
A

THESIS

Presented to the Faculty 

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements 

for the Degree of

MASTER OF SCIENCE

By

Jacob Nathaniel Stroh 

Fairbanks, Alaska 

December 2006

NON-NORMALITY IN SCALAR DELAY DIFFERENTIAL EQUATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 1441029

Copyright 2006 by 

Stroh, Jacob Nathaniel

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1441029 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The aim of education is the knowledge, not of facts, hut of values.

~  William Seward Burroughs II

©  2006 Jacob Nathaniel Stroh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NON-NORMALITY IN SCALAR DELAY DIFFERENTIAL EQUATIONS

By

Jaco b  N a t h a n ie l  S troh

RECOMMENDED: ^

f  4, J

T Ft*s J
g j C . J 7 g  / L A _________

A d v i s o i ^ ^ ^ L ^ ^ ^ ^ U f i g i r

Chair, Department of Mathematics and Statistics

APPROVED: ___________________

Dean, College of Natural Science and Mathematics

Dean of the Graduate School 

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iii

Abstract

Analysis of stability for delay differential equations (DDEs) is a tool in a va­

riety of fields such as nonlinear dynamics in physics, biology, and chemistry, 

engineering and pure mathematics. Stability analysis is based primarily on 

the eigenvalues of a discretized system. Situations exist in which practical 

and numerical results may not match expected stability inferred from such 

approaches. The reasons and mechanisms for this behavior can be related to 

the eigenvectors associated with the eigenvalues. When the operator associ­

ated to a linear (or linearized) DDE is significantly non-normal, the stability 

analysis must be adapted as demonstrated here. Example DDEs are shown 

to have solutions which exhibit transient growth not accounted for by eigen­

values alone. Pseudospectra are computed and related to transient growth.
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1 Delay Differential Equations

1.1 Background

Delay differential equations (DDE) are differential equations in which 

there is time lag. This corresponds to a nonzero amount of time between a sig­

nal and response, providing a system feedback timescale. Models of this form 

arise in applications in biology [321, engineering [31], ecology [30], chemistry 

[34], and other systems containing derivatives which depend on a previous 

states [18, 19, 25]. As with all such equations describing system dynamics, 

stability is a primary concern. One wants to determine whether the system  

collapses to a steady state or whether small inputs may grow large.

In this thesis, the class of investigated objects is restricted to linear prob­

lems.

D efin ition  1 A linear DDE with a finitely many fixed delays is an equation

n
y(t) =  A(t)y(t) +  Bk(t)y(t -  rfc) (t, rk > 0) (1.1)

k= 1

where rk > 0 are positive scalar delays and A(t), Bk(t) are time-dependent co­

efficients generally assumed to be at least piecewise continuous. The function 

y(t) is the solution to such an equation.

Equation (1.1) is a linear DDE, although it may be intended to approximate 

the dynamics of a nonlinear system having the form

y(t) =  f ( t , y ( t ) , y ( t - T i ) , . . . , y ( t - T n)) (t,rk > 0). (1.2)

In the case of a linear DDE with only one delay, coefficients Aft) and B(t)
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2

may be periodic in t. Of  particular interest is the coincidence of the delay and 

the periodicity of these functions. In the single delay case when A(t) and B(t) 

are r-periodic, Equation (1.1) simplifies to

y(t) =  A(t)y(t) +  B(t)y(t -  r )  (f, r > 0) (1.3)

where A (t+r) =  A(t) and B(t+r)  =  B(t). This is a linear DDE with coefficients 

equal in period to the delay and will be the primary focus of this discussion. 

When Equation (1.3) is written as y{t) =  /  (f,y(t),y(t  — r)), it is clear that 

value of y is determined by the three quantities t, y(t), and y(t — r) . Note 

that =  when t* =  t mod r. Applications of the linear case are

found commonly as linearizations of nonlinear case where f(t, y, y) — f(t*, y, y) 

[31, 15].

In order to have a well-posed problem, it is also necessary that a func­

tion y(t) be specified on the interval [—r, 0] by a function 0, y(t) = This 

provides an initial condition which is an infinite set of values, making the 

DDE problem inherently infinite-dimensional. This continuum of values is 

frequently called a ‘history function’, and regularity of the DDE solutions are 

based in part on the regularity of the function 4>. The following is proven in 

[4] and [18], for this case.

Theorem  1.1 If(j) e  C’°[—r, 0] is a given history function for the DDE of Equa­

tion (1.3) with A(t), B(t) G C k[0, r], there is a unique function y satisfying (1.3) 

and y(t) =  <f)(t) for t e [—r, 0]. There is increasing regularity of y over each 

period up to the regularity of the coefficients. Namely, y  e  C n[(n — 1 )r, nr] for

n  = 0 ,1 ,2 ,.. . ,  k + 1, and y E C k+1[(n — l)r, nr] for n > k +  1.

A direct corollary is that the eigenfunctions of Equation (1.3), those so­

lutions y such that y(t) = \ y( t  — r) for some A G C, are of class C00]—r, oo)
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provided that A(t),B(t) e  C'°°[0, r]. As a minimal requirement to construct 

a solution y(t), the history function <f)(t) need only be an element of Lx[ - t, 0] 

with 0(0) chosen; see Formula (1.7). Here, Lx[a, b] is used to denote the set of 

scalar functions 0 : [a, b] —> C which are integrable in the Lebesgue sense.

1.2 Floquet Theory

Fundamental Matrix Solution

In the theory of ordinary differential equations (ODEs), a fundamental 

matrix solution to the linear ODE system

y(t) =  A(t)y{t) fo (0 :[io ,cx> ]^ C ^ J4 (t) : [ i„ ,c o ]^ C M ) (1.4)

is a matrix-valued function &(t) which solves the system ®(t) =  A(t)$(t) with 

the condition that $(£0) is invertible for some t0 in an interval on which A(t) 

is defined and integrable. The fundamental matrix solution can also be found 

as the solution of the integral equation

<3>(t) =  $(f0) +  [  A(s)$(s)ds
Jto

by integrating Equation (1.4) and applying the condition 4>(to) =  I- The ma­

trix entries $y(t) are each continuous in time if A(s) is integrable [13]. An 

important property of $  is given in the next theorem whose complete proof is 

found in [13], and also gives a formal definition to the fundamental solution.

Theorem  1.2 The time-dependent matrix <3>(t) is a fundamental solution to 

the homogeneous linear matrix ODE initial value problem

/

i ( i )  =  /i(t)4>(i)
<

det $(to) -f 0
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if  and only if  the columns of 4>(to) are linearly independent. Also, 4> satisfies 

the equation

which is known as ‘Liouville’s Formula’.

For any time t, the fundamental matrix solution has columns which are 

vector solutions of Equation (1.4), and span the solution space. Any function 

y solving y =  A(t)y has a representation y(t) — <&(£)c where entries of c are the 

coefficients of y written in the basis of columns of 4>(i). Note that the vector c 

is constant: the difference in the value of y at two different times is accounted 

for by the change in 4>.

First order ODE systems such as Equation (1.4) can have temporally peri­

odic coefficients. Higher order systems with this property can also be reduced 

to a first order system with periodic coefficients, so the general d-dimensional 

ODE system with r-periodic coefficients is given

Note that such an ODE may have time-periodic coefficients but no nontrivial 

periodic solutions. A simple example is the evolution equation

whose coefficient is 27r-periodic. All classical solutions have the form y(t) =  

cet_cost, w hich are not periodic except for the trivial solution, y =  0.

Floquet’s Theorem [28] describes some properties of these types of systems. 

In particular, it guarantees the existence of solutions satisfying a particular 

problem: an eigenvalue problem.

y =  A(t)y, A(t + r) = A{t). (1.5)

y(t) =  (1 +  sin t)y(t)
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Theorem  1.3 The d-dimensional ODE given in (1.5) with A(t) e Cnxn with 

period r  has at least one nontrivial solution Y (t) so that Y ( t+ r )  =  g Y (t ). Such 

a function is called a normal solution, and g e  C is called a characteristic 

multiplier.

Proof. If $  is the fundamental matrix solution and A is periodic, + r) 

is also a fundamental matrix solution as its determinant is non-vanishing 

by the previous theorem. Since columns of 5>(t) and $(f +  r) span the same 

solution space, columns of <5(i +  r) are linear combinations of columns of $(£): 

<3>(t + r) =  <b(t)K with K  nonsingular. Let g be an eigenvalue of K  with 

associated eigenvector v. Then Y(t) =  Q(t)v is a solution of Equation (1.5). 

For this choice, Y(t +  r) = $(£ +  t)v =  $(t )Kv  =  <&{t)gv =  gY(t).  ■

The complex values g are also called Floquet multipliers in some litera­

ture. The previous theorem establishes that characteristic multipliers associ­

ated with a particular problem are independent of the choice of fundamental 

solutions.

The next theorem, whose proof may be found in [13], makes use of matrix 

exponentiation.

D efin ition  1.4 The matrix exponential on CnXn is the map X  ex is defined 

by the Taylor series expansion

where I is the identity of the appropriate space.

T heorem  1.5 If$(t )  is the fundamental solution to the ODE of Equation (1.5), 

then
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for all t e  R. Also, there exists C e  CnXn such that exp(C'r) =  $ -1(0)$(r), and 

there is a r-periodic complex matrix function P(t) such that <3>(t) =  P(t) exp(Ct) 

for each t G R.

The representation of the fundamental solution as P(t) exp(tC) is called 

the Floquet normal form. The Floquet transition matrix

0),

which is independent of t, is the map which takes a vector v and moves it 

forward in time by an amount r [13]. It does so by keeping track of changes 

in which the basis v is represented, allowing for information to be translated 

from one state to a single period later. A useful theorem, also appearing in 

[13], is relevant to the discussion of different approaches to analyzing the 

stability of solutions to Equation (1.5).

T heorem  1.6 I f  A is a characteristic multiplier of the linear r-periodic differ­

ential equation (1.5) and  exp (gr) = X, then there is a solution of the form

x(t) =  p(^)e^

where p is r-periodic and x(t +  r) =  Ax(t).

In the constant coefficient case, r can be chosen to be any positive number 

when applying the theorem, giving a relationship between the eigenvalues of 

the infinitesimal generator of an evolution semigroup and eigenvalues of a 

discrete time operator, discussed later in this section.
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1.3 Monodromy Solution of DDEs 

The Method of Steps

Floquet Theory is a language formulated for periodic ODEs. When the co­

efficients A(t), B(t) e  Cdxd of the DDE (1.3) have entries which are r-periodic, 

there is a special formulation of its solution in this language. While results 

of Floquet Theory are not immediately extensible to DDEs, it does provide 

an analogue of the more complicated dimensional situation for DDEs [21]. In 

order to solve DDEs, an operator can be used in order to ‘time advance’ the 

data of a previous solution at time t — r  to the current time t. In this manner, 

Equation (1.3) can be solved iteratively over intervals of length r. That is, 

the DDE problem can be solved by applying a linear operator U to the history 

function 0(f) defined on [—r, 0], generating solution on the next interval:

Y0(t) =  <t>{t) (t € [—r, 0])
(1.6)

Yn(t) =  UYn̂ (t)  (t G [(n — l)r , nr\,n  =  1, 2 , . . . ) .

The process of finding a solution in the manner of equation (1.6) is known as 

the ‘method of steps’. A solution is found on the interval [nr, (n + l)r] based 

on a previous solution over [(n -  l)r, nr]. Since the coefficients of the DDE are 

r-periodic, it is possible to regard the delayed part of the DDE, represented by 

B(t)y(t — r), as an inhomogeneity and apply a variation of parameter method 

to find the solution at this later time.

It is not necessary that the history function be continuous, especially at 

the initial point. That is, it is not at all necessary to have y(0) = 0(0), only 

that 0(0) be defined. Otherwise, input function 0 needs only to be integrable 

for a variation of parameter technique to be applied.

T heorem  1.7 A solution, y, to the system  (1.3) at time t e [0, r] assuming
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0 G Cd ® (Cd <g> Ll [—r, 0]) and  0(0) G Cd are defined is given by

y {t) =  $(*) 0 (0) +  [  ^  1(s)B(s)cf)(s — r)ds. Jo . , t G [0, r] (1.7)

where $(t) is a fundamental solution ofy( t ) =  A(t)y(t).

