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ABSTRACT

The northern fiir seal population on the Pribilof Islands has been declining since 

the 1960s and is now less than 30% of its former size. Chapter 1 examines factors that 

might cause a population to decrease to such an extent and concludes that only nutritional 

limitation caused by climate change or commercial fisheries, predation by killer whales, 

or a combination of factors that includes conditions in the North Pacific during the winter 

were possible explanations. Chapter 2 reports the seasonal patterns in proximate 

composition of fur seal milk between St. Paul Island (one of the Pribilof Islands) and 

Bogoslof Island (an increasing population) to understand the energy requirements of 

lactation and the energetics of pup growth and body condition at weaning. Factors that 

caused variability in milk composition included days postpartum, time ashore, individual 

phenotype, island and preceding trip duration. Average milk lipid increased from 

45.5±0.7% to 53.8±1.0% at St. Paul and from 45.8±0.7% to 57.3±0.8% at Bogoslof 

between July and October, while average milk protein remained relatively stable ranging 

between 10.0% and 10.5%. The lipid content of northern fur seal milk near peak lactation 

is the highest reported among otariid seals and among the highest known for all 

mammals.
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INTRODUCTION

The northern fur seal population on the Pribilof Islands has been declining since 

the 1960s and is now less than 30% of its former size (Towell et al., 2006). Other species 

of marine mammals have also experienced population declines in the Bering Sea and 

Aleutian Islands region in this time. For example, the western stock of Steller sea lions 

collapsed by over 80% in the 1970s-1990s and are still declining in the central and 

western Aleutian Islands (Braham et al., 1980, Merrick et al., 1987, NMFS, 1992, NMFS, 

1995, NMFS, 2007), harbor seals collapsed by up to 85% in the 1970s-1980s but are now 

recovering slowly in some areas (Pitcher, 1990, Frost et al., 1999, Small, 2003, Ver Hoef 

and Frost, 2003, Small et al., 2008), and the sea otter population in the Aleutian Islands 

collapsed by about 85% in the 1980s-1990s (Estes et al., 1998, Doroff, 2003). The reason 

for each of these declines may or may not be linked. The sea otter declines were most 

likely caused by killer whale predation (Estes et al., 1998), but the reason, or reasons, for 

declines of the other species remain unknown.

In Chapter 1 I review the potential causes o f the decline of northern fur seals on 

the Pribilof Islands in the context of other important changes to the ecosystem since the 

middle 20th century. The factors I review include commercial harvests, subsistence 

harvests, bycatch in commercial fisheries, entanglement in fishing gear, direct shootings, 

disease, contaminants, nutritional limitation due to fisheries competition or climate 

change, predation, conditions during the winter and multiple causes. I conclude by 

summarizing questions that still need to be addressed and that provide guidance for future 

research.

Chapter 2 reports on the proximate composition of northern fur seal milk on St. 

Paul Island (Pribilof Islands) and Bogoslof Island, as part o f  a larger study called 

Consequences of Fur Seal Foraging Strategies (COFFS). COFFS investigated factors that 

may be contributing to differing population trajectories of northern fur seals in the Bering 

Sea by comparing numerous aspects of fur seal biology at St. Paul and Bogoslof, a 

smaller northern fur seal rookery site located approximately 200 miles south of the
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Pribilofs that has been experiencing exponential growth (R2=0.91) since its establishment 

more than 30 years ago (Lloyd et al., 1980, NMFS, 2007). The Pribilofs are located on 

the Bering Sea continental shelf, whereas Bogoslof is located off the Aleutian Islands 

chain in the deep ocean domain. These two rookeries offer a natural setting to compare 

aspects of the biology of fur seals in two populations in contrasting ecoregions and with 

divergent population trajectories.

The objectives of the COFFS study were to 1) determine the consequences of 

female foraging strategies to the growth of pups and to the physiological condition of 

pups and females near the time of weaning, i.e., determine if  adult female fur seals at the 

Pribilofs are less able to raise robust pups than those at Bogoslof; and 2) determine if 

conditions in the North Pacific during the winter and spring could be differentially 

affecting adult females breeding at the Pribilofs compared to Bogoslof. Individual 

females and their pups were followed over the breeding season between July and October 

during 2005 and 2006 to determine female foraging trip locations, distances and 

durations, attendance patterns, diets, and milk delivery rates; pup growth rates; and the 

physiological condition o f females and pups near the time o f weaning. Females were also 

instrumented with satellite transmitters at the end o f the breeding season to record winter 

movements, and attempts were made to recapture the same females upon their return to 

the rookery sites in the spring to assess their condition.

Knowledge of milk composition is essential for understanding the energy 

requirements of lactation and the energetics of pup growth and body condition at 

weaning. My study was unique because it compared the milk composition o f females 

from two contrasting populations in longitudinal studies over most o f the lactation period. 

It examined multiple variables— location, year, time ashore, days postpartum, foraging 

trip duration, maternal mass and pup gender—to determine potential sources of temporal 

and spatial variability in milk composition. Understanding how these factors affect milk 

composition and provisioning gives us insight into differences in pup growth,
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development and survival and adds to our ability to know if nutritional limitation could 

be causing or contributing to the population decline on the Pribilofs.
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CHAPTER 1

Northern fur seal history and status in the Bering Sea: using current knowledge as a

guide to prioritize future investigations1

Abstract

The northern fur seal (Callorhinus ursinus) population on the Pribilof Islands has 

declined by more than 70% over the past 50 years and the reasons remain unexplained. 

Here I examine the factors that have the potential to cause a population decline of this 

magnitude and compare them to the factors that may be affecting other pinniped and sea 

otter species that are also experiencing population declines in the Bering Sea and 

Aleutian Islands. I also make comparisons to a rapidly growing population of northern fur 

seals on Bogoslof Island, located in the basin domain of the Bering Sea close to the 

Aleutian Islands. The Bering Sea ecosystem has been an area of great change due to 

human and natural causes for multiple centuries and it is difficult to determine “normal” 

population levels and population fluctuations of fur seals or many other species, or past 

environmental conditions because the area was not monitored well until comparatively 

recently. Nevertheless, I draw some conclusions from the available literature and data. 

Factors such as diseases, parasites, subsistence harvests, direct shootings and bycatch 

have likely affected fur seals in the past and during this current decline, but they could 

not cause a reduction of this magnitude without being detected. Factors that were 

important to consider in the past and should continue to be monitored, but are probably 

not currently issues in the current population decline, include entanglement and 

contaminants. The factors that could cause a population to fall to the level seen in 

northern fur seals on the Pribilof Islands are nutritional limitation, due to climate change 

or fisheries competition; predation; or a combination of factors that include conditions in 

the North Pacific during the winter. In the end I list several questions and make 

recommendations about areas of research that need to be addressed in the future.

1 Hayden, A.B. Northern fur seal history and status in the Bering Sea: using current knowledge as a guide to prioritize 
future investigations. Prepared as a report for the Pollock Conservation Cooperative Research Center.
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Introduction

Northern fur seals (Callorhinus ursinus) breed at six locations in the United States 

and Russia for four months during the summer each year. St. Paul Island (St. Paul,

Pribilof Islands) supports the largest number of fur seals and, along with St. George 

Island (St. George, Pribilof Islands), which also has large rookeries, is located in the heart 

of the Bering Sea, a valuable and highly productive fisheries region. The Pribilof Islands 

(Pribilofs) population of fur seals has been decreasing for over 50 years (Towell et al.,

2006); however, fur seals are not the only species o f marine mammals to undergo a 

substantial decline in the region. The western stock of Steller sea lions (Eumetopias 

jubatus) collapsed by over 80% in the 1970s-1990s and is still declining in the central 

and western Aleutian Islands (Braham et al., 1980, Merrick et al., 1987, NMFS, 1992, 

NMFS, 1995, NMFS, 2007), harbor seals (Phoca vitulina) collapsed by up to 85% in the 

1970s-1980s but are now recovering slowly in some areas (Pitcher, 1990, Frost et al., 

1999, Small, 2003, Ver Hoef and Frost, 2003, Small et al., 2008), and the sea otter 

(Enhydra lutris) population in the Aleutian Islands collapsed by about 85% in the 1980s- 

1990s (Estes et al., 1998, Doroff, 2003). The reason, or reasons, for each of these declines 

may or may not be linked. The sea otter declines were most likely caused by killer whale 

predation (Estes et al., 1998) but the reason, or reasons, for declines o f the other species 

remain unknown.

Because multiple species have experienced large decreases in population size in 

the region of the Bering Sea and Aleutian islands, there is a heightened need to 

understand what may be causing the ongoing decline of northern fur seals. Northern fur 

seals have been a species of interest for centuries, and particularly since the discovery of 

rookeries on the Pribilofs in 1786 and 1787 (Bancroft, 1886). Initially, they were highly 

valued for their furs and were harvested in huge numbers for profit, which led historically 

to two major population declines (Roppel and Davey, 1965). More recently, the 

economic value has faded and none are harvested for furs, but the importance of fisheries 

and ecosystem productivity has emerged as conservation concerns for the population.
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This chapter reviews the potential causes of the current fur seal decline on the Pribilofs in 

the context of other important changes to the ecosystem since the middle 20th century and 

summarizes research questions that still need to be addressed.

Background

Northern fur seals inhabit the waters o f the Bering Sea, the Sea of Okhotsk, and 

the North Pacific Ocean from California to Japan. They breed at six locations each 

summer -  The Pribilofs in the eastern Bering Sea, Bogoslof Island (Bogoslof) in the 

eastern Aleutian Islands, San Miguel Island off of southern California, and the 

Commander Islands, Robben Island and Kuril Islands in Russia (Figure 1.1) (Kenyon and 

Wilke, 1953, Gentry, 1998). During the winter, northern fur seals migrate south from the 

rookery sites and remain pelagic for about 8 months (Ream et al., 2005) (Figure 1.2). 

Females typically travel the farthest south: for example, females from the Pribilofs travel 

to the North Pacific Transition Zone, the Pacific Northwest and the shelf edge off of 

California (Ream et al., 2005). Males do not migrate as far south (Kajimura, 1984, Biggs, 

1990, Loughlin et al., 1999) and juveniles depart with the females but appear to scatter in 

many directions and have less predictable migration patterns than the adults (Lea et al., 

2009).

Northern fur seals have a similar reproductive strategy to other otariid seals. They 

have a harem system in which males arrive first, in June, to establish territories. Usually 

only the largest males, which are typically between 7 and 11 years old, are able to defend 

the prime territories and fast throughout the critical period when copulation occurs 

(Johnson, 1968, Vladimirov, 1987). Females arrive in early July and give birth within 1-2 

days. Females remain on shore fasting and nursing their newborn pups for a short 

perinatal period of about 1 week. After the perinatal period, females begin alternating 

between feeding trips to sea to acquire the energy needed for lactation, and nursing trips 

to shore to feed their pups. This pattern continues for about 4 months. In late October to 

early November, females depart and pups are abruptly weaned and embark on their first 

migration in which they must leam to forage and survive on their own. The last fur seals
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typically depart by mid to late November. Although this type of breeding strategy is 

similar to other otariids, there is one significant difference. Northern fur seal pups are 

weaned earlier than all other otariid species, except the Antarctic fur seal, so they need to 

acquire the needed nutrients for growth and development in a shorter amount o f time.

Northern fur seals have experienced two known population declines before the 

present stock reduction and these declines occurred throughout their range. The first 

decline, which occurred in the late 1700s and early 1800s, was the result of 

overharvesting at the summer rookery sites (Jordan, 1898, Kenyon et al., 1954, Roppel 

and Davey, 1965). The second decline, which occurred between the end o f the 1800s and 

the beginning of the 1900s, was the result of unmanaged pelagic harvesting during the 

summer and winter periods (Kenyon et al., 1954, Lander and Kajimura, 1982). In both 

cases, once the reason for the decline was determined and regulations were made to 

minimize the effect to the stock, population numbers increased (Roppel and Davey, 

1965). In fact, after the North Pacific Fur Seal Convention o f  1911 when the United 

States, Russia, Japan, and England signed a treaty to ban pelagic harvesting, fur seal 

numbers grew steadily for approximately 40 years and reached what some have 

suggested were pristine levels o f 1,500,000 to 3,000,000 animals (Kenyon et al., 1954, 

Lander, 1980, Lander and Kajimura, 1982).

The current decline on the Pribilofs began soon after a female harvest was 

implemented in 1956 (Figure 1.3). Managers believed that the population had reached its 

peak level by the late 1940s and as a consequence, female reproductive success and the 

number of animals available for commercial harvest each year were decreasing because 

of density dependent depression of productivity (Roppel and Davey, 1965, York and 

Hartley, 1981). In an effort to increase productivity of the herd, and to increase harvest 

numbers, a plan to reduce the estimated 1,200,000 females to about 800,000 was 

implemented (Roppel and Davey, 1965). By the end of the harvest in 1968, the fur seal 

population was clearly in decline (York and Hartley, 1981). To determine if  the harvest 

alone explained the population trajectory, a modeling study was undertaken using the
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total number of animals taken in the commercial harvest and in a scientific pelagic 

harvest between 1958-1974, and the best known vital rates and estimated changes in pup 

production through the 1970s (York and Hartley, 1981). The study concluded that 70% of 

the population decline that was evident between the end of the female harvest in 1968 

and 1979 could be explained by the reduced number of females and their pup’s potential 

recruitment in the population. There are two things to note about this conclusion. First, a 

substantial portion (30%) of the decline could not be explained by the loss o f females to 

the harvest. Second, the continuing, overall decline might not have been as severe in the 

1970s had the female harvest not occurred. These observations thus raise the question of 

whether multiple causes could have contributed to the overall population decline since 

the late 1950s.

