxunroo ted = un ro ote d_ values+stdunrooted
unrooted_data=data. fra me (sh ort _b ran ch , unrooted_values, unrooted_methods, minunrooted,

maxunrooted)
#print (rooted_ data)

#Compare Rooted Distances

rootplot =g gpl ot (ro ote d_ dat a, aes(x=short_branch, y=rooted_values, c o l o r = r o o t e d _ m e t h o d s ,
l i n e t y p e = r o o t e d _ m e t h o d s , ymin=minrooted, ymax=maxrooted))

rootplot= rootplot +g eo m_point(size=5, alpha=0.3, positi on= po sit ion _d odg e(wid th= 0. 5))
rootplot= rootplot +geom_li ne (si ze= 0. 9,a lp ha= 0.5)
rootplot= rootplot + geo m_ err or bar (s ize =1, al pha =0 .5, po si tio n=position_dodge(width=0.1))+

theme_bw() + xlab("n")+ yla b(" Ave ra geu RF cla des uD ist an ce")
#Compare Unrooted Distances

unrootplot= ggp lot(unrooted_data, aes(x=short_branch, y=unrooted_values, col or=unrooted_
methods, linetype=unroot ed _me tho ds , y m i n = m i n u n r o o t e d , ymax=maxunrooted))

unrootplot= unrootplot +geom_point(size=5, alpha=0.3, position=po si tio n_d od ge(wi dth =0. 5))
unrootplot= unrootplot + geom_line(size =0 .9, alp ha =0. 5)
unrootplot= unr oo tplot+ geom_er ro rba r(siz e=1 ,a lph a= 0.5 , po si tio n= pos ition_dodge(width=0.1))+

theme_ bw()+ xla b(" n")+ ylab("u Ave ra geu RFs pl itu Di sta nce ")
g r i d . a r r a n g e (r o o t p l o t , u n r o o t p l o t)
}

82

References

[ADR13] E. S. Allman, J. H. Degnan, and J. A. Rhodes. Species tree inference by the
STAR method, and generalizations. J. Comput. Biol., 20(1):50-61, 2013.

[ADR16] E. S. Allman, J. H. Degnan, and J. A. Rhodes. Species tree inference from gene
splits by unrooted star methods. 2016.

[ape15] ape: Analyses of Phylogenetics and Evolution, 2015.

[LYPE09] L. Liu, L. Yu, D. K. Pearl, and S. V. Edwards. Estimating species phylogenies
using coalescence times among sequences. Syst. Biol., 58:468-477, 2009.

[pha16] phangorn: Phylogenetic Analysis in R, 2016.

[phy14] phybase: Basic Functions for Phylogenetic Analysis, 2014.

[SK88] J.A. Studier and K.J. Keppler. A note on the neighbor-joining algorithm of Saitou
and Nei. Mol.Biol.Evol, 6:729-731, 1988.

83