D efin ition  1.8 The operator U0, called the monodromy operator associated 

with the DDE (1.3), is defined as the operation on 0 to produce y in Equation 

(1.7).

The monodromy operator could also be called the ‘Delayed Floquet Transition 

Operator associated with the DDE (1.3).’ The ‘Floquet’ part of the nomencla­

ture is justified by the description of fixed information propagating periodi­

cally through the system. However, in ODE theory, there is a finite dimen­

sional Floquet transition matrix. The periodic coefficient DDE analogue of 

the theory has an infinite dimensional operator.

Some behavior of solutions and properties of the solution operator can be 

found by investigating the terms in Equation (1.7).

(Wo0)(i) =  $(*)0(0) +  $(*) J* 1(s)B(s)(f>(s -  r)ds (1.8)

Undelayed Delayed

The undelayed part is simply the fundamental solution applied to the end­

point of the initial data. It solves the ODE y =  Ay with y( 0) =  $(0)0(0) =  0(0). 

The delayed part of the solution operator requires further consideration.

The delayed part can be decomposed into parts. First, the expression 

B(s)4>(s -  t) is self explanatory; it is the delay coefficient evaluated at time s 

applied to the initial data from time s—r. Then the inverse of the fundamental 

solution, $ _1, is applied, rewriting B(s)4>{s—t) in the basis of the fundamental 

solution at time s. This “shifts time backward” to the beginning of the interval
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[0, r] so that previous values of the data function can be used. Since they are 

written in the basis of the fundamental matrix solution, they are a solution of 

the DDE at those times. This quantity is then integrated from s =  0 to s =  t 

so that the effects of the history function for times - r  to t — t are accounted 

for. Finally, the application of $(£) rewrites this in the basis appropriate for 

having solved the DDE on the time interval 0 to t. In sum, the delayed part of 

Equation (1.8) adds up the delayed coefficient matrix applied to the solution 

over times within the previous period, written in the basis of the fundamental 

solution at those times. This cumulative effect is finally multiplied against 

$(f) to produce a particular solution.

Once the monodromy operator is found, solutions to the DDE system

y(t) =  A(t)y(t) + B{t)y{t  -  r) (t > 0) 

y(t) =  0(t -  r) ( - r  < t < 0)

with A(t + t) — A(t) and B(t +  r) =  B(t) can be found by the method of steps. 

This is done by applying the monodromy operator iteratively to a history func­

tion 0 : [—r, 0] —> C which generates a solution Wo0 : [0, r] —> C.

y(t) =  (£Vo0)(t — hr) where t e  [0, oo), and k =  [t / r \ . (1.10)

The right space

In order to investigate some properties of the monodromy operator Uq, it 

will need to be recast into a Hilbert space operator whose domain and range 

spaces are identical. This is motivated by the desire to have eigenvalues and 

an inner-product, discussed later in Section 3.3. In Definition 1.8, monodromy 

operator maps the space C © L1 [0, r] to the space of absolutely continuous 

functions on [0,t]. That is, U0 : C © L^O, r] —► C[0,r]. Note that continuity no 

longer requires the specification of an initial point.
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Since L^O.r] contains L2[0, r], the domain of W0 can be restricted to the 

Hilbert space H := C © L2[0, r] and remain a bounded operator [7]. The el­

ements 0 6 C[0, r] can be associated isomorphically associated with pairs 

(0(0), 0) € C © C[0,t]. Since C[0, r] is dense in L2[0,r], the range of W0 can 

be extended to H again preserving its boundedness. The monodromy opera­

tor, denoted simply by U hereafter, will act from the Hilbert space C ® L2[0, r] 

to itself, and its eigenvalues will be well defined.

Theorem  1.9 The monodromy operator U : C © L2[0, r] —► C © L2[0, r\ is a 

compact hounded linear operator.

Proof. Linearity is verified by noting for two elements of the input space

(0(0), 0), (0(0), 0) e C © L2([0, t]),

one has

W((0(O), 0) +  (0(0), 0)) =  14(4(0) +  0(0), 0 +  0)

= $ 0 ) ^0(0)+ 0(0) +  J  $ _1(s)5(s)(0 + 0)(s -  r) ds^

= $(£) ^0(0) +  J  $ “1(s)JB(s)0(s — r) ds

+0(0) +  J  $ _1(s)5(s)0(s —  r)

= W(0(O),0)+W(0(O),0).

Let (0(0), 0) be an element of C © L2[0, r]. Define

/(t) =  [  ^ 1(s)B(s)(f)(s -  r)ds  
Jo

and note that /  is absolutely continuous as it is an indefinite integral. The
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natural norm for /  e  C[0, r] is the supremum norm, so that

ll/lloo =  ess sup 
te[0,r]

f  $  1(s)B(s)4>(s — r)ds 
Jo

<esssup f |$ _1(s)B(s)0(s — r ) |  ds 
te[0,r] Jo

< esssup||$_1B|| 2 U \ \ L 2 [ q A
te [0,r] 1 ’ J

< l l* _1L l|s iL IW I2 =  C'f l |M|2

for some finite constant CB which depends on the coefficient B and fundamen­

tal matrix solution $. This demonstrates that WfŴ  is bounded with respect 

to ||0||2. Note that $  is invertible, so is finite. Also, B(t) is a bounded

matrix defined over a closed finite interval, so WB]]  ̂ is also finite.

Over a domain of finite measure, as is the interval [0,r], the supremum 

norm dominates the 2-norm [35]. Then for some C > 0,

m  ii2 < c m\L = c $(t) ^0(0) + J  <E> 1(s)B(s)(f>(s — r) ds

< C II^ IL  (10(0)1 +  l l / I D  < c ||$ IL  (10(0)1 +  CB ||0||2) 
< C ' | | $ | | o o ( 1  +  C ' b ) | | 0 | | 2

which shows that U is bounded provided 0(0) e C is finite. Proof of compact­

ness of U is found in [8, 21], which apply to U results found in [26]. ■

Operators which are compact can be regarded as limits of finite rank op­

erators or matrices. Consequently, the spectrum of the compact operator U 

consists only of eigenvalues, except possibly for 0 € C. Further, it is expected 

that the eigenvalues of matrix approximations to U will converge to the spec­

trum of U.

Compact operators have another important property: the origin is the only
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possible cluster point of eigenvalues, and may be the only spectral element 

which is not an eigenvalue. Matrix approximations of operators can be ex­

pected to converge in spectrum to the eigenvalues of the operator, beginning 

with those of greatest modulus [39, 38]. That is, the ‘shape’ of a compact 

operator is associated with the eigenvalues of largest modulus, and a good 

approximation should get the ‘shape’ correct quickly, with a low rank approx­

imation. Improving the approximation with matrices of higher rank fills in 

‘details’ by getting smaller eigenvalues correct.

1.4 Stability Analysis of D D E s

Stability analysis of nonlinear equations is important in many fields of 

science. Many technical tools for doing such analysis first require appropri­

ate linearizations. A general nonlinear delay system with one delay y(t) =  

f(t, y{t),y(t  — r) )  can be linearized about a periodic solution y(t), for example, 

to give linear DDE such as (1.3)

For practical applications, it is natural to ask whether the zero solution 

of a homogeneous linear DDE with periodic coefficients is stable. Asymptotic 

stability of an DDE means that for each y solving the DDE, y(t) vanishes in 

the limit as t —> oo. The question is usually dependent on choices of parame­

ters appearing in the DDE such as the coefficients A(t) and B(t) as well as the 

duration of delay. The focus here is on coefficients; the delay, r ,  is assumed to 

be fixed.

The stability of a DDE may be discerned through an investigation of the 

spectrum of U, the monodromy operator. As noted above, the eigenvalues 

of K are analogous to the Floquet multipliers for a periodic ODE. Floquet 

multipliers being less than unit magnitude implies that a solution must be 

damped eventually. Equivalently, the eigenvalues of the monodromy operator 

being within the unit disc of C ensure that all solutions vanish in the limit.
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The set of DDE multipliers comprise the point spectrum of U, which is 

well approximated by matrices under appropriate hypotheses [8]. If the ap­

proximation to U is implemented spectrally or in some other ‘good’ way which 

converges rapidly to U, then the largest modulus eigenvalues of the approx­

imation are good approximations to the eigenvalues of U, and hence to the 

multipliers.

Iterative Time Processes

Equations (1.6) and (1.10) reveal something important about the method 

of steps. They characterize this method of finding a solution over time inter­

vals of a fixed-length time interval as an iterative process. Formally, stability 

criterion for iteration is given in the following theorem with proof given in

[22]. Recall that for an operator A : X  —> Y  where X  and Y  are spaces with 

norms ||-||x  and ||-||y , respectively, the operator norm is given by

Mil =  sup
\\Ax \\y

x€X ^ X

Theorem  1.10 For an operator A  (or matrix A e  Cnxn), in order that \\Ak || =  0 

in the lim it as k —> oo, it is necessary and sufficient that the largest eigenvalue 

of A  have modulus less than unity [22]. Such an iterative process is said to be 

Schur stable [3].

This asymptotic stability criterion requires that the eigenvalues of the mon- 

odromy operator lie in the interior of the unit circle. Knowing the asymptotic 

stability does not give a bound on the behavior of U in finite time; it only says 

that for any input, the solution of a DDE is eventually damped out.
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Continuous Time Processes

There exist other approaches to analyzing the stability of DDEs, as there 

are other methods for solving them. One of note is a semigroup formulation, 

found in [1]. This formulation of the original DDE as an evolution equation, 

called an abstract Cauchy problem in most literature, is a standard process 

for proving regularity results [1,2]. However, this approach is applicable only 

to constant coefficient DDEs such as y(t) =  Ay(t)+By{t—T). The Cauchy prob­

lem associated with this equation is Y(t) =  AY(t),  solved by Y(t) =  Y(0)eAt. 

Here, the initial data of the history function is encoded into Y  (0).

The operator A  is the infinitesimal generator of a ‘delay semigroup’ [1], 

and its eigenvalues are related to the eigenvalues of the monodromy operator 

by Theorem 1.6. In this approach, unlike the monodromy approach, the time 

axis is not divided into intervals of fixed length and the process cannot be 

represented by operator or matrix iteration. Instead, the formulation is for 

continuous time and requires a different approach to stability analysis. A 

proof of the following theorem for the matrix case is available in [5]. The 

spectral abscissa, a(A),  maximum real part of the eigenvalues of A.

Theorem  1.11 Let A  be an operator or matrix in CnXn which corresponds to a 

process under continuous time. In order that lim^oo ||eu || =  0, it is necessary 

and sufficient that a{A) be negative. Such a process is called Hurwitz stable.

In a continuous application process, it is the spectral abscissa which de­

termines the asymptotic limit of the matrix or operator which generates the 

process. Imaginary parts of eigenvalues contribute to oscillation while real 

parts correspond to growth or decay. Stability requires simply that all eigen­

values correspond to decay, with or without oscillation. This means a stable 

process will have all eigenvalues of the generator in the left half plane of C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

In the case of DDEs with constant coefficients, there is a purely algebraic 

method of analyzing stability via the Laplace transform, C [25]. Suppose y is 

a solution to equation y(t) = Ay(t) + By(t — r) with y(0) =  0 and A , B g  Cnxn. 

Let Y(s) = [Cy](t). Then ay(a ) = AY(s) +Be~TSY(s)  or (s I - A - B e ~ TS)Y(s) =  0 

or

s i - A -  Be~TS =  0 (1.11)

for nontrivial Y. This is known to be stable if and only if the values of s 

which satisfy Equation (1.11) are in the open left half of the complex plane

[23]. Figure 1.1 graphically illustrates Schur and Hurwitz views of analyzing 

stability.