Trends based on direct counts o f pups (Figure 1.3) indicate that the population on 

St. Paul showed some signs o f recovery after the termination of the female harvest, but 

reversed course in the mid 1970s, stabilized briefly in the 1980s, then continued to 

decline in the 1990s and through this century (Towell et al., 2006). At St. George, 

however, the population has experienced an essentially monotonic decline since the 

inception of the female harvest (Towell et al., 2006). The only other fur seal population 

decline in Alaska that we have a good historic record for, to compare trends, is the one 

that occurred on the Pribilofs between the late 1800s and the early 1900s due to 

unregulated pelagic harvesting. Many females were taken at that time, yet recovery began 

immediately once regulations were implemented. Why was there a continued decline 

after the end of the female harvest of 1956-1968, after the end of the scientific pelagic 

harvest of 1958-1974, and after the end of all commercial harvests on St. George in 1974 

and on St. Paul in 1984? And of particular note, why has the herd on Bogoslof, nearby in 

the eastern Aleutian Is., been in exponential growth since it was founded in the mid 

1970s?

There are a number of factors in the Bering Sea and the North Pacific Ocean that 

might cause a population to change in size. Long-term climate warming and events such
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as the Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO) have 

documented effects on ecosystems that could alter overall productivity and prey 

availability to fur seals (Polovina et al., 1995, Francis et al., 1998, Anderson and Piatt, 

1999, Bailey, 2000, Hare and Mantua, 2000, Hollowed et al., 2001, Chavez et al., 2003, 

Overland and Stabeno, 2004, Coyle et al., 2011, Mueter et al., 2011). Commercial fishing 

pressures in the Bering Sea since the 1950s have removed prey of fur seals and, along 

with industrial whaling in the 1950s and 1960s, have changed predator-prey relationships 

(Bakkala et al., 1987, Alverson, 1992, Merrick, 1997, Springer et al., 2003). Direct 

killings are known to have driven populations down in the past, and entanglement in 

discarded fishing nets and other marine debris was common in the 1970s (Jordan, 1898, 

Kenyon et al., 1954, Roppel and Davey, 1965, Fowler, 1987). Contaminants and diseases 

have also been implicated as factors, as has predation (Beckmen, 1999, Beckmen et al., 

1999, Springer et al., 2003, DeLong, 2007). However, the northern fur seal is a long-lived 

species and individuals only need to reproduce successfully once during their lifetime to 

maintain stable populations. It is natural and expected to have more productive and less 

productive years over time. But what factor, or factors, could be great enough to cause 

the northern fur seal population on the Pribilofs to decline by more than 70% over the 

past 50 years?

Direct Mortality by Humans 

Commercial and subsistence harvests

The harvesting of northern fur seals on the Pribilofs for commercial purposes 

began once fur seals were discovered on St. George in 1786 and on St. Paul in 1787. 

Historic population changes due to overharvesting and management protections are 

discussed in the background section above. In short, past commercial harvests are known 

to have decreased population numbers; however, populations recovered once 

management decisions were made to protect the herds. An interesting aspect of the 

current population decline is that when commercial harvests were concluded on St.
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George in 1976 and on St. Paul in 1984 the population did not recover. This would 

suggest that the problem is not solely due to commercial harvesting.

Subsistence harvests have occurred since man came into contact with northern fur 

seals. For example, there is archeological evidence that suggests humans were hunting 

and eating northern fur seals as far back as the middle to late Holocene (-1200-1800 

years BP) (Burton et al., 2001, Newsome et al., 2007). Before the Pribilofs were 

discovered, it is also known that the Aleuts that inhabited the Aleutian Islands hunted fur 

seals as they migrated north and south through the numerous passes (Jordan, 1898).

When the Pribilofs were discovered, subsistence harvests became more regular but 

management increased to minimize the impact. In recent years, very low numbers have 

been taken for subsistence purposes. Takes on St. Paul were reduced from 1591 in 1996 

to 522 in 2003 (Zavadil, 2008). Efforts have also been made to eliminate the collection of 

females and adult males (Zavadil, 2008). This very low rate o f subsistence harvesting 

represents less than 0.1% of the northern fur seal stock on the Pribilofs and can not 

account for the 5.2% per year decline that has occurred between 1998-2008 (Towell et 

al., 2006, Allen and Angliss, 2010) .

Bycatch in commercial fisheries and entanglement in fishing gear and debris

Incidental takes in fishing gear occur occasionally and are difficult to avoid 

because of the overlapping interest of fur seals and commercial fishermen in fish 

resources. Since the implementation of the Marine Mammal Protection Act in 1972 and 

the Magnuson Stevens Fishery Conservation and Management Act o f 1977 (MFCMA), 

efforts were made to record the number of incidental takes that occurred within the 200- 

mile fishery conservation zone of United States waters (Loughlin et al., 1983). Early 

foreign high seas driftnet and gillnet fisheries had the highest incidents o f marine 

mammal bycatch. For instance, total takes from the high sea driftnet fishery were 

estimated at 5,200 in 1991 (Perez and Loughlin, 1991, Lamtz and Garrott, 1993) and 

takes from the Japanese high seas salmon gillnet fishery were estimated between 100

1,000 a year from 1975 to 1981 (Jones, 1980, Jones, 1981). These fisheries no longer
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operate and so have not had an impact on the northern fur seal stock in recent years. In 

the past, the groundfish fisheries o f the Bering Sea and Gulf o f Alaska had the highest 

incidents of marine mammal bycatch (Loughlin et al., 1983), but estimates o f mortality 

remain very low and are unlikely to be the cause o f the current population decline 

(Ferrero et al., 2000). Recent estimates suggest that as few as two northern fur seals are 

injured or killed by fishery-related incidental catch each year (Perez, 2006, Allen and 

Angliss, 2010). It is likely that there are other unreported incidents; however, given the 

large stock of fur seals, these takes would not be large enough to adversely affect 

population levels (Allen and Angliss, 2010).

Entanglement in floating debris is thought to have increased fur seal mortality 

and/or reduced reproductive success in the 1970s. Objects wrapped around fur seal necks, 

shoulders and flippers were observed at a greater frequency following the mid-1960s 

increase in fishing effort in the North Pacific and Bering Sea and when plastic materials, 

which float and do not rot, started being used to pack trawl nets (Fowler, 1987).

Estimates suggest that the world’s fishing fleet dumped about 135,400 tons o f plastic 

fishing gear and 23,600 tons of synthetic packing material into the ocean in 1975 alone 

(Derraik, 2002). The observed rates of entanglement were typically less than 1% (Fowler 

and Ragen, 1990), but some estimates suggested that young animals might have been 

more highly affected, lost at sea, and thus not observed (Fowler, 1987). The work that 

Fowler and others did to determine the contribution of entanglement to the population 

decline during the 1970s and 1980s was inconclusive (Fowler, 1982, Fowler, 1987, 

Feldkamp et al., 1989, Fowler et al., 1989). Since that time, large-scale efforts have been 

made to clean up fishing and packing materials that could cause entanglement. There also 

have been efforts to educate fishermen and the public about the problem and reduce the 

amount o f dumping. Entanglement still occurs on the Pribilofs and at other rookery sites 

but the frequency has been substantially reduced (Fowler et al., 1989, Zavadil et al., 

2007).
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Direct shootings

Direct shooting of northern fur seals probably occurred. It’s known that shootings 

of Steller sea lions occurred regularly and were legal before the passage of the Marine 

Mammal Protection Act in 1972. Between 1972 and 1990, it was still legal to shoot 

Steller sea lions and other marine mammals that were destroying fishing gear or causing a 

threat to human life. It was only after 1990 that it became illegal to discharge a firearm 

near a marine mammal. It is difficult to assess the impact of legal and illegal shootings 

now because no records were kept; however, the number of Steller sea lion takes could 

have been significant before 1972 and could have contributed to their population decline 

in the 1970s (Allen and Angliss, 2010). In contrast, northern fur seals tend to be less 

visible and less of a nuisance to fishermen than Steller sea lions, so it is unlikely that 

shooting has contributed to the continuing decline in recent decades.

Disease

A number of diseases have been recorded in northern fur seals over time, but the 

only significant infection that is known to have caused repeated large numbers of deaths 

is the hookworm parasite ( Uncinaria lucasi). Lucas (1899) first recognized hookworm in 

the northern fur seal in 1896 and Olsen and Lyons (1965) conducted a complete analysis 

of the parasite’s lifecycle in 1965. The parasite has been found in the soil at rookeries, 

and it is believed that adult fur seals are infected through their pulmonary system and 

pups are infected through milk transferred from the mother during nursing (Olsen and 

Lyons, 1965). The cause o f death from hookworm infection can vary. Pups that were 

infected with hookworm on the Pribilofs usually died from anemia, whereas recently 

infected pups on San Miguel Island died from secondary bacterial infections (DeLong,

2007).

From the time of its discovery until the early 1980s, the hookworm parasite was 

responsible for a substantial number of northern fur seal pup deaths on the Pribilofs 

(DeLong, 2007). For example, 56% of the 1727 pup deaths that were examined in 1957
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were caused by hookworm, compared to just 0.6% of the 2735 pup deaths examined in 

the 1980s (DeLong, 2007). Currently, however, the main hookworm problems exist on 

San Miguel Island and the Commander Islands, but not on the Pribilof, Kuril or Robben 

islands. Hookworm infection has not been assessed on Bogoslof. There is some debate 

about what factors drive hookworm infection rates, but the two leading possibilities are 

density dependence and substrate use (DeLong, 2007). The decreased incidence of 

hookworm infection on the Pribilofs, for instance, could be the result o f the declining 

population or because soil and grassy areas where hookworms have been found are no 

longer being utilized. In either case, fur seal deaths from hookworm infection have been 

decreasing and are unlikely to be responsible for the present decline.

Other parasites and diseases that have been studied in northern fur seals are mites, 

namatodes (Dipetalonema odendhali), Salmonella enteritidis, Pseudomonas aeruginosa, 

Acinetobacter Iwoffii, Staphylococcus sp., Leptospirosis and fungal infections (Smith et 

al., 1977, Keyes et al., 1979, Keyes et al., 1980, Burd et al., 1990, NMML, 1998). 

However, these outbreaks have not been ongoing or severe enough to cause a long-term 

population decline like that on the Pribilofs. There is some debate about whether other 

factors may weaken the fur seal immune system allowing viruses, bacteria and parasites 

to have an advantage, but that would mean that the disease is the secondary effect and the 

primary cause still needs to be determined.

Contaminants

Organochlorines are one of the primary contaminants found in the marine system. 

They include pesticides such as DDT, endocrine dismptors such as endosulfan, 

polychlorinated biphenyls (PCBs) such as coolants and flame retardants, and 

chloromethanes, which are precursors to substances like silicone. Organochlorines are 

slowly metabolized and tend to accumulate in long-lived species that are high in the food 

chain (known as biomagnification). Because they are lipophilic, they can bind to milk fat 

and be transferred to the offspring of mammals during lactation. Northern fur seals have 

high levels of organochlorines compared to other arctic marine mammals because they
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migrate south during the winter and feed in areas off the coasts of California and Japan 

that have historically had high contaminant levels (Bacon et al., 1992, Tanabe et al.,

1994, Krahn et al., 1997, Loughlin et al., 2002). Females of reproductive age have 

slightly reduced levels compared to males and juveniles because they transfer 

contaminants to their pups during lactation -  first bom pups receive the highest levels of 

contaminants because of the accumulation in females in the 4-5 years before first 

reproduction (Beckmen, 1999, Beckmen et al., 1999).

The possible effects of high or chronic exposure to synthetic contaminants have 

been studied in a number o f marine mammal species, but it has been difficult to confirm 

direct cause and effect relationships. Chronic exposure may impair the immune response 

(Ross et al., 1995, De Swart et al., 1996, Beckmen, 1999), and there is evidence that high 

PCB levels can cause reproductive failure (DeLong et al., 1973, Reijnders, 1986). High 

organochlorine levels in first bom northern fur seal pups have been related to poor 

lymphoproliferative responses as well as to lowered serum retinol and thyroxine 

(Beckmen, 1999). It is unclear, however, if  these factors translate to reduced post- 

weaning survival. It is well known that first bom pups are often bom at a lower birth 

weight and smaller size, but a relationship between those factors and contaminant levels 

has not been found (Beckmen, 1999). Additional work is needed to determine if  the 

effects o f organochlorines decrease the rate o f survival for first year pups. However, it is 

unlikely that Organochlorines affected the fur seal population on the Pribilofs but did not 

affect the fur seal populations at other rookery locations.

