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ABSTRACT

Landbird populations are undergoing concurrent changes in population size, spatial
distribution, and phenology. The sensitivity of landbird monitoring programs to detect and
distinguish these varied processes is of critical importance. Consequently, these efforts require
inference methods that are efficient and fully leverage information about spatial, population, and
phenological dynamics. The development of efficient inference methods can be addressed in part
through a thorough understanding of how the data are actually generated, the application of
sampling methods that attempt to maximize encounter probability, and the tailoring of sampling
methods to maximize sensitivity to specific inference objectives.

Chapter one of this dissertation is concerned with accommodating temporary emigration
in spatial distance sampling models. Model-based distance sampling is commonly used to
understand spatial variation in the density of wildlife species. The standard approach is to
assume that individuals are distributed uniformly in space and model spatial variation in
abundance using plot-level effects. Thinned point process models for surveys of unmarked
populations (spatial distance sampling) frame the sampling process in terms of the individual
encounter in space and, consequently, are expected to offer greater sensitivity for understanding
spatial processes. However, existing spatial distance sampling approaches are conditioned on the
assumption that all individuals are present and available for sampling. Temporary emigration of
individuals can therefore result in biased estimates of abundance. Herein, I extend spatial
distance sampling models to accommodate temporary emigration. A simulation study indicated
more precise and less biased estimation under the spatial distance sampling model compared to
models that assume a uniform distribution of individuals and assess spatial variation in
abundance using plot-level effects. An applied example involving two arctic-breeding passerines
indicated considerably stronger inference under the spatial distance sampling model than
standard distance sampling models.

Chapter two is concerned with the capacity of subarctic passerines to adjust their arrival
timing to relatively extreme variation in spring conditions. I assessed interannual variation in
passerine arrival timing in Denali National Park, Alaska from 1995-2015, a period that included
both the warmest and coldest recorded mean spring temperatures for the park. Neotropical-

Nearctic migrants varied in terms of the flexibility of their arrival timing, but generally showed



plastic phenologies, suggesting resilience under extreme spring conditions. In comparison,
Nearctic-Nearctic migrants showed similar or greater plasticity in arrival timing. A majority of
species showed synchronous-asynchronous fluctuation in arrival (i.e., synchronous arrival in
some years, asynchronous in others) in combination with various levels of the mean response
(i.e., early, average, and late arrival), suggesting the presence of interactions between
environmental conditions at multiple scales and inter-individual variation. Overall, these findings
suggest that monitoring of the mean-variance relationship may lead to a deeper understanding of
the factors shaping phenological responses.

Chapter three is concerned with developing efficient inference methods for inventorying
and monitoring cliff-nesting raptor populations. In nest occupancy studies of cliff-nesting
raptors, the standard approach is to allocate a level of survey effort that is assumed to ensure that
the occupancy state is known with certainty. However, allocating effort in this manner is
inefficient, particularly at landscape scales, constraining our capacity for effective management
of these species. To increase survey efficiency and expand the spatial inference of these studies, |
developed two versions of a multi-state, time-removal model, one for long-term monitoring
studies and another for population inventories or single-season surveys in which there is no prior
knowledge of nest locations. For long-term monitoring of species with alternative nests, I
formulated a version of the model that accounts for state uncertainty at the territory-level caused
by a failure to observe all nests within a territory. Simulation studies indicated generally low to
moderate relative bias under the monitoring and inventory models. In addition, I applied the
monitoring model to a long-term study of golden eagles (Aquila chrysaetos) in Alaska and
demonstrate that the maximum effort spent on any nesting territory could be reduced by up to

almost 90% of that recommended by standard protocols.
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INTRODUCTION

Ecological monitoring programs have been beset by a lack of clear inference objectives at
their outset, a poor understanding of how the data are actually being generated, a failure to fully
leverage spatial and temporal information, and inefficient sampling methods (Lindenmayer and
Likens 2009, 2010, Reynolds et al. 2011, Thompson et al. 2011, Schmidt et al. 2013). Landbird
monitoring has been particularly problematic because these efforts have historically relied on
unadjusted count data for inference (Nichols et al. 2009). However, recent decades have seen a
greater recognition that variation in detection probability, if ignored, may confound estimates of
variation in abundance (e.g., Farnsworth et al. 2002, Rosenstock et al. 2002, Alldredge et al.
2007, Nichols et al. 2009). Emphasis has been placed on the development of survey
methodologies and hierarchical modeling approaches that permit simultaneous estimation of
state variables and detection probability (Royle and Dorazio 2008). Despite such advances
towards a form of inference that accommodates the hierarchical nature of population sampling,
there remains substantial room for increased efficiency in studies of avian population ecology.