Figure 1.1 Two Perspectives on Stability: Hurwitz and Schur. Two different 
perspectives of stability for the DDE y{t) = —y(t — 1). On the left are roots of 

Equation (1.11), with the imaginary axis shown. On the right are 
eigenvalues of an approximation to the monodromy operator with the unit 
circle shown. Both reveal the stability of the DDE with Hurwitz criterion 

applied to the former and Schur criterion to the latter.
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Stability Charts

Often, DDEs depend on parameters. When this is true, it is useful to 

know which choices of parameter lead cause the equation to be stable in the 

senses discussed above. One method is to numerically generate a grid within 

the parameter space and determine whether the DDE is stable for each set 

of parameters in the grid. The result is a stability chart of the parameter 

space where, for example, dark regions represent parameter choices leading 

to instability, and light regions represent those for which the DDE is stable. 

An example chart for a constant coefficient scalar DDE is given in Figure 1.2.

DDECSPECT stability chart, m = 13 Cheb colloc pts.

40 values of parameter 1

Figure 1.2 A Stability Chart for Scalar Linear DDEs. The a 2-dimensional 
stability chart for the constant coefficient DDE y(t) =  ay(t) + by(t — 1). Here, 
the parameters are the coefficients. The points identified with asterisks are 
(1, -.2 ), (-4,3.9), (-4 , -4.5) and (0, -1.5) are all within the stability region. 
Circled is the point (0, -1 ) , showing that Figure 1.1 illustrates eigenvalues 

which go with a point in the stable region of parameter space.
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2 Normality

The spectral theorem for self-adjoint (symmetric or hermitian) matrices 

states that there exists an orthonormal basis (ONB) for matrix A E Cnxn so 

that A can be represented by a diagonal matrix A € Cnxn whose entries are 

the eigenvalues of A. This means that a self-adjoint matrix is diagonalized 

in a basis of its eigenvectors, which is possible since the eigenvectors are or­

thogonal. The class of normal matrices generalizes the hermitian case. Here, 

it is not necessary that a matrix and its adjoint be coincident, but need only 

commute with one another.

D efin ition  2.1 A matrix A is normal whenever A*A = AA* where (A*)jk =  

Ajk-

Theorem  2.2 [40] For a matrix A e  Cnxn, the following are equivalent:

1. A is normal.

2. A has a complete set of orthogonal eigenvectors.

3. A is unitarily diagonalizahle.

Each of the items in this theorem is dependent on a choice of inner prod­

uct. For item 1, this is implicit as the adjoint space is formally defined though 

inner products. Dependence of the second item is clear by recalling that two 

vectors are orthogonal when their inner product vanishes. Finally, item 3 

refers to unitary objects, those matrices Q for which Q* = Q ~l . Again, the de­

pendence is implicit as in item 1 since this is equivalent to (Qx\y) = (x\Q~xy) 

for all x and y in the inner product space on which Q acts. In particular, only 

matrices (and operators) acting on inner product spaces can be specified as 

‘normal’ or ‘not normal’ [37].
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Unitary diagonalization is a very special property. Geometrically, it means 

that it is only necessary to rotate or reflect the standard basis axes of Cnxn to 

align with the eigenvectors of A.

An argument for the following is found in [40].

Corollary 2.3 The class of normal matrices includes self-adjoint, unitary, 

and skew-hermitian matrices.

2.1 Measuring Non-Normality

Abstractly, a matrix is the representation of an operator on a finite dimen­

sional space in a particular basis. This basis may be changed through simi­

larity transformation which leave the eigenvalues unchanged. The change of 

basis is reflected in the eigenvectors, however.

Theorem  2.4 For a matrix A E Cnxn and non-singular S E Cnxn, the set of  

eigenvalues of A is invariant under the similarity transformation induced by 

S. That is,

A {A) =  A {SAS-1)

where A(X) denotes the set of eigenvalues of a matrix X. Moreover, if  vk is 

an eigenvector of A associated with Xk e A(A), Svi is an eigenvector of SAS~l 

associated with \ k.

Proof. Note that the requirement that S be non-singular means that S~l 

exists and is unique. If A is diagonalizable, A — V XV ~l where A is a diag­

onal matrix whose elements are the eigenvalues of A. Applying S, SAS~l =  

{SV)A{SV)~1 is a diagonalization of SAS~X, which has the same diagonal ma­

trix, A, of eigenvalues as A. Hence A (A) =  A (SAS~X). Suppose A E A(A) with 

associated eigenvector v, so that Av — Xv. Take w = Sv. Then SAS~xw =  

SAS~xSv =  SAv =  A Sv =  A w so Sv is the eigenvector of SAS~X associated
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with A e  A(SAS~l). In the case that A is not diagonalizable, a more general 

proof using the Jordan form of A is provided in [22]. ■

For a normal matrix A e Cnxn, there is a unitary similarity transformation 

V so that VAV^1 is diagonal. On the other hand, matrices are typically di­

agonalizable. A matrix is diagonalizable if and only if it is non-defective [39], 

that is, if  the algebraic multiplicity of each of its eigenvalues equals the geo­

metric multiplicity its eigenvalues. Normal matrices have the distinguishing 

property of being unitarily diagonalized. The remainder of this work assumes 

implicitly that subject matrices are diagonalizable.

For matrices which are not normal, it is useful to know just how ‘efficient’ 

a basis is for modeling a particular process. In the case of matrices which 

are not normal, analysis requires a more quantitative assessment. There are 

several methods of quantifying both the property of normality and measuring 

how far a matrix deviates from it, and different measures provide different 

insights. An example of the disparity between common measures is provided 

in [20] and in section seven of [37]. Here, the discussion focuses on measures 

based on eigenvector conditioning, Henrici departure, numerical range, and 

finally, resolvents and e-pseudospectra.

Eigenvector Conditioning

In light of item 2 in Theorem 2.2, there is a way of characterizing and 

defining normality of a matrix A through the inner product of its eigenvectors. 

The definition is similar for linear operators on a Hilbert space. For the next 

definition, recall that for B e Cmxn, the 2-norm of B is defined as
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where ||x||2 denotes the vector 2-norm of Cn and x*x =  ^ ”=1 \xj\2 is the inner 

product.

D efin ition  2.5 The 2-norm condition number of an invertible matrix V E 

Cnxn is defined as k(V) =  \\V\\2 ||V-1||2.

For a matrix A E CnXn, the eigenvector matrix condition number of A is the 

condition number of the eigenvector matrix V. If {vj}Tj=l are normalized eigen­

vectors of A, then V — [vi\v2\ ■ ■ ■ \vn\. The number k(V) is a scalar value corre­

sponding to how far from orthogonal the eigenvectors of A are in total.

Other equivalent ways of arriving at the condition number of the eigen­

vector matrix of A exist, as there are other structure-revealing factorizations 

of A other than diagonalization. Prevalent among these tools, especially as a 

numerically stable method for solving various problems, is the singular value 

decomposition (SVD). Here, a matrix A is written as the product of three ma­

trices.

Theorem  2.6 Every matrix A E Cmxn has a SVD where A — UTlV*. Here 

U E Cmxm and V E Cnxn are unitary matrices whose columns are called right 

and left singular vectors of A, respectively. The middle matrix E e  CmXn has 

only nonzero entries EJ? =  a3 > 0, which are ordered decreasingly and called 

singular values of A.

Proof. A complete proof and definitions, as well as the geometric interpreta­

tion is provided in chapters four and five of [39]. ■

A second definition for the condition num ber of the eigenvector m atrix of 

A is provided by the singular values. These singular values cr* are the positive 

square roots of the eigenvalues of AA* or A*A. The following definition is 

given in [40].
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D efin ition  2.7 I fV  is the eigenvector matrix of A e Cnxn where {cr̂ }" are the 

singular values ofV, the 2-norm eigenvector matrix condition number of A is

/t r\ m̂ax
m̂in On

Note that this definition of n{V) is product of the largest singular values of 

V~l and V. Note that when V is unitary, S is the identity. When V is unitary, 

both V and its inverse have norm 1, and hence k(V) =  1. If k(V) — 1, then V 

has (7max = crmin. As columns of V are normalized, both these values must be 1, 

so V is unitary. An immediate consequence of item 3 of Theorem 2.2 is given 

in the following corollary.

C orollary 2.8 [39] A  matrix A is unitarily diagonalizable if  and only if  it has 

eigenvector matrix V with k(V) =  1. Thus, an appropriate addition to the list 

of theorem 2.2 is

4. There is a diagonalization A — VKV~X for which k(V) — 1.

The condition number of V then represents a measure of how far from 

unitary V must be to diagonalize A. If k(V) is ‘large’ for the best choice of V, 

A is said to be strongly non-normal. Such matrices are a practical concern, for 

if a matrix A = VKV~l where k(V) is large, use of this diagonalization may 

decrease numerical stability of the problem one wishes to solve. This is to say 

that the eigenvalues may not be useful since the eigenvector basis is, in some 

sense, a bad way to represent the matrix [39].

Other Measures

Another measure for the non-normality of a matrix A can be derived by 

assessing the total size of the off-diagonal entries when an optimal unitary 

transformation is applied to A. Such an approach leads to a quantity called
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Henrici’s departure from normality. It is found using the Schur factorization 

of A, which is guaranteed to exist whenever A e Cnxn [39], although it may 

not be unique. First, factor A = QTQ* where Q is unitary and T is upper- 

triangular. Then assign a scalar value defined as the Frobenius norm of the 

matrix T  with the diagonal entries removed [22]. This number is unique, 

entries of T  are unique up to signs. The Frobenius norm of X  e Cmx” is 

defined as
/  n \  * /2  /  n \  1 /2

P 1I f =  S I N I 2  =
\ j = 1 /  \j,fc=i /

where Xj are the m columns of X.

D efin ition  2.9 For A e Cnxn, the Henrici departure is the number

Dh — \\T — diag(T)\\F

where A — QTQ* is a Schur factorization of A and diag(T)jk =  5jkTjk.

For the complex Schur factorization, the main diagonal entries are the 

eigenvalues. The complex Schur factorization of any normal matrix is simply 

its unitary diagonalization. Generally, the total sum of squares of the off- 

diagonal entries of T  then provides a meaningful measure of how far this ‘best’ 

unitary transformation fails to diagonalize A [20]. Note that the complex 

Schur factorization is distinct from the real Schur factorization.

Another measure goes by the names ‘numerical range’, or ‘field of values’. 

This can be thought of as the set of all values obtained from taking inner 

products of elements of the unit disc of Cn with themselves under weight A. 

The set is formally given by W(A)  =  {(x\Ax) =  x*Ax \ ||a;|| =  1} and is a 

convex region of the complex plane. Note that W(A) D A (A), regardless of 

the structure of A. The shape of W{A) and its relation to A(A) can be used to 

discern facts about the behavior of A.
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There is a simple characterization of W(A)  in some cases: A — A* if and 

only if W  (A) C M [24]. The matrix A is hermitian positive-definite if and 

only if W(̂ 4) C R+. For general matrices, there is no such particularly nice 

fact. However, some facts about the normality can be assessed by studying 

the numerical range. For example, when W{A) is a line segment in C, A is 

normal, but not conversely. The extrema of W(A),  in the sense of modulus, 

provide information about A (A): they are moduli of the largest and smallest 

eigenvalues of A. Unitary matrices thus have W{A) C <9B. Note that D is used 

here to denote the open unit disc; generally, the notation Dr will be used to 

denote the set of points in the plane with modulus less than r. Perturbations 

of A induce changes in W  (A) which may used to measure the non-normality

[24].

2.2 Resolvents

An oft used tool in the spectral analysis of matrices and operators is the 

resolvent.

D efin ition  2.10 For a matrix A e Cnxn with a set of eigenvalues A (A), the 

matrix valued function 71A '■ C\A(A) —> C"x" defined as

n A(z) =  (z i  -  A ) -1 

is called the resolvent where I is the identity o fCnxn.

Note that A(A) is excluded from the domain of 7ZA since (z i  -  A) is singular 

for z € A(A), and hence is not invertible. For each sequence zt e C\A(A) 

which converges to an eigenvalue A of A, the norm of the resolvent becomes 

unbounded as Zi —► A. The resolvent has been used to develop numerous 

different bounds on the spectrum of operators and matrices; many results and 

analysis in classical texts such as [29] are obtained through this approach.
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Analysis of the resolvent norm function

f A(z) := =  ||( z I ~ A )  *|| (2.1)

for 2 e C reveals important nuances of the structure of the spectrum of A. 