Mercury is the primary heavy metal o f concern in the marine environment. It is 

found in several forms, organic and inorganic, but all have the potential to become highly 

toxic methylmercury (Beijer and Jemelov, 1979). The most common natural sources are 

volcanic activity and leaching of mercuric sulfide (cinnabar). Anthropogenic sources 

include the combustion o f fossil fuels, particularly in coal-fired powered plants, mining 

and the disposal of batteries and fluorescent lights. Mercury levels in the environment 

have increased by up to 5% since the beginning o f the industrial era and mercury and its
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compounds have no known biological function and their presence in an organism is 

undesirable and potentially hazardous (Clarkson, 1993). Methylmercury has a high 

absorption rate, a large distribution throughout the body, can cross the blood brain barrier 

affecting the central nervous system, is slowly metabolized, and has a low excretion rate 

(Jugo, 1979). Methylmercury is especially dangerous to young animals because it is 

absorbed at a higher rate during development. Although most forms o f mercury are not 

lipid soluble, methylmercury can be transferred to offspring transplacentally and through 

the proteins in milk (Jugo, 1979). There is typically a latent affect after poisoning so the 

effects of a toxic dose may not be immediately apparent.

Methylmercury bioaccumulates in the marine environment (Beijer and Jemelov, 

1979), and northern fur seals have very high levels of mercury compared to other marine 

mammal species (Anas, 1974, Noda et al., 1995, Beckmen et al., 2002). It is still not 

known, however, if  high mercury levels in marine mammals lead to lower survival. In 

fact, it has been suggested that the dietary element selenium, which is also found at high 

levels in northern fur seals, may protect against the toxic effects of mercury (Carty and 

Malone, 1979, Ikemoto et al., 2004). Further work is needed to understand how selenium 

may protect against the toxic effects of mercury and to determine if  mercury 

contamination causes higher mortality or reduced fitness in marine mammals. It is 

unlikely that mercury is causing the population decline on the Pribilofs. There is no 

evidence to suggest that the fur seals from the Pribilofs have higher concentrations of 

mercury than other fur seal populations that are stable or growing.

Nutritional Limitation

Nutritional limitation is caused when the net energy obtained from foraging 

decreases to a point that is detrimental to an animal. This can be caused by decreases in 

the quantity or quality of the food that is available or by increases in the amount of 

energy that is expended to obtain food and maintain physiological condition. Climate 

change and commercial fisheries are the two leading factors that have the potential to 

cause nutritional limitation in northern fur seals. Nutritional limitation can lead to
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decreases in growth rates, pregnancy rates, and reproductive success and to increases in 

mortality through disease, predation, and starvation. To be able to assess how climate 

change and fisheries may have impacted fur seals over time, it is important to understand 

the potential effects to the ecosystem and how these effects may influence the diet and 

foraging patterns of fur seals. Northern fur seals breed at northern rookery sites in the 

summer and migrate south where they remain pelagic during the winter, so both areas are 

important to assess when trying to understand possible nutritional impacts.

Climate change

Climate change generally means a change in atmospheric conditions over time. 

There are natural examples of climate change such as El Nino, which occurs on an 

episodic basis. There are also long-term climate trends that cause persistent shifts in 

ecosystems such as the ice ages and inter ice age periods. Anthropogenic causes o f 

climate change in the past century, through the release o f carbon dioxide and other 

greenhouse gasses, is the leading theory for global warming (IPCC, 2007), but this has 

been hotly debated in recent years (IPCC, 2007, Akasofu, 2010).

Climate change affects a broad range of ocean processes. On a physical level it 

can affect ocean temperatures and in Arctic regions seasonal sea ice dynamics; the 

timing, location and strength of circulation patterns; spring stratification and the strength 

and depth of the pycnocline; and the frequency and intensity of storms, all o f which can 

influence the timing and amount of primary production and the distribution, behavior and 

abundance of forage species and higher trophic level organisms (Francis et al., 1998, 

Wyllie-Echeverria and Wooster, 1998, Napp and Hunt, 2001, Stabeno et al., 2001, Hunt 

et al., 2002,, Schumacher et al., 2003, Mizobata and Saitoh, 2004, Overland and Stabeno, 

2004, Bond and Overland, 2005, Grebmeier et al., 2006, Mueter et al., 2006, Hunt et al., 

2008, Mueter and Litzow, 2008, Hollowed et al., 2012, Stabeno et al., 2012) Ultimately, 

these changes affect how energy flows through an ecosystem. Change is part of any 

marine system and species adapt to the range of conditions common in their habitat; 

however, if shifts become too unpredictable or exceed tolerable ranges, as is now
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occurring with increasing frequency (Hansen et al., 2012), species can be negatively 

impacted. One of the concerns about rapid climate change, such as global warming, is 

that species do not have enough time to adapt to the changes that are outside the natural 

range of variability.

Two types of climate change that have been studied in depth in recent years are 

regime shifts and global warming. Regime shifts, which appear to persist for about 12 to 

30 years, are characterized by a stepwise change in a number of physical and biological 

features (Ebbesmeyer et al., 1991, Francis and Hare, 1994, Graham, 1994, Francis et al., 

1998, McGowan et al., 1998). These features include atmospheric pressure, air 

temperature, sea surface temperature, ocean circulation patterns, ice cover, and 

zooplankton, jellyfish and fish recruitment, and catch amounts. Indices such as the 

Southern Oscillation Index (SOI), the PDO, the Aleutian Low Pressure Index (ALPI) and 

the North Pacific Index (NPI) are commonly studied to determine when regime shifts 

occur. It is believed that regime shifts occurred in the Bering Sea and North Pacific in 

1925, 1947, 1977, 1989 and possibly 1998 (Mantua et al., 1997, Minobe, 1997, Beamish 

et al., 1999, Hare et al., 1999, Overland et al., 1999, Hare and Mantua, 2000, McFarlane 

et al., 2000, Benson and Trites, 2002). A distinctive regime shift, which changed the 

climate from predominantly cool to warm, occurred in winter of 1976-1977 and was the 

only one that was apparent in all indices.

Long-term global warming differs from a regime shift because it is not a step 

change that occurs in one year, and changes so far have been unidirectional. The 

Intergovernmental Panel on Climate Change (IPCC) has stated that a warming climate is 

unequivocal and it provides evidence of increases in the average global air and ocean 

temperatures, as well as widespread melting of snow and ice (IPCC, 2007). Climate 

warming has led to glaciers retreating, permafrost melting, sea ice shrinking, sea level 

rising, and extreme weather events that have changed in frequency and/or intensity 

(IPCC, 2007). As a result ecosystems are being altered. In the Arctic the effects of global 

warming are amplified because of open water formation efficiency, ice and snow surface
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albedo feedback, and possibly rapid increases in ocean heat being transported to the 

Arctic (Overpeck et al., 1997, Holland et al., 2006). The IPCC reports that temperature 

increases in the Arctic are almost twice the global average. In the Bering Sea, 

temperature increases through 2005 resulted in less sea ice and impacts to the ecosystem 

(Grebmeier et al., 2006, Mueter and Litzow, 2008).

A decrease in the extent and duration of winter sea ice coverage in the Bering Sea 

directly impacts the extent of the cold pool, which is dense cold bottom water that 

remains on the middle shelf through the summer because it is below the surface mixed 

layer and little affected by tidal mixing (Bames and Thompson, 1938, Wyllie-Echeverria 

and Wooster, 1998). The edge of the cold pool represents the southern boundary of the 

arctic ecosystem and the northern boundary of the subarctic ecosystem (Mueter and 

Litzow, 2008). Between the early 1980s and mid 2000s, the southern boundary shifted 

northward by about 230 km (Mueter and Litzow, 2008). Although a northward shift such 

as that would be expected to result in a northward shift in the arctic and subarctic fish 

communities, it appears to not be that simple. The way species are responding to the 

changing conditions is variable so new community combinations are being built (Mueter 

et al., 2009). Additional factors such as the frequency and intensity o f winter storms 

(Stabeno et al., 2001), patterns o f cross-shelf advection (Rosenkranz et al., 1998, Bond 

and Harrison, 2000, Zheng and Kruse, 2006), and the timing of the spring algal bloom 

(Niebauer et al., 1995) are also affected by climate change and may play a role in the new 

community reorganization.

Because northern fur seals migrate into the North Pacific Ocean during the winter, 

we are also interested in how climate change may have affected that region. Many studies 

that focus on climate change in the North Pacific have studied the region’s response to 

two major large scale climate phenomena -  the ENSO and the PDO (Mantua et al.,

1997). Francis et al. (1998) provide a very good overview o f the effects o f these two 

climate events in the Northeast Pacific. Physical changes in the wind stress can alter 

horizontal and vertical water flow and the depth of the surface mixed layer (Polovina et
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al., 1995, Francis et al., 1998). In addition, air heat exchange and oceanic fronts and other 

mesoscale features can be affected (Latif and Barnett, 1994, Francis et al., 1998). These 

physical effects lead to changes in primary production that include the timing o f blooms 

and the composition, concentration and distribution of phytoplankton species (Brodeur 

and Ware, 1992, Polovina et al., 1995, Roemmich and McGowan, 1995). Lower trophic 

level changes such as these have an effect on higher trophic level species like fish, marine 

mammals and sea birds (Beamish, 1993, Beamish and Bouillon, 1993, Hollowed and 

Wooster, 1995, Mantua et al., 1997, Anderson and Piatt, 1999, McFarlane et al., 2000). 

The pronounced climate regime shift in the North Pacific in 1976-77, when sea surface 

temperature changed from cold to warm, caused a deepening of the winter and spring 

mixed layer in the subtropical domain and the central transition zone, which lead to an 

overall increase in pelagic productivity in this nutrient limited region (Polovina et al., 

1995). In the Gulf of Alaska, the intensification o f the Aleutian Low after 1977 led to a 

shoaling of the mixed layer depth but also higher pelagic productivity in this light limited 

region (Brodeur and Ware, 1992, Polovina et al., 1995). There has been less work done 

on the possible effects of a general warming, but it appears that it may lead to increased 

storm frequency and intensity (Salathe, 2006), as well as primary production patterns 

similar to a warm regime. The extent to which these factors may affect northern fur seals 

is discussed below.

Fisheries

The Bering Sea is a very productive region and its resources have supported a 

number of fisheries over the centuries. Subsistence harvests, although generally small, 

affecting only local resources and having minimal impact on larger fish stocks, have 

occurred since humans moved into the region (Burton et al., 2001, Newsome et al., 2007, 

Zavadil, 2008). Commercial fisheries for species such as Pacific herring (Clupea 

pallasii), Pacific cod (Gadus macrocephalus), yellowfin sole (Limanda aspera) and 

salmon (Oncorhynchus spp.) began in the early 20th century but it was not until after
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World War II (WWII) that commercial fishing went through a period of expansive 

growth (SAFE report, 2012).

The technologies that were developed during WWII gave birth to a whole new 

scale of fishing. The development of Loran, radar and echosounders assisted in safe 

navigation, position finding and fish locating; the development of strong and lightweight 

synthetic fibers allowed for larger nets; improved propulsion made ships faster and more 

powerful; and refrigeration allowed larger catches to be made at greater distances without 

fish perishing (Bailey, 2011). Small fishing fleets that primarily targeted coastal fish 

species became diverse high tech fleets of small and large vessels that could fish 

demersal, pelagic and anadromous fish and shellfish species that inhabited regions 

previously not accessible. Japanese, Soviet and U.S. fisheries for salmon, herring, 

yellowfin sole, halibut (Hippoglossus stenolepis), sablefish (Anoplopoma fimbria) and 

Pacific ocean perch (Sebastes alutus) grew throughout the 1950s and 1960s, and after 

these fish stocks declined in the late 1960s and early 1970s, other fish species were 

targeted (SAFE report, 2012). The walleye pollock (Theragra chalcogramma) fishery, 

which began in 1964, expanded to become the largest fishery in the eastern Bering Sea, 

peaking between 1970 and 1975 with catches ranging from 1.3 to 1.9 million tonnes 

(SAFE report, 2012). Although management of marine mammal harvests had been 

implemented earlier, foreign fisheries, and the bycatch associated with these fisheries, 

remained unregulated beyond 12 miles o f the Alaska coast until 1977 (Witherell and 

Pautzke, 1997).

The first large scale commercial harvests for marine mammals— sea otters and fur 

seals— started in the 18th century and commercial whaling began around 1845 (Roppel 

and Davey, 1965). Following World War II, Japan and Russia turned intensively to 

whaling in the North Pacific and Bering Sea, depleting stocks of all the great whales to 

fractions of their former abundance before they were all fully protected over the course o f 

the following three decades (Springer et al. 2003). Finfish and whale fisheries led to huge
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biomass removals between the 1950s and the late 1970s from the eastern Bering Sea, 

which likely resulted in a reorganization of the ecosystem.

Management regulations to protect fishery resources and set priorities for US 

citizens were finally implemented in 1977 with the passage o f the MFCMA. This meant 

that foreign fleets, which could fish freely beyond 12 miles o f the Alaska coast, would 

have to conduct their operations under the approval of the US federal government. Joint 

venture operations, in which domestic catcher vessels delivered their catch to foreign 

processing ships, were established in the period between 1977 and 1988 in an effort to 

transfer fishing technology and experience to domestic fishermen (Withered and Pautzke, 

1997). By 1988, foreign fisheries were phased out entirely.