We require efficient inference methods in order to have the sensitivity to detect and
distinguish the varied processes underlying landbird population dynamics. Landbird populations
are undergoing concurrent changes in population size, spatial distribution, and arrival phenology
(Root et al. 2003, Mizel et al. 2016). In particular, changes in spatial distribution may complicate
the understanding of apparent changes in population size (e.g., Mizel et al. 2016). For example,
apparent population declines could potentially result from species shifting distributions outside
of the sampling frame (Mizel et al. 2016). In addition, changes in population size may drive
changes in phenology (see chapter two), or, conversely, the decoupling of arrival phenology and
seasonal food availability may drive population declines (Both and Visser 2001, Visser et al.
2004). The development of efficient inference methods is made all the more critical when
sampling sparsely distributed species (e.g., cliff-nesting raptors) and for studies conducted in
remote areas and/or at large spatial scales due to the logistical challenges involved in these
efforts.

The development of efficient inference methods can be addressed in part through a
thorough understanding of how the data are actually generated, the application of sampling
methods that attempt to maximize encounter probability, and leveraging information during the

sampling and the analysis phases (Royle and Dorazio 2008, Nichols et al. 2009). These ideas



have their basis in the hierarchical modeling approach to conducting ecological inference (Royle
and Dorazio 2008). Hierarchical modeling approaches conceive population sampling in terms of
explicit, probability-based state and observation processes unified by their conditional
relationship to one another (Royle and Dorazio 2008). This approach naturally motivates
decomposition of the constituent parts of both of these processes, which often may be
advantageous for optimizing inference methods (Royle and Dorazio 2008). Specifically,
decomposing the observation process into its constituent probabilities may serve as a starting
point for developing a survey design that accounts for potential biases and maximizes encounter
probability. The observation process can be decomposed into four primary components: 1) the
probability the individual’s home range overlaps the sampling unit, py; 2) the probability the
individual is present within the area that is exposed to sampling during the survey occasion, pp;
3) the probability the individual is available for detection during the survey occasion, p,; and 4)
the probability that the individual is detected given that it is present and available, ps (see
Nichols et al. 2009).

A variety of survey methods are available for accommodating imperfect detectability
including repeat surveys (Royle 2004), distance sampling (Buckland et al. 2001, 2004), time of
detection methods (Farnsworth et al. 2002, Alldredge et al. 2007), double observer methods
(Nichols et al. 2000), and various combinations of the aforementioned (Chandler et al. 2011,
Amundson et al. 2014). However, the various inference methods differ in the composite of
detection probability that they estimate (Nichols et al. 2009). Consequently, they provide
inference to different subsets of the ‘superpopulation’; i.e. all individuals having home ranges
that overlap the area exposed to sampling (Kendall et al. 1997, Nichols et al. 2009). Each
inference method carries with it the assumption that those components that are not estimated do
not vary through space and time. Should this assumption prove untenable, then the sensitivity for
monitoring programs to detect change may be reduced as variation in the unaddressed
component(s) may be confounded to an unknown degree with that present in abundance. This is
particularly relevant to studies of species that exhibit territorial movements and/or temporal
variation in cue production where failure to accommodate these temporary emigration processes
(pppa) may result in biased estimates of abundance (Chandler et al. 2011).

Understanding both the assumptions and population of inference that are implicit in the

choice of estimation methods is necessary for proper interpretation of results and for designing



studies with the sensitivity to detect changes in population size and distribution (Schmidt et al.
2013). Hayes and Montfils (2015) recommended the disuse of occupancy modeling (MacKenzie
et al. 2005) for populations subject to temporary emigration. Alternatively, it is not the
occupancy model that is at issue here, but the fact that inference (or interpretation of the
occupancy parameter) is to the proportion of the study area that is used when populations are
subject to temporary emigration (Kéry and Royle 2016). In such cases, the meaningfulness of the
occupancy or abundance parameter is determined by the study design, specifically, its spatial and
temporal resolution (Kéry and Royle 2016). Thus, rather than focusing on the (occupancy or N-
mixture) model in general terms, it may be more useful to accept the presence of temporary
emigration processes and attempt to accommodate these processes in the sampling design and
analysis phases. Throughout this dissertation, I emphasize that decomposing the observation
process in relation to a species’ ecology motivates a clearer understanding of these processes,
including temporary emigration, which in turn, provides the basis for developing efficient survey
methods. I also emphasize that leveraging spatio-temporal information begins in the design
phase through identification of inference objectives and tailoring sampling methods to maximize
sensitivity to these objectives.