This map transforms spectral information about an operator or matrix to the 

structure of over complex plane. Spectral analysis results are obtained 

from bounds on the function /a , which is bounded on compact subsets of 

C\A(A). Much of the literature on spectral properties of operators on Hilbert 

spaces uses complex analysis techniques (cf. [29,16]). The poles, {A} of / a are 

the eigenvalues of A, and the rates at which sequences {zj} —>• A diverge give 

additional information about the behavior of 11 a at points near A (A).

In the case where A is normal, the reciprocal of the function has a useful

geometric interpretation. It is a ‘ reciprocal distance to spectrum’ function, 

with /a(z) =  dist(z, A(A))-1, where oo-1 := 0. Note that for a set X  c  C, 

dist(z, X)  =  infx6x dist(z, x).

P rop osition  2.11 I f  D G Cnxn is a diagonal matrix and I is the identity of 

the appropriate space, \\{zl — £>)-1 || =  dist(z, A(-D))-1.

Proof. Since D is diagonal, the eigenvalues of D are found along the diagonal, 

so Dkk =  Afc. For z e C, A(zl  -  D )_1 = {z -  Afc}. The norm of a diagonal matrix 

is its spectral radius. Since (zl  — D)~l is diagonal,

If z e  A(D), then z — Afc =  0 for some k, so 1 f(z  -  Afc) =  oo by convention. That 

||(zl — D )-1!! > (z — Afc)_1 then implies | |(zl — D)-11| =  oo. ■

The inverse distance, however, only serves as a lower bound on the dis­

tance in the general case where A is not normal or diagonal, as illustrated

||( z I - D ) - 1
1 1 1

max ----- —l<fc<n Z — Afc mini<fc<n \z — A*,| dist(z, A(D))‘

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

in Figure 2.1. Note that the metric used to define distance induces the norm 

used in the definition of fA [40]; the 2-norm taken for f A implies Euclidean 

distance in C, and also relates to the 2-norm condition number of the next 

proposition.

Figure 2.1 The Resolvent Norm Contours of Non-normal Matrices. The 
figures above show level curves for 10-1,10-L25, .. .  of the reciprocal of 2-norm 

resolvent, although the outermost curves are not visible in the rightmost 
plots. The matrices are similar, and hence have the same eigenvalues. The 

matrices have increasingly ill-conditioned eigenvector matrices with 
k(V) =  1, 3.78, 21.6 (left to right).

P rop osition  2.12 Let Abe  a diagonalizable matrix or operator and I be the 

identity on the appropriate space. Then for all z e  C,

||(zi ~ A)~l ||2 > dist(z, A(^4))_1

with equality for all z e  C if  and only i f  A is normal.

Proof. Since A is diagonalizable, there exists a similarity transformation 

A = VAV~~l where A is diagonal and whose entries consist of eigenvalues of 

A. Then (z i — A) =  V(z l  — A)V~l where z i  — A is diagonal, so

||(2/- = | | v ( z / - A ) - v - ‘ |j = iiv-y Hi/-1! ||(2/ -  A)-1)!

= n(V) || (zi  — A)-11| =  k(V) dist(2 , A(A))-1 > dist(z, A(A))-1
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since k(A) > 1 for any matrix A. Note that this inequality is tight if and only if 

k{V) =  1 for some V that diagonalizes A, which is equivalent to the normality 

of A. m

2.3 £:-Pseudospectra

Perhaps the most useful method for analyzing behavior of matrices and 

their normality is the concept of its £-pseudospectrum, which is a generaliza­

tion of the spectrum.

D efin ition  2.13 Given e > 0, the £-pseudospectrum of A, denoted Ae(A), is 

the subset of C with \\{zl — A)-1|| > e~l. Equivalently, this is the set {z  e 

C | ||7Z(z, A) || > s -1}. Note that these sets depend on the choice of norm used.

In any norm, the spectrum A (A) is a limit of the e-pseudospectrum of A. 

Formally, this is limê 0Ae(A) =  A0(A) =  A(A). Many useful results attained 

from eigenvalue and spectral analysis of A are limiting cases as e —> 0 of more 

general properties possessed by Ae(A) [40], For the remainder of this discus­

sion, the focus will be exclusive to 2-norm (Euclidean norm) pseudospectra.

When the norm chosen is the Euclidean norm, an alternate formulation of 

these sets is given by {z  e C | am(zI -A)  < e} where am is the smallest singular 

value. Also, Ae(A) is the set of all values z for which z is an eigenvalue of a 

perturbed matrix A + 8A where 11 <5A112 < e. An analogous definition for the 

c-pseudospectrum of Banach space operators and rectangular matrices is also 

possible [42].

The e-pseudospectral contours, which are the sets of z e  C such that 

||(zl — A)-11|—1 = c, may be found through different techniques including re­

solvents, singular values, images of circles of different radii, spectral radii, etc 

[37]. Each formulation provides a different insight into the properties being 

investigated. Use of the resolvent norm, however, is perhaps the most geo­
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metric in nature. An example of a pseudospectral portrait for a few matrices, 

consisting of the eigenvalues and a few pseudospectral contours, is shown in 

Figure 2.2.

Figure 2.2 Example Pseudospectral Portraits. The unit circle and 
e-pseudospectra of approximations to different Schur stable monodromy 

operators are shown above. Each portrait corresponds to a constant 
coefficient DDE (y)(t) = ay{t) +  by(t -  1) whose coefficients are identified by

asterisks in Figure 1.2.

The pseudospectral sets can be ordered by inclusion with Aei (A) c  A£2 (A) 

if  £\ < e2, which implies that A (A) c  A £(A) for any £ > 0. However, even 

for small choices of £, the associated pseudospectrum may be much larger 

than the union of discs of radius e about the spectrum when the matrix under 

investigation is far from normal. Examples of this, as well as the nested 

structure can be seen in Figure 2.1.
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When a value A e  C has the property that A £ Ae(A),  then A is called an 

E-pseudoeigenvalue. This means A is an eigenvalue of a matrix A  + 5A  with 

||<L4|| <  s. Correspondingly, there is an eigenvector, ip, of A  +  SA for ||<L4|| <  £ 

associated with A. Such a vector is called an e-pseudoeigenvector. Note that 

(.A + 5A)ip = Aip + 5 Aip = A ip, so Aip = Xip — 0{e)ip.  Since e is typically small, 

the last term is negligible and ip almost behaves like an eigenvector of A.  This 

language provides a setting in which linear dynamical system behavior in 

finite times can be discussed; it makes up for the shortcoming of eigenvalues 

for evaluating behavior in an exclusively asymptotic sense.

Numerical Computation

Pseudospectra are an analytic measure of non-normality, and they are a 

tool, both graphical and numerical, for quantifying it and observing its effects. 

A variety of schemes are available in order to produce pseudospectral data 

numerically, a property which is of increasing utility in applied mathematics.

Since the graph of the function /A defined in Equation 2.1 of represents 

a surface over C and encodes useful information about a matrix or operator, 

it has a number of uses. A simple way to create pseudospectral plots is to 

compute values of /a  at grid points over C and interpolate the level curves of 

/a- This is done by creating a mesh { z kl = (xk, yi)}  around the spectrum of 

A £ Cnxn and computing \\{zki ln — A)~A ||. Figure 2.3 illustrates results for the 

matrix

-0.30045526 0.66407874 0.24987095 0.47542405

0.04381585 -0.09397878 -0.10034632 0.59011142

0.54553751 0.00158422 -0.34477036 -0.26069051

0.05317001 -0.20323736 0.77459556 -0.33993500

for which A(S) «  {0.42, -0.74, -0.38 ±  0.69*}.

(2 .2)
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Figure 2.3 A surface corresponding to the logarithm of function f s for the 
Schur stable matrix (2.2) over the square [-1, l]2 C C. Projection of level 

curves for 1,2, . . .  onto the plane are shown. These correspond to Ae{A) for
£ =  10 1, 10~2, . . . .

Efficient algorithms exist to find the £-pseudospectral contours by way of 

the singular value decomposition of A [37]. The schemes compute the SVD 

factorization of (zkiln -  A) =  UEV* at each grid-point and storing am, the 

smallest singular value. More refined, computationally accurate and efficient 

algorithms for generating these sets are given in [37], and are incorporated 

into the Matlab package Eigtool [41].

2.4 Non-Normal Matrices

Matrices which are not normal can display an array of behavior which 

is not possible in normal systems, where eigenvectors can be taken as or­

SR(Z)
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thogonal. Highly non-normal matrices are characterized by the existence of 

non-modal transient behavior, which is not predicted by the eigenvalues. This 

results from the ‘inefficiency’ of choosing coefficients to represent the matrix 

in a basis of is eigenvectors. Superposition may lead to accretion or cancela­

tion of value which is reflected in, for example, large short-term growth.

For example, let

1
bo o 0 -0.6241 -0.7911 -0.6312

A = 0 .6 -  M 0 V = 0.6662 0.5634 -0.7360

0 0 .6 + .5* -0.4082 -0.2383 -0.2449

and define B = VAV -1. Recall that similar matrices have the same eigen­

values.

The standard basis is a set of eigenvectors for A, while V is a matrix of 

eigenvectors of B. The standard basis, that is, the identity matrix, has a 

condition number of 1 while k(V) «  9.14. Since both of their eigenvalues, the 

diagonal entries of A, are within D, they are Schur stable, and both decay 

in the limit. Figure 2.4 demonstrates the difference in norm behavior over 

the first ten powers, however. Matrix B shows transient growth though it is 

asymptotically stable.

Stability concerns associated with non-normality

Resonance and amplification for finite intervals of time may arise from 

non-orthogonal eigenvectors. Although the eigenvalues alone determine the­

oretical stability in the asymptotic limit, practical problems involve lineariza­

tions of more complex systems, and behavior in finite time may be of concern 

for bifurcation analysis. Nonlinear terms coupled with large transient growth 

may change the dynamical trajectory of the system [23]. In this case, a lin­
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Figure 2.4 Norms of Powers: Normal vs. Non-normal Matrices. Shown 
above are the norms of the first ten powers of Schur stable matrices A and 

B =  VAV^1 given in Equation (2.3). The normal matrix, A, decays 
geometrically according to powers of ||A||. Matrix B is non-normal and 

experiences growth for four iterations as well as oscillation.

ear model may not predict the more complex behavior of the system it was 

intended for. Measuring the non-normality of the linear model can reveal 

transient growth that may indicate this failure of linearization.

A primary concern for DDEs is stability. One way of solving DDEs by 

successively applying the monodromy operator U as discussed previously. In 

an approximation scheme, a square matrix U may approximate U, and the 

process becomes one of matrix iteration. Stability is expected when A(U) C D. 

However, no growth bound on powers of U can be established from A(U) alone; 

the eigenvalues only provide information about an equivalence class of similar 

matrices.

To build toward establishing lower bounds which hold for iteration of both 

normal and non-normal matrices, it is necessary to associate another useful 

number with a matrix.

D efin ition  2.14 The Kreiss constant for a matrix A e Cnxn is defined as the
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quantity

K(A) =  sup(|2 | -  1) | |{zl -  A) -11| .
Z > 1

The Kreiss constant is the product of two positive numbers, the distance of a 

point z e  C from the unit circle and the value of the resolvent norm at that 

point, maximized over all choices of z outside the closed disc. For a normal 

matrix, K,{A) — 1 as these two quantities are reciprocal. When A is non­

normal, the resolvent norm at a point z outside the unit disc can be much

larger than the distance from 2 to the disc, and consequently K(A) > 1. This 

fact can be used as an indicator of non-normality. It also useful in cleanly 

phrasing bounds on the behavior of matrix powers in the following theorems, 

the first of which is known as the Kriess Matrix Theorem. Proofs of the next 

three statements can be found in [40].

Theorem  2.15 For A e Cnxn, i f  \\(zl — A)_1|| = for some K  > 1 and z

outside the unit circle, then

K  < 1  +  \z\(K -  1) < sup |U * ||. (2.4)
k> 0 '

Maximizing the left hand side of this inequality, a lower hound is attained  

yielding

K(A) <sup| | Afe||. (2.5)
fc>0

This theorem provides important insight into the iterated power norm. 