Currently, the National Marine Fisheries Service (NMFS), the Alaska Department 

o f Fish and Game (ADFG), and the International Pacific Halibut Commission (IPHC) 

manage the fishing stocks of the eastern Bering Sea. NMFS monitors and manages the 

groundfish fishery. They define three categories o f fishes: target species, which are 

designated as fish that have commercial importance and are managed on their own 

biological merits; prohibited species, which are to be avoided and if  caught have to be 

returned to the sea immediately with minimal injury; and forage fish, which are to be 

avoided and allowable by catch and commercial exchange are limited (SAFE report,

2012) (Table 1.1). ADFG monitors and manages the fisheries for species such as herring 

and salmon in Alaska waters. The commercial fisheries for herring and salmon primarily 

use only purse seiners and gillnetters. Trawling is only allowed for herring on a small 

scale in Prince William Sound and around Kodiak and trolling is allowed for salmon in 

Southeast Alaska. The Pacific halibut fishery is managed by IPHC and is limited to hook 

and line capture. Total allowable catch limits are established annually for each of these 

species. These management efforts allowed earlier exploited stocks to recover and 

targeted species to be harvested at more sustainable levels.

The fishery resources of the eastern Bering Sea are now fairly well managed; 

however, there is one region of the Bering Sea that is outside the exclusive economic
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zone (EEZ) of the bordering countries. It is the only international fishing zone left in the 

Bering Sea, it is located in the deep water of the Aleutian Basin, and it is referred to as 

the “Donut Hole” (Bailey, 2011). Japanese scientists began reporting the presence of 

large quantities o f pollock there in the mid-late 1970s, by the mid-late 1980s foreign 

vessels were intensively fishing there, and by 1987 the high seas pollock catch exceeded 

that within the EEZ (SAFE report, 2012). Fishing in the Donut Hole peaked in 1989 and 

then declined sharply (SAFE report, 2012). A fishing moratorium was enacted in 1993 

and only trace amounts of pollock have been found in the Aleutian Basin by resource 

assessment fisheries since (SAFE report, 2012). In the U. S. portion of the Bering Sea 

there are three pollock stocks identified for management purposes -  the eastern Bering 

Sea stock (EBS), which is comprised of pollock from the EBS shelf; the Aleutian Islands 

stock, encompassing the Aleutian Island region; and the Central Bering Sea/Bogoslof 

Island stock, which includes pollock from the Aleutian Basin and Bogoslof regions 

(SAFE report, 2012). There is likely some dispersal between these three stocks but the 

extent is unknown (SAFE report, 2012). Bailey (2011) defined the loss o f fish in Aleutian 

Basin, due to overfishing in the Donut Hole, as a collapse o f the fishery in that area. After 

20 years the pollock population still has not recovered.

Ecosystem change relating to climate change and fisheries

There is little debate that both the effects o f climate change and the effects of 

large-scale biomass removals by commercial fisheries have the potential to alter entire 

ecosystems; however, it is difficult to determine which may have had more of an impact 

on the northern fur seal population in the eastern Bering Sea, if any. Coincidentally, both 

a pronounced climate change event and the first large scale management regulations to 

protect fisheries resources in the eastern Bering Sea occurred during the same year in 

1977. Some researchers believe that important forage fish species may have had higher 

stock levels before the 1977 regime shift, whereas pollock and certain other groundfish 

species did better after (Anderson and Piatt, 1999, Sinclair et al., 2008). However, the 

effects of fisheries have also been implicated in the apparent shift from a diverse
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ecosystem that supported high levels of forage fish to one with large populations of 

pollock and other groundfish species. For instance, the large-scale removals o f species 

like herring, yellowfin sole, and Pacific Ocean perch, which began in the 1950s and 

increased through the early 1970s, could have led to a shift in the ecosystem that 

benefited pollock. Another hypothesis suggests that the shift occurred earlier with the 

removal of baleen whales, fishes and some pinnipeds. Reduced populations o f baleen 

whales, Pacific herring, and Pacific ocean perch could have resulted in the release of 

1.36-2.81 million mt of euphausiid and calanoid copepod prey to other consumers, and 

the removal of fur seals could have decreased predation on young pollock (Merrick,

1997). Increases in pollock and other predatory fish could have directly or indirectly 

reduced populations of other forage fish that might have been important to fur seals.

The Bering Sea ecosystem has clearly undergone significant change due to natural 

and human causes over the past few centuries. In many ways it is difficult to determine 

the cause and effect o f certain processes because o f the limited knowledge about the 

ecosystem prior to the late 1970s. To determine the possible effects o f these changes on 

top predators, like the northern fur seal, perhaps it is best to examine if  and how their 

diets and foraging strategies have changed.

Is there evidence that nutritional limitation is affecting northern fur seals?

Bottom up forces, commercial fisheries, habitat characteristics and the 

biogeography of forage species can affect fur seal energy expenditures and acquisitions in 

summer and winter by altering the abundance and/or distribution of prey resources and 

thus foraging behaviors such as trip distance, trip duration, dive depth and diet. In many 

ways these factors are related, so foraging trip duration and diet will be used as indicators 

of change for this discussion. During the summer, trip duration is important because it 

represents the time that a female needs to gain the required energy for lactation. The trip 

duration also represents the amount o f time that a pup remains on shore fasting, and 

translates to the number of times a pup is fed before weaning, so it has the potential to 

directly affect growth and condition, and ultimately the probability o f survival. Diet data
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are important because they provide insight into changes in quantity and quality of the 

prey that might otherwise be undetectable. Plus, from a management perspective, they 

give critical information about what resources are important to preserve.

Foraging trip duration

Northern fur seals exhibit varying foraging trip lengths across their range.

Females from Bogoslof took foraging trips that averaged 2.2 days (Springer et al., 2010) 

and females from Medney Island took foraging trips that averaged 3.5 days (Vladimirov, 

1983). This contrasts with females from St. Paul that took longer foraging trips that 

averaged 6.5 days (Springer et al., 2010). Each of these rookery sites is located at similar 

latitudes but is surrounded by different physical features. Bogoslof is an oceanic island 

and females forage in the surrounding deep ocean domain on abundant mesopelagic prey 

(Ream et al., 2000). Medney Island also is near the oceanic domain, in the Commander 

Islands, and females have ready access to deep ocean resources there as well. In contrast, 

the Pribilofs are located in the shallow middle continental shelf domain and females must 

travel farther to the deep basin and continental shelf edge, as well as to on-shelf foraging 

locations (Robson et al., 2004). Thus, rookery location, and its proximity to food 

resources, appears to be an important factor in the length of the foraging trip, but other 

factors such as prey composition, or quality, and prey availability are also important to 

consider. Studies of Antarctic fur seals have been able to link prey composition and 

availability to trip duration (Costa et al., 1989, Boyd et al., 1994).

Because of the relationship between foraging trip duration and prey distribution, 

composition and availability, a logical question to ask is if foraging trip duration has 

changed over time on the Pribilofs. An increase in trip duration would indicate that fur 

seals have had to forage for longer periods of time to meet their energy demands. A 

number of studies have examined trip duration in lactating females (Tables 1.2 and 1.3), 

but an increasing trend over the entire period of population decline is not distinguishable 

(Bartholomew and Hoel, 1953, Peterson, 1965, Kooyman et al., 1976, Gentry and Holt,
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1986, Gentry et al., 1986, Loughlin et al., 1987, Gentry, 1998, Goebel, 2002, Robson et 

al., 2004).

It is important to note that there are differences in methodology between the 

studies that examined trip duration and this complicates a direct comparison between 

results. For example, early studies were based on observation and later studies used 

instrumentation. Two issues arise from this difference: observers could overestimate trip 

length if  each female was not sighted on the day o f her return; and instruments, especially 

the larger early models, created drag because of their size and the way they were 

attached, which could add additional energy demands to an animal, potentially 

lengthening foraging times. Another issue has to do with when the data were collected 

during the breeding season. Some studies followed animals for an entire season, from 

July to November, and other studies followed animals for shorter lengths of time. Trip 

duration has been shown to change over the length of the breeding season in Antarctic fur 

seals (McCafferty et al., 1998), so trip duration results can differ greatly depending on the 

length of time an animal is studied and when during the breeding season the study 

occurred.

Nevertheless, some conclusions have been drawn from the data that are available. 

Sterling (2009) combined the diet data from fur seal stomachs, gastrointestinal (GI) 

tracts, scats and spews, examined the relationship to trip duration data and pollock stock 

size, and found that adult female mean trip duration on St. Paul decreased with higher 

numbers of age 1-5 pollock. Gentry (1998) examined the attendance patterns o f lactating 

females from St. George between 1974 and 1985 and found that trip lengths were longer 

between 1974-1978 than they were between 1979-1985. More specifically, he examined 

the variability that occurred between each year and also was able to relate it to pollock 

stock size (Gentry, 1998). Baker (1992) examined the nursing lines in teeth collected 

from harvested 3 year-old males between 1949 and 1981 and was able to relate the 

number of nursing lines to foraging trip duration. Foraging trips were shorter during the
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female harvest when the competition for resources was reduced and they were shorter 

during years when the 2 year old pollock stock size was larger (Baker, 1992).

Pollock are the primary prey resource for fur seals that forage on the shelf in the 

eastern Bering Sea (Goebel, 2002, Zeppelin and Ream, 2007, Sterling, 2009). It seems 

logical that forces that affect the distribution and abundance o f pollock would directly 

impact fur seals. But what about fur seals that forage in other regions and on different 

prey resources? For instance, females from the northern rookeries on St. Paul typically 

forage on the shelf to the north of the Pribilofs and are known to consume primarily 

pollock (Goebel, 2002, Robson et al., 2004, Zeppelin and Ream, 2007). However, many 

females from the southern rookeries on St. Paul forage at and beyond the shelf break to 

the west and consume mostly mesopelagic species like squid, bathylagids and 

myctophids (Goebel, 2002, Robson et al., 2004, Zeppelin and Ream, 2007, Sinclair et al.,

2008). Females from Bogoslof forage in the deep ocean domain directly offshore from 

the island and they also consume those same mesopelagic species (Sinclair et al., 1994). 

If prey type alone dictated foraging duration then females from Bogoslof and females 

from the southern rookeries on St. Paul would have similar foraging trip durations and 

this is not the case— females from Bogoslof take significantly shorter foraging trips 

(Springer et al., 2010). This suggests that distance from prey resources is a more 

important factor. This has implications when considering climate warming and the 

possibility of a redistribution of prey species.

Diet

Another factor that has been studied to a great extent is whether the quality of 

available prey has changed. High fat prey such as herring and capelin (Mallotus villosus) 

provide more calories per mass than low fat prey such as pollock. In theory, a predator 

could obtain its energy needs faster, while expending less energy, when eating high fat 

prey. There have been several studies that have suggested that the diet o f fur seals 

foraging from the Pribilofs changed around the time of the 1976-77 regime shift (Sinclair 

et al., 1994, Hunt et al., 2002, Sinclair et al., 2008). Sinclair et al. (1994) concluded that
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changes in northern fur seal diet in the eastern Bering Sea were the result o f climate- 

mediated shifts in fish communities. They compared diet information from pelagic 

studies made between 1960 and 1974 to collections made in 1981,1982, and 1985. In the 

earlier studies, walleye pollock, Pacific herring, capelin, Atka mackeral (Pleurogrammus 

monopterygius), gonatid squid and northern smoothtongue (Leuroglossus schmidti) were 

reported to be the principal prey of northern fur seals in the eastern Bering Sea (Scheffer, 

1950, Wilke and Kenyon, 1952, Wilke and Kenyon, 1957, Fiscus et al., 1964, Fiscus and 

Kajimura, 1965, Fiscus et al., 1965, Kajimura, 1984, Perez and Biggs, 1986). In the later 

years, pollock, Atka mackeral, gonatid squid and northern smoothtongue were common 

in diets, but it was claimed that there was an absence of high fat capelin and herring.

In the most recent northern fur seal diet analysis, Sinclair et al. (2008) added scat 

samples from 1987-2000 and data about seabird diets to the fur seal stomach and GI tract 

data that were previously analyzed. Results from the 2008 study supported the earlier 

findings made by Sinclair et al. (1994) with one addition. Greenland turbot (Reinhardtius 

hippoglossoides) was added to capelin and herring as missing from fur seal diets after the 

regime shift. If correct, these results suggest that northern fur seals consumed a diet that 

included more high quality forage fish before the 1976-1977 regime shift than they did 

after. However, there has been some debate about whether these conclusions were a true 

reflection of a change in capelin and herring distribution and abundance, or the result of 

variation in the locations where fur seals were collected.

Sterling (2009) examined the same fur seal diet records as Sinclair et al. (2008), 

but came to different conclusions. Sterling (2009) was concerned about spatial sampling 

biases because fishes are not uniformly distributed in the Bering Sea, and 70% o f the fur 

seals were collected around Unimak Pass and in the basin domain during the 1960s, 

compared to approximately 81% that were collected on the eastern Bering Sea shelf in 

the 1970s and 1980s. Therefore, he filtered the scientific pelagic records from 1960-1985 

to include only collections from the eastern Bering Sea shelf domain. Sinclair et al.