In chapter one, I use a spatial distance sampling approach for potentially stronger
inference about spatial processes. Standard distance sampling methods do not fully leverage the
spatial information underlying individual encounters for use in explaining variation in density.
Standard approaches rely on plot-level effects for explaining spatial variation in density,
inducing over-dispersion when density varies within plots. In contrast, spatial distance sampling
describes the observed locations of individuals as arising from a spatial point process thinned
through incomplete detection and, consequently, exploits the spatial information inherent in the
location of encounter for potentially stronger inference about spatial processes (Hedley and
Buckland 2004, Johnson et al. 2010, Kéry and Royle 2016, Yuan et al. 2016).

However, existing spatial distance sampling approaches are conditioned on the
assumption that all individuals are present and available for sampling. Temporary emigration of
individuals can therefore result in biased estimates of abundance. Herein, I extend spatial
distance sampling models to accommodate temporary emigration. Extending these methods to
accommodate temporary emigration is expected to be particularly useful for species that show

large variation in cue production over a survey season and highly mobile species, including birds



(e.g., Nichols et al. 2009, Chandler et al. 2011, Schmidt et al. 2013), herpetofauna (e.g.,
O’Donnell et al. 2015), and insects (e.g., Kéry et al. 2009).

Also in chapter one of this dissertation, I detail a sampling method for off-road surveys
that diverges considerably from the standard point count protocol of Ralph et al. (1993, 1995).
Recently, Matsuoka et al. (2014) advocated standardization of landbird sampling methods,
specifically a return to the time and distance-binning approach to point counts of Ralph et al.
(1993, 1995). They argued that use of a consistent protocol will strengthen inference across
datasets. However, implementing this protocol in off-road study areas will often be inefficient as
it may require 25-30 minutes of ‘off-effort’ (transit) time for every 10-minute survey. Thus, I
used a method in which the encounter locations of individuals are recorded from a continuous,
fixed survey route. By remaining ‘on-effort’ throughout the survey day, this approach would be
expected to maximize the population that is exposed to sampling on a given site-visit.

In chapter two, I used the open-population occupancy model of Roth et al. (2014) to
estimate arrival events in a subarctic-breeding passerine community. This model provides an
explicit rendering of the observation process into the probability of initial presence (i.e., arrival)
at a site and the composite detection probability p,pspa. In doing so, it leverages information
about arrival phenology from standard occupancy survey data. I apply this model to survey data
for a community of subarctic-breeding passerines and document interannual variation in the
mean and variance of the arrival distribution.

In chapter three, I develop a framework for inventorying and monitoring cliff-nesting
raptor populations over landscape scales based upon an efficient combination of aerial and
ground-based occupancy surveys. Surveys of cliff-nesting raptors present considerable
challenges due to their sparse distribution across remote landscapes and the multiple occupancy
states (e.g., unoccupied, non-breeding occupancy, and breeding occupancy) through which we
observe their nesting territory dynamics. The standard approach in nesting territory surveys is to
allocate a level of effort that is assumed to ensure that the occupancy state of each territory is
known with certainty. However, this is logistically prohibitive at landscape scales, constraining
our capacity for effective management of these species.

To develop a more efficient inference framework, I begin by detailing various aspects of
cliff-nesting raptor breeding ecology which induce complexity in how we observe their

population dynamics including: maintaining alternative nest sites, a tendency to exhibit



numerical reproductive responses, and the presence of multiple nesting occupancy states
(unoccupied, occupied without breeding, and occupied with breeding) that differ in their
detectability. I then develop a multi-method, multi-state approach that leverages the fact that
aerial surveys are optimal for detecting nests, breeding, and refurbishment of nests, but ground
surveys provide a greater opportunity for observing behaviors indicative of non-breeding

occupancy.
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