Basically, it states that if for some e > 0, the e-pseudospectrum of a matrix 

leaves the unit circle to a distance larger than e, growth in norm of the it­

erated matrix should be expected. Said another way, suppose that for some 

matrix A and choice of e > 0, there is a point 2 e  C \0 1+£ for which z is an 

e-pseudoeigenvalue of A. Then K.(A) > 1 and some growth in norm of A will 

occur as powers are successively taken.
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It is natural to wonder just how large this growth may be. A simple upper 

bound on any square iterated matrix is the bound ||Afe|| < ||A||fc with equality 

if  and only if A is normal [22]. A tighter upper bound on behavior is also given 

in terms of the Kreiss constant.

T heorem  2.16 For any square matrix,

||Afe|| < e(k +  l)JC(A). (2.6)

With the two inequalities given in Equations (2.5) and (2.6), the maximum 

transient growth of a matrix is bounded. Illustrated in Figure 2.5 are the 

relationships between the quantities K(A), ||Afe||, and ||A||fc for a stable matrix 

A with JC(A) > 1 .

Figure 2.5 Bounds on Matrix Norm Behavior in Terms of Kreiss Constant. 
Depicted above is the relationship between iterated powers of a matrix A and 

the Kreiss constant. The norm of Ak is always below the line e(k +  l)fC(A), 
and the line K,(A) is always below the power of A with largest norm.

Chapter 14 of [40] provides a discussion of bounds on the number of it­

erations over which growth behavior may occurs, a subject which will not be 

discussed here.
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3 Approximation and Computer Representation

Differential equations take a variety of forms such as ordinary, partial, 

functional, or delay types. All, however, reflect problems of continuous math­

ematics. Computers cannot store continuous functions except by restricting 

the class of functions, and methods of representing continuous systems as dis­

crete ones have been established. That is, in order to find practical solutions, 

numerical analysis must be done. It is essential that the equations be dis­

cretized and be represented appropriately in order that the results obtained 

from them be consistent with the continuous equation from which they were 

derived.

The purpose of this section is to present techniques used to put the DDEs 

discussed in the first section into a context in which the matrix content of 

the second section is relevant. Specifically, the goal is to have a way of ap­

proximating DDEs by finite systems of linear equations which may be solved 

numerically.

3.1 Discretization, Collocation, and Interpolation

The independent variable, t, in DDE (1.3) is continuous. Again, periodicity 

A(t + t) =  A(t) and B(t + r) = B(t) in Equation (1.3) is assumed. The mon- 

odromy operator may then be defined by Equation (1.7), which cuts the range 

of time variables into pieces of length r, the delay period of the DDE. Each 

interval [0, r] is the domain of a function on which the monodromy operator 

acts.

To numerically compute y by solving y =  U4> for initial data 4>, a finite 

set of nodes {tk} in the domain [0, r] may be specified at y\tk =  U(j>\tk. This is 

a collocation method. The numerical scheme used selects points which are
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asymptotically clustered at the endpoints of the interval [0, r]. In particular, 

the Chebyshev extreme points [38] are selected. For a selection of n + 1 points, 

these points in the interval [ - 1 , 1 ] are given by the formula Xj = cos ^  (j  = 

0, • • • , n) with x0 =  1 and xn — - 1  so that the points are ordered descendingly. 

To shift these points to the appropriate interval, the n  + 1 Chebyshev nodes 

for the interval [0, r] are defined by

T
tj =  -  
3 2

1 +  cos —  
n

0, (3.1)

Collocation, in particular, is a method of finding coefficients ak in an ex­

pansion
n

f ( t )  =
k= 0

so that an equation L[f(tj)} =  0 is satisfied at nodes { t j }g. In seeking coeffi­

cients, the task is to find a solution to the equation, / ,  in a basis of functions 

{ f j }o where the functions ft are chosen.

For example, these n +1 functions could be Lagrange Polynomials based at 

the Chebyshev extreme points, so that there is an nth degree polynomial asso­

ciated with values at each node. These functions, called Chebyshev-Lagrange 

polynomials are given by the formula

Tl t  t k 

k=o tj  -  tk

where { tk} are Chebyshev extreme points. Formula (3.2) is a concise way 

of writing these polynomials, but is not good for practical evaluation [27]. 

Efficiency and accuracy of evaluation of these and other functions is discussed 

in [17, 6]. It is clear from the form of Equation (3.2) that ft(tk) = Sjk. This 

last fact provides a clean way of interpolating a given function (f> : [0, r] —> C;
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if 0 =  {0 (̂ fc)}o are values at the n + 1 nodes, then p(t) =  <t>{h)fk{t) is a

polynomial interpolant which matches 0 at each node. It will be convenient 

to denote by In the n + 1 dimensional polynomial interpolant operator which 

sends a function to its degree n polynomial interpolating function.

Polynomial interpolation of smooth functions at Chebyshev points has the 

important property that it is exponentially accurate. In particular, the resid­

ual value ||0 — p\\ = ||0 — / 7l0 || decreases exponentially with increasing n when 

0 is an analytic function [36]. Such a property has come to be known as spec­

tral accuracy [38].

For discretized data which is known at Chebyshev points, differentiating 

interpolants and getting the derivative values at the Chebyshev points is com­

putable by applying a Chebyshev differentiation matrix provided in [38]. Ap­

plying such a matrix corresponds to interpolating by a degree n polynomial, 

differentiating that polynomial, and then evaluating the result at the n + 1 

Chebyshev points. It will be denoted by D, with D G Cn+lxn+1 for n +1 Cheby­

shev nodes.

3.2 Discretizing the monodromy operator

Suppose that 0 is an interpolant of the history function 0. For numerical 

convenience, it is stored as a list of n +  1 values at the collocation points on 

interval [—r, 0]. These coefficients form a vector, 0 G Cn+1, which is a slight 

abuse of notation. What is sought is the vector {y-j}  ̂ G Cn+1 of collocation 

values so that the interpolant y is an approximate solution to the DDE on the 

next interval of length r. The list of values of the interpolant y is also denoted 

y G Cn+1. The time derivative y in the continuous equation is approximated 

by Dy, the derivative of its polynomial interpolant.

Multiplication by Aft) and B(t) in the scalar DDE (1.3) are written as 

matrices MA, MB G Cn+lxn+1 with (MA = A(tj) and (Mg)^. =  B(t3) where
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j  =  0 , . . . ,  n— 1 [10]. The final rows of these matrices, as well as D, are modified 

to encode the implicit boundary condition, ensuring that the solution begins 

at the appropriate place. In particular, Dn :, (MA)n:, {MB)n. are set to zero 

since the value of yn is determined by 0O. Also, Din and (MB)ln are taken as 

the identity, which in the scalar case is 1 , to represent 0O as the starting point. 

All other entries of MA and Mn are zero.

With these matrices, the linear system approximating the continuous DDE 

has the form

Dy = MAy + MB(f).

Solving this for y gives y — (D — MA)~l MBcf) =  (70 so that U e  C”+ lx "+1 is a 

constructed rank n +  1 approximation to the monodromy operator U [8 , 1 1 ], 

and it is in the basis of Chebyshev-Lagrange polynomials. This approach gen­

eralizes to higher order DDEs and systems of DDEs as well as those with 

multiple delays [10]. The Matlab suite ddec implements the type of numeri­

cal scheme discussed above [9], and is used for all numerical approximations 

to U in this thesis, including those used in previous figures such as Figure 2.2.

An important question to ask now is whether the behavior in the finite 

dimensional approximation U converges to that of U as n —> oo. A treatment 

of this question shows that the finite dimensional approximation converges 

in the sense that initial value solutions converge [21]. For the monodromy 

operator itself approximated by the scheme discussed above, the monodromy 

matrices converge to the monodromy operator in the sense that eigenvalues 

are close [8], a topic surveyed next.

Accuracy of Eigenvalues

An essential topic for the stability of DDEs is whether the largest eigen­

values of a numerical approximation to U are accurate. This subsection demon-
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strates good convergence of the scheme discussed above. Note that in simple 

cases, it may be possible to analytically find the Floquet multipliers of the 

DDE, which are exactly the eigenvalues of U. An example is given below, in 

Hurwitz form. This form is chosen to spread out the eigenvalues of computed 

U, and produce a more interesting picture. The accuracy of the numerical 

scheme used to generate approximations is then more clearly visible.

Consider a simple scalar constant coefficient DDE with no undelayed term

To compute the characteristic multipliers, the Laplace transform is used, that 

is, y(t) =  est. Note that y(t +  1) =  esest so that es is like a Floquet multiplier by 

Theorem 1.6. Substitution of this assumed solution into Equation (3.3) gives 

sest =  so s satisfies ses =  - 1 . The solutions to this equation can be

found by evaluation of the multi-valued inverse of w = f(z) — zez, known 

as the Lambert W function, at the point w =  — 1 [14]. In Figure 3.1, these 

solutions are compared to the eigenvalues of a rank 60 approximation of U 

generated by the numerical scheme (see Figure 1.1). The eigenvalues of U are 

taken to the appropriate region of C by a conformal map F:

which takes the interior of the unit disk to the left half-plane. The largest 

eigenvalues of U line up well with the analytically found Floquet multipliers.

These results are experimental in nature. However, it demonstrates that 

a well implemented approximation to U correctly obtains the part the spec-

y(t) = - y ( f -  !)• (3.3)

(3.4)

trum with largest modulus. These eigenvalues correspond to the points with
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Figure 3.1 Eigenvalues of a Monodromy Matrix: Computed vs. Analytic. 
The accuracy of the approximated eigenvalues for U compared with those 

analytically known. The circles are exact multipliers computed by the 
Lambert W  function. Asterisks indicate the eigenvalues of a monodromy 
matrix, conformally mapped to the left half plane by (3.4) with a =  2 . The 

largest eigenvalues of U coincide with the analytic Floquet multipliers, but
eventually become inaccurate.

largest real part in Figure 3.1. This suggests that spectral analysis on fi­

nite dimensional matrix approximations will be useful for assessing spectral 

properties of the infinite dimensional monodromy operator.

3.3 Normality of U and the Need for an Inner Product

The definition of pseudospectra in Definition 2.13 requires only a norm, 

and hence is applicable to all Banach spaces. In a generic Banach space, 

the associated dual space is not identifiable in any geometrically meaningful 

way with the original space. As a result, the definition of normality, namely 

A*A = AA*, is meaningless since dom(A*) ^ range(A). In fact, the question of 

non-normality is different than the ability to generate a skewed set of pseu­

dospectra. In order to define “normality” itself, it is necessary that the space 

on which the objects act has either an inner product or some idea of angles 

between functions. In summary, normality should only be considered in a 

Hilbert space, a complete inner product space.
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The operator U0 solving the standard form of the DDE with constant de­

lay acts naturally on the set of continuous functions C[0,r]. This makes U 

an operator on a Banach space, complete under the natural norm ||-|| = HH .̂ 

This norm can be used to generate a set of pseudospectral curves around the 

spectrum of U, but it cannot be used to define an inner product. The exis­

tence of an extension of U0 to an inner product space has been established in

subsection 1.3. However, there is more flexibility available in selecting the 

Hilbert space than is suggested in subsection 1.3. A positive weight function, 

w(x) > 0 ae, may be chosen in determining the inner product and norm. The 

inner product for functions of the space 0, r] will be denoted (-I-)™ and is 

defined by

(.f \g)w = f  f*(t)g(t)w(t)dt. (3.5)
Jo

Note also that U is not a purely integral operator, acting not simply on 

LlX0, r], but on C(&L2w[0, r]. This is because U requires point-wise evaluation of 

the function to which it is applied, implying that U is not a bounded operator 

with the weighted inner product defined above. Instead, the domain of U in 

Theorem 1.9 generalized to the space C © L,2(,[0, r] with inner product

{(a, f)\(/3, g))WtUJ = ua*(3 +  {f\g)w (3.6)

where u > 0 is a weight assigned to the product of elements of C.