(2008) in contrast, combined data that were collected from a much broader area that
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included Unimak Pass, the basin domain, and the eastern Bering Sea shelf domain. As a 

result, Sterling (2009) did not find evidence of a reduction in capelin and Pacific herring 

in the diet of fur seals that was associated with the 1976-77 regime shift, which supported 

the work of Fritz and Hinckley (2005), who previously found no evidence that forage fish 

dominated the Bering Sea ecosystem prior to the 1976/77 regime shift.

Whether changes in diet have occurred during the winter in the North Pacific is 

difficult to know. All available diet data from the North Pacific were obtained from 

pelagic harvests conducted between 1896 and 1985, but survey locations and timing 

differed depending on the year of study (Jordan, 1898, Scheffer, 1950, Kenyon and 

Wilke, 1953, Wilke and Kenyon, 1954, Wada, 1971, Fiscus, 1982, Antonelis and Perez, 

1984, Kajimura, 1984, Perez and Biggs, 1986, Sinclair et al., 1994). And, there is little if 

any information on diets since the mid-1980s. In general, we know that fur seals typically 

follow the complimentary water movement o f the Alaska gyre and North Pacific Current 

and forage in areas associated with eddies, the subarctic-subtropical transition zone and 

along the continental shelf edge during the winter (Ream et al., 2005). While in the North 

Pacific, they consume prey such as northern anchovies (Engraulis mordax), Pacific 

whiting (hake, Merluccius productus), squid, saury (Cololabis saira), rockfish (Sebastes 

spp.), salmon, capelin, sandlance (Ammodytes hexapterus) and herring. To assess how 

winter diets may have changed it may be more revealing to understand if  these prey 

stocks have varied over time.

As noted above, after the 1976/77 climate change there was a deepening of the 

winter and spring mixed layer depth in the subtropical and transition zones, which lead to 

an increase in overall productivity, and a shoaling of the mixed layer depth in the Gulf of 

Alaska and an increase in productivity there as well. A number of reports have 

documented salmon being low in the Gulf o f Alaska before this regime shift and 

increasing after (Beamish and Bouillon, 1993, Hare and Francis, 1995, Mantua et al., 

1997, Hare et al., 1999, McFarlane et al., 2000, Irvine and Fukuwaka, 2011). Hake also 

appear to have increased in the warm regime (Bailey, 1981). Northern anchovy and
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Pacific sardines (Sardinops sagax) have opposite relationships to climate change (Chavez 

et al., 2003). Anchovies were below average between 1977 and 1989, whereas sardines 

were above average (Noakes and Beamish, 2009). Pollock also seemed to do well after 

the regime shift, but herring appeared to have lower population numbers (Noakes and 

Beamish, 2009). In short, some prey species were more abundant in the cold regime, 

while others were more abundant in the warm regime. Northern fur seals eat a variety of 

prey species so it is difficult to assess how these changes in species composition, without 

knowledge of foraging energy expenditures related to each prey type, might affect net 

energy gains.

Winter prey availability and energetics

Another factor may have had more of an impact on winter foraging energetics 

than prey composition—global warming may be increasing storm frequency and intensity 

in the North Pacific (Salathe, 2006). The overwintering survival of females and pups 

depends on finding predictable and abundant prey resources while avoiding predation. 

Adult females are usually pregnant during the winter migration period, so have increased 

energy demands. However, pups are especially vulnerable because they are not 

experienced foragers, they have greater thermoregulation demands because of their 

smaller size, and they are not able to dive as deep as females to find prey (Lea et al.,

2009). Prey resources are often found around eddies and in coastal upwelling areas; 

however, storms have the ability to disrupt productive areas and disperse prey 

assemblages from the surface mixed layer (Sterling, 2009). There is evidence that fur 

seals transit quickly through storm zones because of the lack of prey (Sterling, 2009). 

Furthermore, because of their small size, pups would be expected to be less able to 

physically cope with high winds and turbulent seas. If increased storm frequency and 

intensity are affecting prey availability and increasing energy demands, female 

reproductive success, as well as female and pup survival, could be impacted.
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Is there evidence that different foraging strategies are related to survival and 

reproduction?

If climate change or competition from fisheries were negatively impacting 

northern fur seals in summer and causing the Pribilof Island population to decline, we 

would expect to see evidence in a few key areas. We would expect to see a difference in 

foraging strategies between pre-decline and post-decline populations. We would also 

expect to see differences in pup growth, development and possibly survival. There does 

not appear to be a clear difference in foraging trip duration between pre-decline and post

decline periods, but there are smaller scale variations that seem to be related to the 

distribution and abundance of pollock and other prey. Sterling (2009) found that in years 

when age 1-5 pollock were estimated to be above average, not only were fur seal foraging 

trip durations shorter, but they also had a higher occurrence of pollock in their diets and 

pups weighed more. Another recent study found that at Bogoslof, where the population is 

increasing and females make relatively short foraging trips for prey, pups are weaned at 

significantly heavier weights than pups from St. Paul (Springer et al., 2010). This may 

confer an advantage to Bogoslof pups in winter, since they appear to migrate to the same 

dispersed locations as pups from St. Paul (Lea et al., 2009). In addition, male pups were 

not larger than female pups at weaning on St. Paul, as they were on Bogoslof and as 

reported in other pinniped species (Amould et al., 1996, Ono and Boness, 1996, Boltnev 

et al., 1998, Guinet et al., 2000, Springer et al., 2010). This could be evidence that pup 

growth and development on St. Paul decreased compared to healthy populations.

Together, these studies suggest that prey distribution and abundance can affect pup 

growth and development, which has been linked to pup survival.

There is no known evidence of starvation or increased susceptibility to disease 

due to malnutrition on the Pribilofs (NMFS, 2007). Evidence is not available or is 

inconclusive in other areas that are important for assessing changes in survival and 

reproductive success. Studies have been made to determine pregnancy rates and evaluate



31

whether they have changed on the Pribilofs but conclusions have not been reported yet 

(Adams et al., 2007, NMFS, 2007).

Predation

The primary natural predator of the northern fur seal in the Bering Sea is the 

transient killer whale (Orcinus orca). There are three killer whale ecotypes: resident 

killer whales that primarily eat fish and squid, transient killer whales that consume 

marine mammals, and offshore killer whales, whose foraging habits are largely unknown 

but are thought to eat fish, including sharks (Ford et al., 2011). Although killer whale 

foraging events are rarely seen, there has been documentation of killer whales consuming 

fiir seals in the Bering Sea since the late 1800s (Jordan, 1898, Hanna, 1922, Matkin et al., 

2007, Newman and Springer, 2008). Transient killer whales have been seen hunting and 

preying on fur seals in areas where fur seals concentrate, for example Unimak Pass, a 

bottle neck that fur seals need to pass through on the their northward migration back to 

summer rookery sites from winter foraging (Matkin et al., 2007). At St. Paul, Newman 

and Springer (2008) recorded transient killer whale vocalizations during 19 of the 22 

days that recordings were made in the summer of 2006. It is clear that killer whales prey 

on northern fur seals and that females that make longer foraging trips are more exposed 

to this threat. Young animals that are more buoyant and have not developed the 

physiological capacity to dive as deeply as adults may be at a greater risk as well. 

Whether predation from killer whales is responsible for the population decline o f the 

northern fur seal is still being hotly debated.

The Sequential Megafaunal Collapse theory posits that the declines of harbor 

seals, Steller sea lions, northern fur seals, and sea otters in the Aleutian Islands and 

Bering Sea are due to increased killer whale predation, which was caused by the post

World War II overharvesting o f great whales in the Bering Sea and North Pacific 

(Springer et al., 2003). This theory is based on a few basic concepts: great whales were 

important prey of killer whales in this region; after the demise of the great whales, killer 

whales broadened their diets to include greater numbers of other marine mammals; top-
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down forcing, especially by large vertebrate consumers, is an important process in 

ecology; there is a lack of compelling evidence and mechanistic explanations for the 

hypothesis that bottom-up forces caused the pinniped and sea otter declines; and 

demographic/energetic models demonstrate how vulnerable pinniped and sea otter 

populations would be to a relatively small change in the diet o f transient killer whales 

(Springer et al., 2003, Williams et al., 2004, Springer et al., 2008, Estes et al., 2009). In 

short, the overall implication is that after the great whale harvests occurred, killer whales 

needed to consume more of other prey to meet their high-energy demands. Pinnipeds and 

sea otters were an abundant food source in the Aleutian Islands and Bering Sea so they 

were consumed at a higher rate, which lead to the declines in their abundance.

The primary arguments against this theory are that the great whales (fin, sperm, 

sei and humpback whales) that were left in the Bering Sea and Aleutian Islands during 

the 1950s and 1960s were rarely attacked or eaten by killer whales (DeMaster et al.,

2006, Mizroch and Rice, 2006), the multispecies collapse was not sequential (DeMaster 

et al., 2006, Wade et al., 2007), the timing of the collapse was inconsistent with the 

timing of the great whale depletions (Wade et al., 2007), and other areas where great 

whales were removed do not have the same trends in pinniped and sea otter populations 

(Trites et al., 2007). To each of these arguments Springer et al. (2008) and Estes et al.

(2009) made convincing rebuttals. For instance, they present further references and 

evidence to show that great whales were and still are prey to killer whales; they reworked 

the statistical analysis conducted by DeMaster et al. (2006) and Wade et al. (2007) and 

showed that the collapse was in fact sequential; they discussed factors such as scavenging 

of great whale carcasses (Whitehead and Reeves, 2005) that could have led to a lag in the 

timing between the great whale depletions and the pinniped and sea otter population 

declines; and they discussed the ecological differences between regions where great 

whales were harvested that could have caused divergent pinniped and sea otter population 

trends.
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Regardless of whether the specifics o f the Sequential Megafaunal Collapse theory 

are found to be correct or incorrect, top down pressures from predation are important to 

consider when understanding the impacts to an ecosystem or to a specific population 

from radical changes in community structure. The northern fur seal population on the 

Pribilofs has been declining now for over 50 years. The further the population is reduced, 

the more of an effect predation could have. We still know very little about transient killer 

whales in the Bering Sea and Aleutian Island regions and there is still much to learn 

about the ecosystem dynamics of that region.

Multiple Causes

A number of researchers have hypothesized that there may have been more than 

one cause to have sustained the population decline of northern fur seal on the Pribilofs for 

over half a century. For instance, it is likely that the female harvest was a factor in the 

initial decline but research has shown that approximately 30% was possibly being caused 

by another factor such as commercial fisheries or entanglement in fishing gear (York and 

Hartley, 1981, Fowler et al., 1989). Currently, theories about fisheries and bottom up 

processes, which cause nutritional limitation, and theories about predation are the two 

leading hypotheses for the population decline.

There are three combinations o f factors that have a high likelihood of being 

problematic. First, climate change could be causing changes in forage fish recruitment 

and distribution, which may not be accounted for in management models. This could lead 

to large fisheries having more of an impact on top-predators, such as the northern fur 

seal, than expected. Second, the long foraging trips that females from the Pribilofs need 

to make to obtain their prey that is distributed farther due to fisheries effects, climate 

change, or simply the biogeography of prey populations may expose them to more 

predation pressure. Third, bottom up forces in the Bering Sea that may be limiting energy 

acquisition, coupled with increased storm frequency in the North Pacific that may be 

causing dispersal of fur seal prey to deeper depths (Mackas et al., 2005) or raising the 

energetic cost of coping with inclement weather, could be creating an environment where
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fur seals are nutritionally limited in the summer and in the winter. The first two 

combinations have not been investigated but the third scenario describing the 

combination of effects from limited resources in the Bering Sea and North Pacific has 

been discussed by Sterling (2009).

Conclusions

The northern fur seal is a long-lived species and individuals need to reproduce 

successfully only once during their lifetime for population levels to remain stable. It is 

natural and expected to have more productive and less productive years. Fur seal have 

evolved life history strategies that provide a buffer to certain variability in climate so 

within a range of ecosystem conditions the population should not be dramatically 

affected. What has happened in the past 50 or more years that is different enough to cause 

the fur seal population from the Pribilofs to fall by more than 70% and not show signs of 

stabilization or recovery? And why has the population on Bogoslof increased 

exponentially during the same time period?

These are not easy questions to answer, clearly, since they have not been 

answered despite considerable attention and research. The fact is that the Bering Sea 

ecosystem has been an area of great change due to human and natural causes for longer 

than the northern fur seal population has been declining. It is difficult to determine 

“normal” population levels, “normal” population fluctuations or past environmental 

conditions because the area was not monitored well until comparatively recently.

A number of the factors discussed above are likely to not be responsible for a 

decline o f this magnitude. Diseases and parasites have affected fur seal populations 

before and during this current population decline, but it is unlikely that significant effects 

of disease(s) could have lasted this long without being detected. Subsistence harvests, 

while ongoing, are too small to cause a population decline o f this size for so many years. 

Commercial fur seal harvests have caused population declines in the past, but they have 

not been conducted since 1976 on St. George and 1984 on St. Paul, so they are no longer
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a concern. The female harvest in 1956-1968 apparently precipitated the initial recent 

decline, but was not responsible for the continuing trend. Direct shootings, while an 

important factor to consider in the Steller sea lion decline, likely were not an issue in the 

northern fur seal decline because northern fur seals are rarely seen at sea away from 

rookeries and are less of a nuisance to fisherman than Steller sea lions.

Other factors that were important to consider in the past, but are probably not 

issues in the current population decline, include entanglement in fishing gear and debris 

and contaminants. Entanglement was high in the 1970s and may have contributed to 

some of the early decline, but it is unlikely that it is still causing high mortality rates 

because of the extensive cleanup efforts and education programs that were conducted. 

Contaminants such as organochlorines and mercury are known to be high in northern fur 

seals, but negative effects due to contaminant loads have not been established. In 

addition, contaminant loads would likely be similar at Bogoslof and the Pribilofs, so if  

they were having a negative effect on fur seals the population on Bogoslof would not be 

growing.

The factors that could cause a population decline of the magnitude seen in 

northern fur seals on the Pribilofs are nutritional limitation, predation or a combination of 

factors. Nutritional limitation could be caused either by climate change or by commercial 

fisheries. Climate change can alter ocean temperature, the timing, location and strength of 

circulation patterns, the frequency and intensity o f storms, spring stratification and the 

strength and depth of the pycnocline, all of which can directly or indirectly affect fish 

distributions and abundances. There have been a large number of publications that have 

examined how climate change is affecting the resources of the Bering Sea, and while 

important discoveries are continually being made, there are still many unexplained 

consequences. The interactions of the biotic and abiotic factors of the Bering Sea 

ecosystem are complex so, for example, instead o f seeing a simple northward movement 

of species because of climate warming, species are responding to changing conditions in 

variable ways and new community combinations are being built. How, or if, this is
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affecting fur seals is still unclear. One hypothesis is that prey quality changed from one 

high in forage fish before the 1976-77 regime shift to one dominated by pollock after; 

however, there is debate about whether a shift in species composition occurred in the 

Bering Sea and, more importantly, it is clear that pollock was an important prey species 

for the fur seal well before the 1970s. Northern fur seals eat a variety o f prey which 

should buffer them against effects of changes in distribution and abundance of individual 

species (Sinclair et al., 1994, Zeppelin and Ream, 2007).

Climate change can affect fish community composition, distribution and 

abundance but so can large biomass removals by commercial fisheries. In fact, 

deciphering which ecosystem changes are the result of commercial fisheries compared to 

climate change can be difficult. For instance, a hypothesis proposed by Merrick (1997) 

suggests that the removal o f baleen whales, Pacific herring, Pacific Ocean perch and 

northern fur seals could have caused the increase in pollock biomass in the 1970s that 

others have attributed to climate change. One thing is clear—commercial fisheries and 

climate change have both had an effect on the Bering Sea ecosystem.

The female harvest that began in 1956 was started because it was believed that the 

population had reached a plateau and the number o f young animals available to harvest 

had decreased (Roppel and Davey, 1965, York and Hartley, 1981). This suggests that the 

fur seal population had reached the carrying capacity of the ecosystem; however, this 

may not have been the result of the population reaching historic population levels.

Instead, it could have been caused by changes in the ecosystem that lowered the carrying 

capacity of the region. The modeling work conducted by York and Hartley (1981) 

concluded that only 70% of the decline evident between 1968 and 1979 could be 

explained by the female harvest. This could this mean that competition with commercial 

fisheries for prey resources was affecting the fur seal population earlier in the 1950s, as 

well as through the 1960s and 1970s.

Japanese fisheries for salmon, yellowfin sole, halibut and sablefish, as well as 

Soviet and U.S. fisheries for herring began in the early-mid 1950s in the Bering Sea.
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These fisheries grew throughout the 1960s, and other species like Pacific Ocean perch 

also started being targeted. By the early 1970s, stocks of most of these species were 

depleted and pollock started being fished in higher numbers. Regulations on foreign 

fisheries, and the fish bycatch associated with them, were not implemented until 1977.

The biomass removed by the commercial fishing industry between the end of WWII and 

the passage of the MFCMA in 1977 could have decreased the prey available to northern 

fur seals during the initial years o f their population decline.

After the passage of the MFCMA targeted species started being managed on their 

own biological merits, stocks that were severely depleted were designated as prohibited, 

and by catch was monitored and limited (SAFE report, 2012). These regulations should 

have reduced the amount of competition for fish and squid resources between commercial 

fisheries and northern fur seals. And, in fact, the population on St. Paul stabilized briefly 

in the mid 1980s, which could have been the result of increased prey availability, but 

ultimately the population continued to decline. Could the pollock fishery that continued 

on the eastern Bering Sea shelf have decreased prey availability to female fur seals? It is 

possible, but females from the southern rookeries on St. Paul and St. George consume 

other species including squid, bathylagids, and myctophids and these rookeries also 

declined. Could the unregulated pollock fishery in the Donut Hole, which was being 

intensively fished in the mid-late 1980s, have continued the northern fur seal population 

decline? Female fur seals from the Pribilofs forage for pollock mainly on the shelf, and 

the basin pollock are considered a different stock. Juvenile fur seals are known to forage 

farther from the Pribilofs, sometimes foraging in the basin, so decreases in pollock in that 

region could have increased juvenile competition for female prey resources (Sterling and 

Ream, 2004). This, however, is purely conjecture. There is little evidence to show that fur 

seals from the Pribilofs consumed pollock from the Aleutian Basin region. This leaves 

some question about whether population declines that occurred after the 1970s were the 

result of commercial fishing competition there.
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The first confirmed identification of northern fur seals on Bogoslof occurred in 

1976 and the first pups were observed in 1980 (Lloyd et al. 1980). This means that the 

population on Bogoslof did not exist when unregulated foreign fisheries were operating 

up to 12 nm offshore in the Bering Sea. Since then, however, the population on Bogoslof 

has grown exponentially. What is different between Bogoslof and the Pribilofs that could 

be causing these divergent population trajectories? Bogoslof is located in the deep ocean 

domain near the Aleutian Islands and fiir seals that breed there forage close to the island 

and consume mostly mesopelagic prey (Ream et al., 2000). In comparison, the Pribilofs 

are located on the eastern Bering Sea shelf and fur seals from the northern rookeries 

forage on the shelf and consume mostly pollock, whereas many fur seals from the 

southern rookeries forage at the shelf break and consume mostly mesopelagic species 

similar to those consumed by Bogoslof fur seals (Goebel, 2002, Robson et al., 2004, 

Zeppelin and Ream, 2007, Sinclair et al., 2008). Although there are differences in where 

the islands are located and in the diets of the fur seals, the factors that appear to have the 

greatest effect on pup growth and development are the differences in foraging trip 

distance and duration. Female fur seals from St. Paul need to travel approximately two 

times farther and approximately three times longer to forage (Springer et al., 2010). This 

means that pups remain on shore fasting three times longer on St. Paul. Pups from 

Bogoslof spend less time fasting and feed more frequently. As a result, pups from 

Bogoslof are weaned at a significantly greater mass than pups from St. Paul and they may 

have a greater chance of survival (Springer et al., 2010).

A number of studies have hypothesized that there is a relationship between the 

pollock stock size and the foraging duration of female fur seals from the Pribilofs (Baker, 

1992, Gentry, 1998, Sterling, 2009). Sterling (2009), found that there was a relationship 

between the pollock stock size and pup mass. There are still a number of factors that need 

to be researched further to determine if  pollock stock size actually affects reproductive 

success. To date, we have evidence that pup mass may be associated with survival during 

the first year in other pinniped species (Boltnev et al., 1998, Beauplet et al., 2005), and 

there is some evidence that pup growth and development was limited on St. Paul because



39

female and male pups did not differ in mass at weaning as observed in other for seal 

species (Sterling, 2009). If fluctuations in the pollock stock affect for seal reproductive 

success on the Pribilofs, commercial fisheries, climate change or a combination of the 

two could have caused the continued population decline since the 1980s.

Steller sea lions, harbor seals and sea otters have also experienced population 

declines in the Bering Sea and Aleutian Islands. It is not entirely clear if  these declines 

are related, but it is important to consider that they may be. The foraging and life history 

strategies of each of these species differ, however, so direct comparisons are not 

straightforward. Female Steller sea lions, for instance, make foraging trips o f generally 

less than 2-3 days during the breeding season. Northern for seals at the Pribilofs make 

foraging trips that can last as long as 10 days and they commonly forage farther from 

rookery sites. In addition, Steller sea lions, harbor seals and sea otters remain in Alaska 

and continue to haul out on land during the eight months o f winter, whereas northern for 

seals migrate into the North Pacific and remain pelagic. Steller sea lions have declined 

significantly on Bogoslof and show no sign of recovery, whereas the northern fur seal 

population has increased exponentially over the same time period. The two primary 

causes of nutritional limitation, commercial fisheries and climate change, could have 

affected each of these species but the mechanism likely would have been different in each 

case.

The one theory that can explain all of the pinniped and sea otter declines in the 

Bering Sea and Aleutian Islands is predation. Although killer whale predation is the most 

probable cause for the sea otter decline, and killer whale predation has been documented 

in northern fur seals, Steller sea lions and harbors seals, there is still debate about whether 

predation is responsible for the overall declines o f each of these species. Why, for 

instance, is the Steller sea lion population on Bogoslof affected by killer whale predation 

but the fur seal population is not? It could be because sea lions are being preyed upon in 

another location before or after they are on Bogoslof, or are being preyed upon in winter 

when the fur seals are gone. If predation is the cause, why are the for seals on St. Paul
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declining but the fur seals from Bogoslof are not? Fur seals from St. Paul take longer 

foraging trips than fur seals from Bogoslof, so perhaps they are exposed to more 

predation, but there is still limited evidence to support this theory.

Because of the difficulty in producing convincing evidence that any one o f the 

above factors alone could have caused the northern fur seal population decline, it is 

important to consider that more than one of the factors could have had an effect. If  the 

female harvest of northern fur seals is not responsible for the entire population decline in 

the 1960s and early 1970s, then the effect o f the commercial fishing industry, through 

entanglement and competition for prey resources, may have contributed to the initial 

decline. After management regulations started being implemented in 1977, other factors 

could have had more of an influence. For instance, climate change could have affected 

prey distribution and abundance in the Bering Sea after the 1977 regime shift, or perhaps 

killer whale predation started having an effect because o f the reduced fur seal population 

size. Increased storm frequency and intensity due to climate change in the North Pacific 

could have tipped the energetic balance for fur seals, reducing survival. In this case, 

Bogoslof females may be exposed to the same decrease in prey availability in the North 

Pacific, if there was a decrease, but resources around Bogoslof in summer may be high 

enough to counter the effects by enabling both females and pups to be in better 

physiological condition than those at the Pribilofs at the time of migration. Each o f these 

theories is plausible and should be examined further.

Recommendations

1. Monitoring and education programs that were established to reduce the effects of 

entanglement in fishing gear and debris should be continued so that it does not 

affect fur seal and other marine mammal populations in the future.

2. Although it is unlikely that northern fur seals population decline on the Pribilof 

Islands is being caused by contaminants, research in this area should continue so 

that the effects of high levels of organochlorines and mercury on fur seals and 

other marine mammals are better understood.
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3. Further research and discussion should be conducted to examine the effects o f the 

foreign commercial fishery on the northern fur seal population in the 1950s,

1960s and 1970s.

4. For the targeted fish species that northern fur seals consume, surveys should 

continue and include regions important to the seals. Knowledge about forage fish 

species that do not have a direct survey and squid species that are caught 

opportunistically needs to be increased. Although of no commercial value, 

mesopelagic forage species such as bathylagids, myctophids, and squids have 

very high ecological value.

5. Fur seal vital rates and causes of mortality must be better documented.

6. The possible effects of reduced numbers o f pollock on fur seals in the 

international waters of the Aleutian Basin (the Donut Hole) should be examined 

further.

7. Longitudinal studies of pups from Bogoslof and the Pribilofs should be 

undertaken to determine how mass and body condition at birth and weaning affect 

survival and eventual reproductive success.

8. A study that compares the foraging behavior, reproductive success, and winter 

movements of northern fur seals and Steller sea lions on Bogoslof would help in 

understanding why these two species that breed on the same island are 

experiencing divergent population trends.

9. Further research into the transient killer whale population and its effects on 

marine mammals is needed.

10. Further examination of the combined effects of factors such as commercial 

fisheries, climate change, predation, and prey availability and environmental 

conditions in winter should be conducted.
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Figures and Tables

Figure 1.1. Northern fur seal range in the North Pacific and the six locations where they 
breed. The blue circles represent the relative size o f the population at each location. The 
Pribilof Islands now support approximately 50% o f the total population (Sterling pers. 
com.)
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Figure 1.2. An example o f the northern fur seal winter migration routes. These track 
lines were recorded with satellite transmitters and the analysis of the data is being 
completed and published by the National Marine Mammal Laboratory. The movements 
of females from St. Paul, one of the Pribilof Islands, and Bogoslof are represented here 
(Springer et al. 2010).
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Figure 1.3. Pup production on the Pribilof Islands, St. Paul and St. George.
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Table 1.1. Targeted, protected and forage species as defined by the NMFS Bering Sea 
groundfish fishery.