Theorem  3.1 The monodromy operator U acts boundedly on the inner prod­

uct space H := C © I4[0,r] with the norm induced by the inner product given 

in Equation (3.6).
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Numerical Inner Product

In practical implementation, the functions of the space H are not known 

exactly. They are instead approximated by their Chebyshev-Lagrange inter- 

polants. This generates the need to approximate the inner product of Tt for 

the vectors representing functions in this particular polynomial basis. The ap­

proximate inner product of Equation (3.6) is formulated below where 0 , 0  e H 

and /„0 , Inip are their corresponding interpolants:

where W H denotes the hermitian conjugate of the matrix W  and { /,}  are 

the Chebyshev-Lagrange polynomials of Equation (3.2) based at the n +  1 

Chebyshev nodes. To include the effect of the initial points 0(0) and 0 (0), the 

constant u is added to the entry The weight matrix, W, can then be

found via Cholesky factorization of W HW, which is hermitian positive definite

The entries of W HW  can be computed for a particular choice of w by taking 

the ^-weighted inner product of Chebyshev-Lagrange polynomials, the basis 

elements in which U is written and functions 0 are represented:

One wants to compute entries 3.7 as accurately and efficiently as possible. 

One may take advantage of the special properties of Chebyshev-Lagrange 

polynomials. A barycentric formula for these polynomials is used to repre­

sent these functions efficiently [6]. Then, a gaussian quadrature rule scheme

[39].

(3.7)
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applied to find the integrals of a weighted product of these functions over the 

interval [0, r] [12]. Cholesky factorization of this matrix is then computed, 

resulting in the weight matrix W.

The constant u> and function w in Equation 3.6 will be taken as zero and 

1, respectively, for the remainder of this thesis. The former choice affords the 

initial point no weight in addition to that which it is given in the integral.

The latter choice corresponds to not weighting the L2 space from which the 

functions come.

3.4 Eigenvectors of the monodromy matrix

The monodromy operator associated with a single delay DDE depends on 

the length of the delay r  and on the coefficients A(t) and B{t). However, in 

the case of a scalar DDE with r-periodic coefficients, the eigenvalues of the 

operator depend only on the means of these coefficients over one period. This 

is demonstrated through solutions to the DDE in the following theorem.

P rop osition  3.2 Consider a scalar DDE problem with time-dependent peri­

odic coefficients and simple fixed delay r. This equation takes the form

where A(t + r) = A{t) and B(t +  r) = Bit). Define the average coefficients

(3.8)

and (3.9)

Then the Floquet multipliers (and hence eigenvalues of U) associated with the

DDE

y{t) = Ay(t) + By(t -  r) (3.10)

are the same as those associated with Equation (3.8).
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Proof. It will be shown that a formula for the eigenvalues of U associated to 

Equation 3.8 is dependent only on the coefficient means 3.9. Suppose eigen­

value A € A(U) has eigenfunction y\(t). If yx(t) is the initial data function 

on the interval [0,r], then Xkyx(t -  hr) is a solution to 3.8 on the interval 

[(k -  1 )r, kr). The monodromy operator acts on yx by rescaling it by the value 

of the associated eigenvalue, and then translating it by r to the right because 

(!Uyx){t) =  \ y x(t — t).

On the interval [0, r], one has

j t =  A(t)(Xyx(t)) +  B(t)yx(t).

so 2 =  yx solves the ODE problem

z(t) = [A(t) + A- 15(t)] z(t), (A 7̂  0). (3.11)

Because this ODE is scalar, it can be solved the standard way, by integration, 

yielding

z(t) = et i A{a)+x~lB{s)dsz{0)

However, the solution to the eigenvalue problem has the property that z(r) =  

A;z(0) for the sake of continuity at endpoints. This gives

z ( r ) =  efoA^ + x- lB^ dsz{0) =  Az(0)

or
\  — e/oT

when 2r(0) ^ 0. This is precisely A = exp[rA + tA-1£], s o  A only depends on the 

means of A(t) and B(t). m
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A key idea of this proof is that the DDE eigenvalue problem (for a nonzero 

eigenvalue) is equivalent to a parameter-dependent ODE problem in which 

the parameter is the eigenvalue. The theorem, however, does not extend to 

higher dimensional systems precisely because the solution to Equation (3.11) 

cannot be found for general matrices A and B by exponentiating f j  A(s) +  

A~lB(s) ds; a more general expansion would be required [33].

This proposition predicts zero-mean perturbations of the DDE coefficients 

do not affect the spectrum of U, and consequently the eigenvalues of the mon­

odromy matrix U. However, the solutions to the DDEs of Equations (3.8) and

(3.10) do differ. The eigenfunctions of the associated U are indeed affected 

by zero-mean perturbations. That is, the normality of the monodromy opera­

tor are affected by zero-mean perturbations while its spectrum is unaltered. 

These effects can be explored via pseudospectra.

To investigate non-normality of the monodromy matrices of DDEs, differ­

ent types of zero-mean perturbations will be applied to constant coefficient 

scalar DDEs, effectively altering the eigenvectors of U. These types of DDEs 

will be explored in Section 4.
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4 Finding non-normal monodromy operators

A linear, periodic DDE will be called normal or non-normal depending on 

whether its associated monodromy operator U is normal or non-normal. This 

definition depends on an implied choice of Hilbert space on which U acts. See 

Section 3.3. In this section, monodromy operators corresponding to the class 

of scalar, linear, periodic DDEs with non-constant delay coefficients

y(t) = Ay(t) +  B(t)y(t -  1) (4.1)

will be explored. The coefficient A is constant and B(t) has the form B0 +  pit) 

where p : [0, r] —> R is an integrable function which has zero mean. The spec­

trum of the monodromy operator U is unaltered by pit) by Proposition 3.2. 

However, the eigenfunctions associated with U change, affecting its normal­

ity. The effects are illustrated graphically in pseudospectral portraits of ap­

proximations to U. The goal is to produce an example of a highly non-normal 

DDE in the sense that Ae(U) contains parts of C far from A([/).

4.1 Application of Weight

The graphical affects of applying the weight matrix W  to a monodromy ma­

trix are demonstrated in Figure 4.1 for the DDE (4.1) with {A, B0) =  (—3.5, —3) 

and p =  0. The corresponding rank 60 monodromy matrix is Schur stable 

p(U) «  .74 where p(U) := maxAi€A([/) |A<|.

Pseudospectral plots hereafter will not be of U, even if U is referred to in 

the discussion and caption. Instead, they will be of \VUW~1. This change 

of basis gives the monodromy matrix in the 2-norm basis so that the adjoint 

and transpose coincide [37]. The reader should assume that references to U
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Figure 4.1 Effect of Weighting the Monodromy Matrix on Pseudospectra. 
The left figure is the pseudospectral portrait of U, unweighted. On the right 
is the corresponding portrait for the weighted matrix WUW~l . The effect of 
similarity transform distorts the eigenvectors of U, revealed graphically in 

the changes of the pseudospectral contours.

actually refer to the basis transformed monodromy matrix W UW _1 for the 

remainder of this discussion unless otherwise specified as ‘unweighted’. The 

weight W  is computed for w = 1 and u — 0, as mentioned previously.

There are several ways of measuring the extent of non-normality as dis­

cussed in 2.1. Note that applying W  to U in Figure 4.1 aids in orthogonalizing 

the eigenvectors of U as it decreases the eigenvector matrix condition number 

from about 104 to about 4 • 103. However, the Henrici departure, DH, increases 

from 3.68 to 20.3 in doing so. Large eigenvector matrix condition numbers for 

U may not be useful in assessing whether U behaves poorly for certain initial 

data. Since DH increases while k(V) decreases in the example of Figure 4.1, 

neither may be practical in assessing normality in this discussion. Instead, 

investigation of non-normality will be approached through c-pseudospectra.

This perspective allows for finding aspects of non-normality which may 

be of concern to stability analysis of Equation 4.1. It may have solutions 

which are amplified greatly even though the system is asymptotically stable.
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Solutions of this sort would be characterized graphically by A£{U) extend­

ing beyond the boundary of the unit circle for some small e > 0, and the 

region of C into which the A£(U) extends allows for finding the corresponding 

£>pseudoeigenvalue. The associated pseudoeigenvector (p\ then represents the 

polynomial interpolant of a pseudoeigenfunction of U associated with Equa­

tion 4.1. If A e AS(U) is found outside the unit circle, Theorem 2.5 implies that 

the (f)\ will be an initial function which shows growth.

4.2 Known types of errors to avoid

Proposition 3.2 implies that the spectrum of U should not change under 

a zero mean perturbation, and neither should the eigenvalues of an approxi­

mation to U. However, there are limitations of the numerical scheme used in 

discretizing U discussed in Section 3 which must be considered. Accuracy of 

the interpolation to the coefficients is prerequisite to a good approximation of 

U

In the numerical scheme, the coefficients A and B are sampled at n + 1 

points and interpolated by a degree n polynomial. Although the scheme imple­

ments spectral methods with good convergence properties for analytic func­

tions, finite approximations may not resolve large changes in the function. 

This case, in which too few nodes are used, results in the inaccuracy of the 

largest eigenvalues of U, which is worrisome. Figure 4.3 are A£(U) and A£(UP) 

where U, Up are unweighted approximations to the monodromy operators as­

sociated with the stable DDEs

y(t) =  -y ( t)  +  (1.3 +  p(t))y{t -  1) (4.2)
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where U is found for p(t) =  0 while Up is found for

p(t) = —j=(t — .3) exp[—100(t — .3)2] (4.3)
v 7r

extended with period r =  1 . This perturbation has a shape shown in Figure 

4.2. This perturbation to the DDE coefficient results in movement of the

Figure 4.2 A Plot of Function (4.3), a Wave Packet. Above is the zero mean 
function p(t) given in (4.3) on the interval [0, 1 ]. Also shown are the values at

the 7 Chebyshev zero points.

largest eigenvalues of Up (Figure 4.3), which seems inconsistent with Propo­

sition 3.2. However, this is a numerical effect due to poor interpolation of the 

perturbation. The Chebyshev interpolation points have a minimal density in 

the middle of the interval [0, r] and are symmetric about r /2 , in this case, 

about t =  1 / 2 . For a perturbation like p(t) which is symmetric about some 

point other than t <E {0, r /2 , r } , the symmetric interpolation points may fail to 

represent p adequately. Consequently, the polynomial interpolating this data 

may not have zero mean, and the computed spectrum of Up will be inaccurate.

Failure to accurately interpolate the perturbation may have effects other
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- 1.75

- 2.25

- 2.5

Figure 4.3 A Perturbation Changing Monodromy Matrix Large Eigenvalues. 
The left figure shows the spectral portrait of U corresponding to a constant 
coefficient stable DDE. On the right, the same ‘stable’ monodromy matrix 

with a perturbed delay coefficient, which is no longer stable. The unit circle
is shown.

than changes in the largest eigenvalues, shown previously. Consider the DDE

y(t) = (-1  + q (t))y ( t-  1) (4.4)

where q(t) is a zero-mean function comprised of two gaussian waves, one pos­

itive and one negative. Take, for example, the function

q(t) — - 7= (exp[—100(t — .7)2] — exp[—100(£ — -3)2] ) , (4.5)
a / 7 1 -  V  7

shown for t G [0,1] in Figure 4.4. Again, this function has zero mean, and is 

extended periodically.

Two rather different sets of eigenvalues are computed for Uq with 6 and 60
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Figure 4.4 A Plot of Function (4.5), a Superposition of Wave Packets. The 
function given in Equation (4.5) is shown for t e [0, 1 ]. Note symmetry with 

respect the midpoint of the interval.

collocation points as shown in Figure 4.5. Note that the latter approximation 

is nearly the correct spectrum of the unperturbed monodromy matrix associ­

ated with y(t) =  —y(t -1 ) . Although the largest eigenvalues of Up are accurate 

even for low rank approximations, smaller eigenvalues are not.

These situations are rectifiable by increasing the rank of the monodromy 

matrix. Increasing the dimension of the monodromy matrix U may not be 

without undesired effects. For example, the problem of underestimation illus­

trated in Figure 4.5, was avoided by increasing the dimension of U by a factor 

of 10. In doing so, the eigenvector matrix condition number grows on the order 

of 102. Recall that the monodromy operator is compact, and has only a finite 

number of eigenvalues outside De for any e > 0 [29]. The numerical scheme 

used to approximate U exhibits rapid convergence to the largest eigenvalues, 

but slow convergence to those within this region [8]. The use of more col­

location points means U will have larger numbers of near-zero eigenvalues 

which may not have the desired accuracy. The eigenvector matrix condition
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Figure 4.5 A Perturbation Changing Monodromy Matrix Small Eigenvalues. 
Harmful effects of underestimation as discussed above are shown. A pair of 

nearly zero eigenvalues split apart and drift away from the origin.

number may not be practical for large dimension approximations to U, as it 

may simply reflect the inaccuracy of many eigenvectors associated with the 

eigenvalues near the origin. However, the relationship between compactness, 

the numerical scheme, and the eigenvector matrix condition number is poorly 

understood at the current time.

Shown in Figure 4.6 are a sequence of unweighted rank n approximations 

to Uq of the previous example. It demonstrates that improving the rank of 

monodromy operator approximations leads to a stable picture of the eigen­

values and pseudospectra. The pseudospectral contours indeed enlarge with 

increasing dimension, but their overall shape remains the same.

4.3 Perturbations

The perturbation function p can be any zero mean coefficient provided that 

p(0) =  p(r) to ensure continuity and periodicity of B(t) = B0 + p(t). A few 

choices of p are used here to investigate their effect on U. The emphasis here
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- 0.5 0 0.5 1

Figure 4.6 Monodromy Operator Approximations with Increasing Rank. For 
the delay coefficient perturbation q(t) given in Equation (4.5), this plot shows 

unweighted Uq for DDE (4.4). The rank of these approximations are 
30, 60, 100, and 200 (left to right).

is on perturbation only of the delay coefficient. Experimentation with the fol­

lowing perturbations of the non-delay coefficient produced results which were 

not different enough from the constant coefficient results to be of interest.

Wave Packet Perturbations

A useful type of perturbation has the form p(t) =  Ci(t~C2) exp[-C3( t - C 2)2] 

restricted to t e  [0,r]. There are nice properties of this type of perturbation 

function. It is analytic, and is well represented by the numerical scheme used. 

Also, the parameters C\ allow for adjusting the amplitude of the perturbation 

as well as the width and location of its support. Figure 4.7 shows a pseu­

dospectral portrait for the rank 150 weighted monodromy matrix for

y(t) =  -3 .5y(t) +  ( -3  +  p(t))) y(t -  1) (4.6)

where

p(t) =  5007T 1//2(f — .3) exp[—100(f — .3)" (4.7)

is a wave packet like that of Equation (4.3) in Figure 4.2. Again, this function 

is extended periodically, but the monodromy operator for a periodic DDE only 

depends on one period which here is t £ [0, 1],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

A=>-3.5. B~3»500n'"V3)exf>(-100(l-.3)z)

Figure 4.7 Monodromy Pseudospectra for a Wave Packet Perturbation. This 
is the pseudospectral plot for the monodromy matrix associated to Equation 
(4.6). This illustrates what is sought: areas outside the unit circle where the

resolvent of a stable matrix is large.

It is easily verified that any sum or difference of r-periodic functions on 

[0, r] with zero-mean also has these properties. Hence, it is possible to apply 

to B0 any superposition of appropriate functions. A type of a perturbation 

which produces interesting examples is the sum of functions like that given 

in (4.7) having the form

q(t) =  Ci{t -  C2) exp[-C'3(t -  C'2)2] +  C4{t -  C5) exp[~C6(t -  C5)2] (t G [0, r])

(4.8)

and extended r-periodically. Restrictions should be put on the parameters, 

such as C2,C5 G [a,b] C [0, r] and C3, C6 large enough to ensure the entire 

wave is contained in [0, r].

The effects on the weighted monodromy matrix of this type are shown in 

Figure 4.9 where again (A, B0) =  (-3.5, -3 ) and r =  1 as in Equation (4.6). 

The perturbation used, shown in Figure 4.8, is given explicitly by

945 2Q4 ~
q(t) =  —7=(t — .6) exp[—49(t — .6)2] 4— i=(t — A) exp[—49(t — .4) ]. (4.9)

V7T V7T
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Figure 4.8 Superposition of Wave Packers of Equation (4.9). Shown above is 
a plot of the function given in (4.9) on the interval [0,1]. It has zero mean, 

and is extended periodically. Although asymmetric with respect to t =  .5, 150 
Chebyshev nodes are sufficient to accurately represent this function.

Figure 4.9 Pseudospectra for Perturbation (4.9) on Monodromy Matrix.
Shown are pseudospectra for rank 150 monodromy matrix, where U is 

computed for the DDE with delay coefficient perturbation (4.9). It appears to
be very non-normal.

One wonders whether these results, which display non-normality in the 

monodromy matrix, are dependent on the choices of A and B0. Figure 2.2 

on page 27 shows possibilities for A(U) based on choices of the pair (A , B0). 

For example, (A, B0) =  (0, —1 ) produces U with two large complex eigenvalues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

which have small real part. Also, the choice (—5, —4) gives two large eigen­

value pairs with similar magnitude of imaginary part but different real parts. 

Finally, an example which gives U with one large purely real eigenvalue is 

(-4,2.5) which also has a smaller conjugate pair. A pair (-1 , .4) has simply 

one real large eigenvalue. For a rank 150 approximation of U, each U for these 

base pairs has over 140 eigenvalues near the origin.

Figures 4.10 and 4.11 show the effects of two different perturbations, both 

superpositions of mean-zeroed wave packets, applied to B0 at four different 

choices of (A, B0), shown above the plots, within the stability region. All plots 

in the left column correspond to rank 150 monodromy matrices for DDE (4.1) 

with coefficients (A, B0) subject to the perturbation

Pi(t) =  497r~1,/2[5(t — .6) exp[—49(t — .6)2] +  6 (t — .4) exp[—49(i — .4)2]] (4.10)

applied to B0. The right plots correspond to

p2(t) =  49tT1/2[7(t -  .6) exp[—49(f -  .6)2] + 10(* -  .4) exp[-49(t -  .4)2]] (4.11)

which differs from px by the amplitudes of its humps.
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(A, Bo) =  (0, - 1 )
2.5

-3

-3.5

-4

-4.5

-5

-2.5

-3.5

-4.5

(A, Bo) =  ( - 1 , 4 )
2.5

-3.5

-4.5

-5

-2.5

-3.5

-4

-4.5

-5

Figure 4.10 Pseudospectra for Wave Packet Perturbations for other Base 
Pairs 1. This figure shows pseudospectral plots as described previously, with 
base pair given above the plot. The plots on the left have delay coefficients 
perturbed by p\{t) of equation (4.10) while those on the right have p2(t) as 

given in equation (4.11). All show evidence of non-normality.
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( 4  So) =  (4 , -2 .5 )
2.5

-3.5

-4

-4.5

-2.5

-3.5

-4.5

(>4, £ „ )  =  ( - 5 , - 4 )
-2.5

1

— -3
0.5

-3.5

0
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-0.5
-4.5

-5
-1

-2.5

-3.5

-4

-4.5

Figure 4.11 Pseudospectra for Wave Packet Perturbations for other Base 
Pairs 2. This figure shows pseudospectral plots as described previously. 

Again, there is clear evidence of non-normality for the monodromy operator 
approximations for DDE (4.6) with perturbed delay coefficients.
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Trigonometric Perturbations

The perturbations discussed above are all localized functions in that the 

support is contained within a certain interval. Trigonometric functions are 

more global in nature, and are still of zero-mean provided, for example, that 

there is integer number of full waves on [0, r\. Simple functions have the form

g(t) =  C j sin(271-63/7-) or g(t) =  C L cos(27tC3/ t ) .  Perturbing the delay coefficient 

of the DDE y(t) =  - 3.5y(t) + ( - 3  + g(t))y(t -  1) where Ci = 7 and C3 = 5 
for these choices of g(t) yields rank 150 monodromy operator approximations 

which exhibit non-normality. Pseudospectral plots for monodromy matrices 

corresponding to these perturbations is given in Figure 4.12.

-2.25

-2.75

-3.25

-3.75

-4.25

-4.75

-2.25

-2.75

-3.25

-3.75

-4.25

-4.75

Figure 4.12 Monodromy Pseudospectra for Trigonometric Perturbation. 
Shown above are pseudospectral portraits for U which correspond the DDE 
with delay coefficient perturbed by a trigonometric functions. The left plot 

shows this for g(t) =  7 sin(107rt) and the right for g(t) =  7 cos(107rt).

The effect of trigonometric perturbations of the delay coefficient for other 

choices of base pairs is shown in Figures 4.13 and 4.14 shown on the following 

page. The figures in the left column correspond to using gi(t) =  1 0 sin(107ri) 

while those in the right column correspond to using g2(t) =  1 0 cos(l()7ri).

All pseudospectral portraits shown exhibit evidence of non-normality of 

the monodromy matrix U used to generated them. The level curves of the
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(A  So) =  (0 ,-1)
2.5

-3

-3.5

-4
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0.5
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-1 -0.5 0 0.5 1

(A  S 0) =  ( — 1 , .4)
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Figure 4.13 Pseudospectra for Trigonometric Perturbations of other Base 
Pairs 1. The figures in the left column correspond to gi(t) = 1 0 sin(107rt), and 

those on the right to g2(t) =  1 0 cos(107ri). The choice of base coefficients is 
shown centered above each pair. The unit circle is also shown.

resolvent norm in each plot differ considerably from concentric rings about 

the eigenvalues. In many cases, the curves leave the unit disc even though 

the eigenvalues may be well within the interior of it. Not addressed here 

are perturbations of the coefficient A, which did not induce such significant 

changes in the monodromy matrix as those shown above.
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(A  Bo) =  (4, —2.5)
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(A B q) =  (—5, —4)
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Figure 4.14 Pseudospectra for Trigonometric Perturbations of other Base 
Pairs 2. This figure shows pseudospectral plots as described previously. The 

monodromy matrices appear to be non-normal, though not to the same 
degree as those in the previous figure.
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5 Discussion

5.1 Weight Induced Non-Normality

The monodromy operator has been defined to act on a weighted inner prod­

uct space H =  C©L^[0, r], a Hilbert space in which the concept of normality is 

well defined. The elements of Z^[0, r] are functions, normalized appropriately 

to account for the element w e Crf. By adjusting the size of u in the inner prod­

uct on H , it may be possible to make the monodromy matrix U as non-normal 

as desired in finite dimensions.

Recall that to e Cd represents the weight of the point-wise evaluation of 

the operator U. When u is small, the function values at t =  0 carry little extra 

significance, and an orthonormal basis for L^[0, r] is nearly an ONB for H. 

However, when u is large, the effect of the added dimension is magnified, as 

the function values at t = 0 then carry a more significant weight. An ONB for 

the function space L^[0, r] will also be far from normalized in that space after 

it is normalized in H.

For example, consider {e^} to be an ONB for L2W[0, r] and let e be an arbi­

trary representative. Denote ea =  (a, e) e H. To normalize ea in this space, 

the function ea is divided by its norm. Here,

\\ea\\2n = uja2+\\e\\w =  u a 2+ \  (5.1)

so that ea = , ■■■. For large choices of u, this renormalization has the effectu Vu>a2+1 °  ’
of drastically resizing the basis elements {e^} of L^[0 ,r] so that they are of 

significantly less than unit magnitude in that space.
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5.2 Growth

Recall the DDE y(t) = - 1  y(t -  1 ) was shown to be stable analytically. The 

characteristic exponents are solutions to the equation zez = - 1 , all of which 

are in the left half plane. Consequently, the Floquet multipliers are within 

the unit circle and the DDE is stable by either criterion. In fact, the DDE 

y(t) =  ay(t—1 ) is stable for any negative real choice of a. This only means that 

asymptotically, all solutions decay to zero. In a naive setting, one could test 

some choices of normalized functions (p by applying the monodromy operator 

to them a few times, and verifying that the solution begins to tend to zero.