Target species Walleye pollock 
Pacific cod 
Sable fish 
Yellowfin sole 
Greenland turbot 
Arrowtooth flounder 
Northern rock sole 
Flathead sole 
Alaska plaice 
Other flatfish assemblage 
Pacific ocean perch 
Northern rockfish 
Shortraker rockfish
Blackspotted/Rougheye rockfish assemblage
Other rockfish assemblage
Atka mackerel
Squid assemblage
Shark assemblage
Skate assemblage
Sculpin assemblage
Octopus assemblage

Prohibited species Pacific halibut
Pacific herring
Pacific salmon
Steelhead trout
King crab
Tanner crab

Forage species Osmeridae (eulachon, capelin, and other spelt)
Myctophidae (lantemfish)
Bathylagidae (deep-sea smelts)
Ammodytidae (Pacific sand lance)
Pholidae (gunnels)
Stichaeidae (pricklebacks, warbonnets, eelblennys, cockscombs, and
shannys)
Gonostomatidae (bristlemouths, lightfishes, and anglemouths)
Euphausiacea (krill)
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Table 1.2. Studies that examined trip duration in northern fur seals at St. Paul Island. 
TDR stands for Time Depth Recorder.

Refereace Study
years

Rookery 1IBI€
a i w i i i u j !  '*. •*': >eoservea

No.
JM^bCS

observed

Method Average 
trip  leagth 

(days)
Bartholomew and 
Hoel 1953

1951 Kitovi Jun - Aug 12 Observation 7.2

Peterson 1965 1962 Kitovi Jul - Oct 146 Observation 9.7
Peterson 1965 1963 Kitovi Jul - Oct 85 Observation 8.0
Gentry and Holt 
1986

1976 Kitovi Jul - Nov 11 Observation 8.5

Gentry and Holt 
1986

1977 Kitovi Jul - Nov 26 Observation 7.1

Loughlin et al 1987 1984 Zapadni
Reef

Jul - Aug 40 Radio
transmitters

5.9

Goebel 2002 1995 Reef,
Vostochni,

Tolstoy

Jul - Nov 32 Radio
transmitter

6.6

Robson et al. 2004 1995 Reef,
Tolstoi,

Vostochnoi,
Polovina

Cliffs

1-2 trips 21 TDR 8.8

Robson et al. 2004 1996 Reef,
Vostochni

1-2 trips 31 TDR 8.0

Ream et al (unpub) 2005
2006

Reef,
Vostochni

Jul - Nov -40 TDR 6.5
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Table 1.3. Studies that examined trip duration in northern fur seals at St. George Island. 
TDR stands for Time Depth Recorder.

Author Study
y ean

Rookery W tm  
' dwerved -

No.
females

observed

Method Average 
trip  length 

(days)
Gentry and Holt 
1986

1974 East Jul -  Nov 11 Observation 5.7

Gentry and Holt 
1986

1975 East Jul -  Nov 16 Observation 5.8

Gentry and Holt 
1986

1976 East Jul -  Nov 6 Observation 6.4

Gentry and Holt 
1986

1977 East Jul -  Nov 15 Observation 5.7

Gentry and Holt 
1986

1976 Zapadni Jul — Nov 31 Observation 6.1

Gentry and Holt 
1986

1977 Zapadni Jul - Nov 20 Observation 6.1

Gentry et al. 1986 1980
and
1982

East Reef Jul 7 Early TDR 
(big)

7.5

Gentry 1998 1974
1978

Zapadni, 
East Reef

Jul - Aug - Observation 5.6

Gentry 1998 1979
1985

Zapadni, 
East Reef

Jul - Aug - Observation 4.4

Goebel 2002 1996 North,
Staraya
Artil,

Zapadni

Jul - Nov 36 Radio
transmitter

6.0

Robson et al. 2004 1995 North,
Staraya,

East,
Zapadni/

South

1-2 trips 20 TDR 8.6

Robson et al. 2004 1996 North,
Staraya,

East,
Zapadni/

South

1-2 trips 25 TDR 7.5
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CHAPTER 2

Proximate composition of northern fur seal milk: sources of variability and 

comparisons between rookeries in the Bering Sea with opposing foraging strategies1

Abstract

Knowledge of the composition of northern fur seal (Callorhinus ursinus) milk is needed 

to examine the energetics of pup growth and body condition at weaning, two necessary 

factors in evaluating the possible reasons for divergent population trends o f fur seals on 

the Pribilof Islands (continental shelf, declining population) and Bogoslof Island 

(Aleutian Islands, deep basin, growing population), Alaska. In this study milk samples 

were collected from female fur seals at St. Paul Island (Pribilofs) and Bogoslof Island in 

2005 and 2006 during the perinatal period in early July and again near the end o f the 

breeding season in October, approximately three-fourths through the lactation period. 

Island and rookery (representing divergent foraging/nursing patterns), year, time ashore, 

days postpartum, preceding foraging trip duration, female mass, July milk composition, 

and milk withdrawal volume were used as potential independent variables in multivariate 

regression analyses to identify sources o f variability in milk composition. There was no 

difference in the composition of perinatal milk from females at the two islands in July 

(lipid ~ 46%, protein ~ 10%, and energy ~ 21 kJ/g; p > 0.18). In October, the factors 

island, time ashore, days postpartum, preceding trip duration, and July milk composition 

explained variability in milk lipid and the factors time ashore, days postpartum, and July 

milk composition explained the variability in milk energy content. In October, lipid 

content averaged 53.8±1.0% at St. Paul Island and 57.3±0.8% at Bogoslof Island (p < 

0.01) and energy content averaged 24.0±0.4 kJ/g at St. Paul Island and 25.2±0.3 kJ/g at 

Bogoslof Island (p = 0.11). On average milk lipid content increased 22% from July to

1 Hayden, A.B., Springer, A.M., Iverson, S.J. Proximate composition of northern fur seal milk: sources of variability 
and comparisons between rookeries in the Bering Sea with opposing foraging strategies. Prepared for submission to 
Canadian Journal of Zoology.
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October, protein remained relatively stable with averages ranging between 10.0% and 

10.5%, and total energy content increased by 20%. The lipid content o f northern fur seal 

milk near peak lactation is the highest reported among otariid seals and is comparable to 

the highest known for phocid seals, making it among the highest known for all mammals. 

This is consistent with the short lactation length and long foraging trip durations typical 

in northern fur seals.

Introduction

The northern fur seal (Callorhinus ursinus) population on the Pribilof Islands 

(Pribilofs), Alaska, has been declining since the 1960s and is now less than 30% of its 

former size (Towell et al., 2006). There have been two known historic population 

declines before the present one; the first in the late 1700s and early 1800s due to summer 

overharvesting at the rookeries, and the second in the late 1800s and early 1900s due to a 

year round unregulated pelagic harvest (Roppel and Davey, 1965). However, in both 

cases when regulations on harvests were implemented the population recovered. What is 

unusual about the current decline is that there is no known explanation, and efforts to 

reduce possible causes, such as eliminating commercial harvesting and reducing 

entanglement in fishing debris, have been ineffective. Currently, the three leading 

hypotheses for the ongoing decline are nutritional limitation in the Bering Sea, predation, 

and/or conditions in the North Pacific where fur seals spend the winter (Springer et al., 

2003, Sinclair et al., 2008, Sterling, 2009).

Bogoslof Island (Bogoslof), a small rookery located approximately 200 miles 

south of the Pribilofs, has been experiencing exponential growth (R =0.91) since its 

establishment more than 30 years ago (Lloyd et al., 1980, NMFS, 2007). Bogoslof and 

the Pribilofs differ in several ways. The Pribilofs are located on the Bering Sea 

continental shelf, whereas Bogoslof is located off the Aleutian Islands chain in the deep 

ocean domain. Females from the Pribilofs typically make 5-9 day foraging trips to 

provision their pups, whereas females from Bogoslof make 1-2 day foraging trips (Ream 

et al., 2000, Robson et al., 2004). Females from the Pribilofs also travel about 2-3 times
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farther than females from Bogoslof to find food (Ream et al., 2000, Robson et al., 2004). 

There is a separation of foraging habitat among rookery sites on the Pribilofs but not on 

Bogoslof, diets on St. Paul Island (St. Paul, one of the Pribilof Islands) differ based on 

where females forage, and diets at St. Paul differ from diets at Bogoslof (Ream et al., 

2000, Robson et al., 2004, Zeppelin and Ream, 2007). These differences can have 

implications for individuals as well as populations.

Lactation is the most energetically demanding period in the life cycle o f female 

mammals and factors that affect energy acquisition, prior to and/or during the lactation 

period, affect provisioning to offspring (Oftedal, 1984, Iverson, 2007). Milk is the 

primary source of energy and nutrients that mammalian neonates receive before they are 

weaned. Milk composition, milk output, frequency of nursing, and length of lactation all 

affect how much energy a neonate receives over the lactation period and this varies in a 

variety of ways among species and to a lesser extent among individuals. Otariid seals (fur 

seals and sea lions) generally store a limited amount of energy as fat in a layer o f blubber 

prior to giving birth to a single pup on land. These energy reserves allow females to 

remain on shore for an approximate one-week perinatal period after the pup is bom but 

they are not sufficient to support a female and pup through the entire lactation period 

such as in phocid seals. Because o f the spatial and temporal separation between land 

breeding sites and marine prey resources, otariid seals begin alternating between foraging 

trips to sea and nursing trips to shore to feed their pups for the remaining lactation period 

until weaning.

The lactation length of northern fur seals is approximately 4 months, during 

which time females must deliver enough energy to their pups for growth and survival and 

the transition to nutritional independence. The differences in female foraging strategies 

between St. Paul and Bogoslof should affect rates and/or quality o f energy delivery to 

pups. For example, the longer foraging trips of females from St. Paul result in longer 

periods of fasting by pups between meals than at Bogoslof (Springer et al., 2010). St.

Paul females also feed their pups fewer times over the entire lactation period compared to
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females at Bogoslof (Springer et al., 2010). These factors can have consequences to a 

pup’s growth profile and condition at weaning which may affect their likelihood of 

survival.

In order to assess factors that may be contributing to differing population 

trajectories of northern fur seals in the Bering Sea, a study was undertaken to assess the 

lactation strategies of fur seals at Bogoslof and St. Paul. Two components central to 

understanding the energetics of lactation are accurate information on the milk 

composition of individual females and the potential sources o f variability. Based on 

previous studies of milk composition in northern fur seals and other orariids, it has 

variously been proposed that days postpartum, foraging trip duration, time ashore, 

maternal diet, and maternal mass may affect milk composition and overall energy transfer 

to pups (Oftedal, 1984, Costa and Gentry, 1986, Trillmich and Lechner, 1986, Amould 

and Boyd, 1995a, Amould and Hindell, 1999, Goldsworthy and Crowley, 1999, Georges 

et al., 2001, Goebel, 2002). Although some of these factors have been included based on 

an understanding of the variables that affect the regulation o f milk composition in 

mammals (e.g. days postpartum), others do not (e.g., maternal mass or diet; Oftedal and 

Iverson, 1995), but continue to be explored in the literature. Our study compared the milk 

composition of females from two contrasting populations and examined multiple 

variables that might contribute to individual variation. Knowledge about what factors 

affect provisioning can provide insight into differences in pup growth, development and 

survival and ultimately add to our understanding about the potential causes o f the 

divergent population trends of fur seals in the Bering Sea.

Methods

Study area

This study was conducted in 2005 and 2006 at St. Paul Island, located in the 

middle shelf domain of the eastern Bering Sea (57°07’17”N, 170°16’24”W); and 

Bogoslof Island, located in the deep ocean basin off the eastern Aleutian Islands
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(53°55’37”N, 168°02’03”W) (Figure 2.1). Collections on St. Paul were made at 

Vostochni rookery, located on the north end of the island, and Reef rookery, located on 

the southeastern tip of the island (Figure 2.2). Adult female fur seals at Vostochni forage 

to the north on the shallow continental shelf, whereas females at Reef tend to forage to 

the west near the continental shelf edge and in the basin, as well as to the east on the 

southeastern shelf—there is almost no overlap in the foraging areas o f females from the 

two rookeries (Robson et al., 2004). Fur seals were sampled from two adjacent sites on 

Bogoslof, but separation of foraging habitat was not distinguishable (R. Ream pers. 

comm.).

Capture and sampling

The same protocols for animal captures and sample collections were followed at 

both study locations in 2005 and 2006. Females were captured and restrained following 

the techniques of Gentry and Holt (1982). Modifications to minimize the handling stress 

to animals were made in 2006. Specifically, females and pups were held in large boxes 

with holes or in large kennels instead of on restrain t boards. All females had white 

vibrissae indicating that they were at least 7 years o f age (Scheffer, 1962).