Consider the base pair (A, B0) =  (0, -1 ) subject to the perturbation p(t) =  

10cos(107rt). The pseudospectra of the rank 150 monodromy matrix are shown 

in the upper right plot of Figure 4.14. For e = 10~2 75, the contour of Ae(U) 

extends beyond the unit circle, shown in Figure 5.1. This means that for 

each point 2 in between <9D and Ae(U), there is an ‘eigenvector’ ip for which 2 

acts like an eigenvalue associated to ip, at least for a short time. Take z0 =  

.26688 +  .97512?, which is marked in the following figure, and is clearly in the 

desired region. It is associated with e — 1.77 • 10 -3  «  10~2,7502.

■2
•2.25 
-2.5 
-2.75 
-3
-3.25 
-3.5 
-3.75 
-4-0.4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4

*(z)

Figure 5.1 Location of Pseudoeigenvalue 1. The point z0 =  .26688 +  .97512? as 
a pseudoeigenvalue for £ =  1.77 • 10-3  «  10-  2,7502.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Finding input vectors

The SVD provides a way to find an input vector associated with an ele­

ment A e A£(U) for a particular choice of e. A note of warning: in the liter­

ature, it is customary to represent the unitary matrices of a singular value 

decomposition as U and V. However, U is already being used to represent 

approximations to the monodromy operator. Instead, Q0 and Qi replace U and 

V, respectively, as the orthonormal bases for the image and preimage spaces, 

respectively.

P rop osition  5.1 Let A e CnXn be a matrix with left singular vectors {qj} and 

right singular vectors {q30} where j  =  1 , 2 , . . . ,  n ordered appropriately accord­

ing to their corresponding singular values. Then ||A|| =  \\Aql\\ =  a\.

Proof. Take A = Q0LQ* via the SVD. Since Qi is unitary, its rows are or­

thonormal and its columns are the right singular vectors. In particular, the 

(QtQl)j =  €<il =  which means that Q*q} is the first element of the stan­

dard basis, Applying the diagonal matrix £  is equivalent to multiplying 

by <7i, the largest singular value of A. Finally, applying Q0 to ail,t\ outputs 

ai ql. This is maximal since any normalized function, v, can be written as a 

linear combination of {qi} which spans the preimage space and can be repre­

sented by a list of coefficients {c,}" with ]T \cj\2 — 1 . Note that Q*v = c simply 

vectorizes these coefficients as it writes v in the basis of its columns. Then 

Sc is diagonal with entries (Sc)^- =  OjCj. Finally, Q0 is unitary and preserves 

norm and ||A|| =  oi, so ax = \ojCj\2)1̂ 2 is satisfied when Cj =  1 and v — q].

■

C orollary 5.2 For A e Cnxn with the SVD given above,

Ancf» h r 1 =  ll'4"-” 11 = a n d  I l l ' l l  =  llj4” ‘ ^ l l  =  r
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The goal is to find the pseudoeigenvector of U e C nx" associated with the 

pseudoeigenvalue z0. What is known is the point z0 G A£0(U) where e0 > 0 

for which \\(U -  zQi y l \\ =  e^1. The solution appeals to the previous corollary 

and the definition of the e-pseudospectra. Recall that AS(U) for a particular 

e is the set of z e  C such that level curve of the resolvent norm, \\H(z, A)|| 

takes value no less than e~l . Since z0 is chosen outside the spectrum of U and 

zo G dASo(U), this gives the inequality

£_1 < ||(^  -  ^of)_1|| =  ^o1 <  00 (£ ^  £o)

which implies there is unit vector v giving \\1Z(z0,U)v\\ =  e0. Equivalently, 

there is a normalized vector v e Cn such that \\(U -  z0I)v\\ =  s0 and no other 

element of unit magnitude gives a smaller norm. By Corollary 5.2, v is the 

right singular value associated with the smallest singular value of the matrix

U -  z0I.

A Naive Algorithm 

A scheme for obtaining a pseudoeigenpair (z0, v) proceeds as follows:

1. Compute the monodromy matrix U0 G <Cnxn for a given set of coefficients.

2. Apply the weight matrix: U — WU0W~l to represent U0 in a 2-norm 

basis.

3. Select a value z0 G A£(U) for which an e-pseudoeigenvector is desired.

4. Compute the SVD of U — z0I = Q0TiQl.

5. Take v as the last column of Q%.

For the example point z0 =  .26688 + .97512?; indicated in the previous plot, 

the pseudoeigenvector v associated with zQ is complex. Recall that this is a
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Figure 5.2 Plot of Pseudoeigenvector Associated with Pseudoeigenvalue 1. 
Real and imaginary parts of the pseudoeigenvector associated with z0 are 

shown. On the left is the numerical vector associated with z0 obtained from 
the algorithm described above. On the right is the approximated history 

function corresponding to this vector. This is found by aligning indices with 
their appropriate Chebyshev points on the interval [0, 1 ].

normalized eigenvector, as it is the column of the unitary matrix Qi obtained 

from a SVD. The pseudoeigenvalue it is associated with has modulus only 

slightly larger than 1  with \zQ\ =  1 .0 1 1 , so the norm of the solution grows 

slightly, shown in Figure 5.3.

Figure 5.3 Norm Powers of DDE Solution for Pseudoeigenvector 1. 
Illustrated above is small transient norm growth for powers of U for the 
selected input. There is no growth of the solution using only the real or 

imaginary part of v, since both 5R(20) and S(z0) are subunimodular.
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The time evolution resulting from the real part of this pseudoeigenvector 

is shown in Figure 5.4. The solution to the DDE on the interval [0,1] has a 

different shape than the history functions supplied. This may be the result of 

using only the real part of the pseudoeigenvector associated with a complex 

pseudoeigenvalue. Note, however, that the solution on [0, 2] behaves like an 

eigenvector associated with a negative eigenvalue on intervals of two periods.

Figure 5.4 Solution to DDE for Pseudoeigenvector 1. Real part of the 
solution to y(t) =  ( - 1  +  10 cos(10tit))y(t -  1 ) with the history function depicted 

in the right plot of Figure 5.2, shown on t e  [ -1 ,0).

The weakness of the previous example was that the eigenvalue nearest the 

point z0 is almost purely imaginary, and so the eigenvector associated with it 

had a large imaginary component, which influenced much of the growth by 

changing signs under successive powers.

Consider a second DDE y(t) =  —5y(t) + [-4  + pi(t)]y(t -  1) where pi(t) of 

the form of superimposed wave packets given in Equation (4.10). A portion 

of the bottom left plot of Figure 4.10 is reproduced in Figure 5.5 showing the 

location of an £-pseudoeigenvalue for £ «  1 CT25.

Since z\ =  —1.1 is a purely real pseudoeigenvalue, and U is a real m atrix, it 

is expected that its pseudoeigenvector is also real. Growth is again expected 

as \zi\ > 1 .

The solution to the DDE, shown in the bottom plot of Figure 5.6 with this 

vector as the history vector demonstrates the DDE behaves as though it is
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Figure 5.5 Location of Pseudoeigenvalue 2. The point z\ = -1.1 is chosen as 
a pseudoeigenvalue of U where the delay coefficient is perturbed by (4.10). 

The £ associated with z\ is approximately 10-2,5.

nearly in an eigenstate. It also shows amplification before beginning to decay.

Figure 5.6 Plot and Norm Powers under U for Pseudoeigenvector 2. The 
pseudoeigenvector v associated to z x — —1.1 is shown in the top left plot, and 

norm powers ||f7fc?;||2 in the top right plot. The corresponding computed 
solution to y(t) =  —5y{t) — (4 + P\(t))y(t — 1) is shown in the lower plot.

An issue which will now be addressed is the extent to which the rank 

of the approximation to U affects the pseudoeigenvector and solution found
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above. Numerical evidence suggests that the size of the monodromy matrix 

does not affect the numerical solution, up to a constant dependent on the 

size of U. Shown below in Figure 5.7 is the solution shown in the lower plot of 

Figure 5.6 for monodromy matrices of rank n =  30, 50, 100 , and 200. The shape 

of the solution does not change. The input vector is taken as the smallest 

singular vector of WUW~l +  1.1/ where U, I, and W  all depend on n. They are 

nearly identical, up to scaling. Normalizing each history vector equally would 

account for this scale factor. This demonstrates that the results of examples 

conducted with n =  150 should remain the same for other choices of n.

A final example shows the behavior of a DDE to a history function taken 

to be a pseudoeigenvector associated with a positive real pseudoeigenvalue

n —

Figure 5.7 Solution to a DDE, Computed by Matrices of Different Rank. 
Displayed here are solutions to y{t) =  —5y(t) +  [—4 +  p(t)]y(t — 1 ) with p(t) 

given in (4.10) using monodromy matrices of various ranks, given on the left. 
The history function used is the pseudoeigenvector associated to z =  -1.1, 

obtained using U. The solutions appear identical up to scaling.
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outside the unit circle. The DDE

y(t)  =  - y ( t )  +  Q  +  1 0 sin(107rt)^ y ( t  -  1 ) (5 .2)

has a pseudoeigenvalue at z2 =  1.24 for e ~  10-2  5. Shown below are the 

pseudoeigenvector, v, the norms of powers of the weighted matrix for this 

input, and a plot of the solution the DDE with v as an initial condition. Again, 

as in all instances discussed in this section so far, U is approximated by a rank 

150 matrix.

Figure 5.8 Pseudoeigenvector, Transient Growth, and Solution for DDE 
(5.2). Pseudoeigenvector (top left), norms of powers (top right), and solution 

(bottom) for the DDE of Equation (5.2) for pseudoeigenvalue z2 =  1.24.

The initial transient growth in these simple examples is quickly damped 

out over a few iterations. However, it is possible for growth to continue for an 

extended period of time. This is demonstrated in cases when there is a numer­

ous collection of large eigenvalues even though all are within the unit circle.
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However, to find examples in which there are many large eigenvalues, it is 

necessary to select base pairs (A, B0) which are far from the origin. For base 

pairs inside the stability region for scalar DDEs, this amounts to taking A to 

be a large negative number such as A =  —200. The numerical scheme then 

uses the fundamental matrix solution to the very stiff ODE y(t) =  -200y(t) to 

approximate U. It may be difficult to assess the accuracy of U in this case, so 

an example of this type is not explored.

5.3 Final Remarks

This thesis has demonstrated that non-normality can appear in monodromy 

operators associated with scalar linear periodic-coefficient delay differential 

equations in one dimension. The concept of normality applies in a strict sense 

to objects acting on inner-product spaces. By choosing an inner product on 

functions of t, non-normality of the monodromy operator U for a DDE, and 

of its matrix approximation, may be investigated. It was demonstrated that 

for certain DDEs, choices of time-dependent coefficients affect the normality 

of finite rank approximations to the monodromy operator U. As these matri­

ces are spectral approximations of a Hilbert space operator which is compact, 

the accuracy of the finite rank matrices with regard to eigenvalues and eigen­

vectors implies the normality of matrix approximations well represent the 

normality of the operator.

Some shortcomings of this approach are the lack of usefulness of the eigen­

vector matrix condition number as an accurate measure of non-normality. 

Due to compact operators’ spectral structure and the numerical methods used, 

high rank approximations of the monodromy operator produce a large num­

ber of inaccurate eigenvalues. Although these have little bearing on ques­

tions such as stability, each is associated with an eigenvector of questionable 

accuracy. This produces, it is suspected, unusually large eigenvector matrix
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condition numbers for the demonstrated behavior of the monodromy matrix.

Non-normality, instead, was demonstrated by computing e-pseudospectra, 

and through growth of selected inputs for stable matrices which are not ac­

counted for by eigenvalues alone.

It remains unclear what properties of p(t), applied to the delay coefficient 

of a constant coefficient DDE, induce non-normality. Reflection on the shape 

of the pseudoeigenvectors in Figures 5.2 and 5.8 suggests that a relation ex­

ists between the type of delay coefficient perturbation and this vector. Pertur­

bations of the delay coefficient have the effect of altering the eigenvectors of 

U, and understanding this connection more clearly is an appropriate topic for 

further research.
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