The first samples were collected in July, during the approximate one-week 

perinatal period, when pups were about 24-72 hours old. The identification of a pup of 

this age was based on the presence of a fresh umbilicus. A minimum period of 24 hours 

was allowed to pass before capture so that there was sufficient time for the mother-pup 

bond to form. Upon capture, females were administered an intramuscular dose o f 0.25 ml 

oxytocin to facilitate milk let-down. Milk samples were collected by manual expression 

and ranged from 0.2-26 ml in volume. Mother and pup were weighed to the nearest 0.5 

kg and VHS (Advanced Telemetry Systems) and satellite linked transmitters (MK9, 

Wildlife Computers) were attached to the back (between the shoulder blades) of the 

female using epoxy prior to release to monitor time ashore and trip duration. Mother and 

pup were released together. Milk samples were frozen shortly after collection and stored 

until analysis could be completed.
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The same females that were sampled in July were recaptured in October o f the 

same year; this was approximately 90 days postpartum and within approximately 35 days 

of when pups are typically weaned. Two different sets of females were studied in 2005 

and 2006. Milk samples were collected on Bogoslof from 19 females in 2005 and 20 

females in 2006 and on St. Paul from 21 females in 2005 and 19 females in 2006. A 

slightly reduced number of females was sampled in October (17 in 2005 and 19 in 2006 

on Bogoslof; 16 in 2005 and 16 in 2006 on St. Paul), as not all females could be 

recaptured.

Laboratory analysis

Laboratory analysis of the milk was conducted at the University of Alaska 

Fairbanks and at Dalhousie University. Samples were thawed and homogenized before 

each analysis. Dry matter was determined using forced air convection drying of a 1 g 

subsample at 100°C for 5 hours. Lipid content was measured from a separate 1 g 

subsample using the Roese-Gottlieb method (Cunniff, 1995). Total nitrogen (TN) was 

measured from a 0.1 g subsample on a LECO truSpec CN analyzer and crude protein was 

determined by using the conversion factor TN x 6.38 (Cunniff, 1995). Duplicate samples 

were analyzed for each milk constituent and additional samples were analyzed if  the 

difference between the first two samples was greater than 10%. Carbohydrate was not 

measured because it generally represents less than 1% of the total mass o f pinniped milk 

(Oftedal et al., 1987). Gross energy was calculated using energy density values for lipid 

(39.8 KJ/g) and protein (23.9 KJ/g) (Kleiber, 1975).

Statistical analysis

Student’s t-tests and linear regression analysis were used to explore the basic 

relationships between the variables, and multiple regression analysis was used to 

determine which variables, when assessed together, were predictors o f milk composition. 

The dependent variables lipid %, protein % and energy content were analyzed separately. 

Dry Matter includes lipid and protein, and water is inversely related to dry matter, so
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neither of these dependent variables was included in the analyses. The independent 

variables that were used in the multiple regression analysis o f  July milk data were island, 

rookery, year (i.e., representing divergent foraging/nursing strategies or potential 

environmental perturbations), female mass (variously assumed to relate to milk 

composition in previous studies), and milk sample volume. The independent variables 

that were used in the October analysis were island, rookery, year, days postpartum, 

preceding trip duration, female time ashore since the last foraging bout (time ashore), 

female mass, individual July milk composition, and milk sample volume. To improve the 

precision of the multiple regression model, backward elimination was used to remove 

variables that were not significant. The lipid % values for one female from Bogoslof in 

July and one female from Bogoslof in October were determined to be outliers through 

casewise analysis of the residuals. Outliers were classified when the individual residual 

was more than three times the standard deviation o f the residuals. Only females that had 

data for each of the independent variables were used in this analysis (July lipid % N=76, 

protein % N=71, water % N=71, and energy content N=70; October lipid % N=57, 

protein % N=56, water % N=54, and energy content N=51)

Paired t-tests and linear regression analyses were used to assess the differences 

between July and October milk samples. Only samples from females that were captured 

from both times were used in this analysis. Three females from Bogoslof were 

determined to be outliers using casewise analysis o f the residuals. A total o f 65 samples 

were used in the analysis o f lipid % and 57 samples were used in the analysis o f protein 

% and energy content (KJ/g).

Results

Rookeries -  S t Paul

An initial multiple regression analysis determined that rookery location on St. 

Paul was not a predictor of milk lipid % (p=0.83), protein % (p=0.77), or energy content 

(p=0.88) in July, or milk lipid % (p=0.32), protein % (p=0.99), or energy content
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(p=0.50) in October. Because of this, Vostochni and Reef rookeries were grouped 

together as single samples from St. Paul for July and October.

July

There was high variability in the milk composition between females in July— dry 

matter ranged from 47.0% to 66.7% (CV = 7.3), lipid ranged from 33.3% to 54.3% (CV 

= 9.1), protein content ranged from 7.7% to 13.0% (CV = 10.7), and energy content 

ranged from 16.7 KJ/g to 24.3 KJ/g (CV = 7.9). The average milk composition was 

57.2% dry matter, 45.7% lipid, 10.2% protein, and 20.6 KJ/g energy. None o f the 

independent variables tested had an effect on milk composition (Table 2.1).

October

As in July, we found high overall variability between females in October—dry matter 

ranged from 49.5% to 76.6% (CV = 8.0), lipid ranged from 38.5% to 66.3% (CV = 10.0), 

protein content ranged from 8.3% to 13.4% (CV = 11.5), and energy content ranged from 

17.7 KJ/g to 28.5 KJ/g (CV = 8.6). The average milk composition was 67.6% dry matter, 

55.6% lipid, 10.3% protein, and 24.7 KJ/g energy.

The independent variables island, time ashore, days postpartum, preceding trip 

duration and July value were determined to be predictors o f October lipid and the 

variables time ashore, days postpartum, and July value were predictors o f October energy 

content (Table 2.2). The variables year, female mass, and milk volume were not 

predictors of milk composition, so they were removed from the analysis using backward 

elimination (for year lipid p=0.92, protein p=0.30, and energy p=0.57; for female mass 

lipid p=0.48, protein p=0.17, and energy p=0.62; for milk volume lipid p=0.92, protein 

p=0.09 and energy content p= 0.99). None of the independent variables were related to 

protein % so the following analyses only include the dependent variables lipid % and 

energy content.

Island was a predictor of milk lipid so comparisons o f milk composition were 

made between Bogoslof and St. Paul (Table 2.2). The average milk composition for each
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island in July and October is listed in Table 2.3. Milk composition differed between the 

two islands by 4% in dry matter, 7% in lipid, 5% in protein and 5% in energy content.

Time ashore predicted milk lipid % and energy content in October (Table 2.2) and 

the effect o f time ashore on milk lipid % was the same at each island (the slopes o f the 

regression lines from the two islands were not significantly different, p=0.95) so the data 

were combined to estimate the change per hour ashore (Figure 2.3). If we assume that the 

rate of change was linear, milk lipid decreased by approximately 0.29% per hour and 

energy content decreased 0.12 KJ/g per hour during a shore visit. However, the rate of 

change does not appear to be linear over the entire shore visit. During the first 10 hours, 

milk lipid ranged between 50.0% and 66.3% but a linear relationship was not apparent 

(R2<0.01, p=0.98). When assessing only samples collected after 10 hours, milk lipid 

decreased by approximately 0.31% per hour and energy content decreases 0.13 KJ/g per 

hour (R2=0.3, p<0.01).

Days postpartum also predicted milk lipid % and energy content (Table 2.2). 

Figure 2.4 illustrates the change in lipid, protein and energy content between July and 

October. The 21.6% change in lipid and the 19.8% change in energy content were 

significant (p<0.01) but the 2.6% change in protein was not (p = 0.22). If  we assume that 

there was a continuous increase in milk lipid % and energy content between the July and 

October sampling periods in this study, lipid would have increased by approximately 

0.11% per day and energy content would have increased by approximately 0.04 KJ/g per 

day. Efforts were made to collect samples at the same number of days postpartum at each 

location and during each year; however, samples from Bogoslof were collected at an 

average of 94 days postpartum in 2005, which was significantly later than samples that 

were collected at an average of 87 days postpartum on Bogosof in 2006 (p<0.01), 89 days 

postpartum on St Paul in 2005 (p=0.03) and 89 days postpartum on St. Paul in 2006

(p<0.01).

July milk lipid % predicted October milk lipid % and July energy content 

predicted October energy content (Table 2.2). In general, individuals that had milk with
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higher lipid % in July also had higher lipid % in October (Figure 2.5). There were four 

exceptions to this trend -  one female from Bogoslof and three females from St. Paul had 

milk that decreased slightly in lipid between July and October; however, when the 

October values were adjusted for time ashore all female milk increased in lipid % 

between July and October.

Discussion

Comparing northern fur seal milk composition results between studies and species

The lipid content of northern fur seal milk that we sampled in October at an 

average of 90 days postpartum, approximately three-fourths through the lactation period, 

is the highest known among otariid seals, where meaningful comparisons can be made, 

and is comparable to the highest reported for phocid seals (Table 2.4). If, as Goebel 

(2002) reported, the average lipid content o f northern fur seal milk increases through at 

least 108 days of the lactation period, then it is possible that lipid content would reach 

even higher peak values than those recorded in this study.

Lipid is the most variable constituent of milk and ranges from just 0.2% in the 

black rhinoceros to around 60% in some phocid seals (Iverson, 2007). In general, the 

most dilute milks are produced by species that nurse frequently and on demand such as 

the odd-toed ungulates, primates and some even-toed ungulates; and the most 

concentrated milks are produced by species that nurse infrequently and on a scheduled 

basis such as the lagomorphs, some rodents and some carnivores (Oftedal, 1984, Iverson, 

2007). Pinnipeds likely evolved to have very high milk lipid content because their 

foraging habitat is spatially and temporally separated from their land breeding sites on 

land or ice. Female otariid seals make foraging trips during lactation that range in length 

from 1-10 days, whereas female phocid seals typically fast on shore. The highly 

concentrated milk in pinnipeds enables females to transfer the required energy to pups to 

meet all of their physiological requirements over short intervals.
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Comparison of our data on milk composition to data from past studies on northern 

fur seals and other pinniped species can be problematic for a number o f reasons. Several 

northern fur seal milk composition studies have been conducted since the 1960s (Table 

2.5), but sampling, analysis, and reporting methodologies varied. Sample size was very 

small in at least one early study (Ashworth et al., 1966), and in another the milk was 

removed from the mammary glands of dead adult females (Dosako et al., 1983), which 

can lead to the inclusion of blood in the sample (Oftedal, 1984). Costa and Gentry (1986) 

collected samples directly from females and had a relatively large sample size, but they 

only covered the first half of the 4-month lactation period so results did not include 

higher lipid content milk that is produced later in the season. Costa and Gentry (1986) 

also derived milk protein content by subtraction from lipid, water, and ash, which is 

known to compound errors from other measurements and to overestimate protein content 

(Goebel 2002). The study conducted by Goebel (2002) had a large sample size, included 

milk from nearly the entire lactation period, and used comparable methods to measure 

milk composition, but reported only an average milk composition for the entire lactation 

period. Goebel (2002) did report coefficients for regressions of lipid and energy content 

versus days postpartum. According to those equations, at 90 days postpartum (the 

average number of days among our females in October), average milk lipid content 

would be 57.5% and energy content would be 24.6 KJ/g. These values are close to our 

results from Bogoslof (57.3% lipid and 25.2 KJ/g energy) and comparable to our results 

from St. Paul (53.8 % lipid and 24.0 KJ/g) and overall (55.6 % lipid and 24.7 KJ/g).

Because milk composition does change during lactation, comparisons to and 

among other species of pinnipeds are likewise difficult. In northern fur seals and 

Antarctic fur seals (Arctocephalus gazella) that breed in the sub-polar regions, milk fat 

and energy content increase during at least 90% o f the 4-month lactation period, so peak 

levels likely occur just before pups are weaned (Amould and Boyd, 1995a, Goebel,

2002). In more temperate otariid species like the subantarctic fur seal (Arctocephalus 

tropicalis) and the Australian fur seal (Arctocephalus pusillus doriferus) that have 

lactation periods of between 10 and 11 months, milk fat and energy content increase until
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a peak and then decrease when pups begin to supplement their diets by foraging on their 

own (Amould and Hindell, 1999, Georges et al., 2001). Peak lactation in phocid seals is 

easier to assess than in otariids because they have much shorter lactation periods, 

averaging from 4 to 28 days, and their milk typically increases in fat and energy content 

to a peak and then asymptotes (Riedman and Ortiz, 1979, Oftedal et al., 1988, Iverson et 

al., 1993, Lang et al., 2005). Table 2.6 lists a number of otariid studies that simply 

averaged milk composition over a range of lactation phases and did not report peak 

lactation levels. Other sources o f variability were also not accounted for so comparisons 

between these studies are problematic.

Accounting for sources o f  variability in milk composition in this study

Time ashore

During the first 10 hours that a female was on shore in October milk did not 

change significantly in composition. After 10 hours, milk lipid decreased at an average 

rate of 0.31 % per hour and energy content decreased at an average rate o f 0.13 KJ/g per 

hour. Two previous studies on the Pribilofs o f northern fur seal milk reported similar 

results - Costa and Gentry (1986) reported that lipid decreased by 6.5% over the 1-2 day 

nursing bout (-0.14% to 0.27% per hour), and Goebel (2002) reported a 0.16% per hour 

decrease. A decrease in lipid and energy content during time ashore has also been 

measured in Antarctic fur seals (Amould and Boyd, 1995a, Goldsworthy and Crowley, 

1999), subantarctic fur seals (Goldsworthy and Crowley, 1999, Georges et al., 2001), and 

Juan Fernandez fur seals (Arctocephalus philippii) (Ochoa-Acuna et al., 1999). In 

contrast, no change in milk composition was detected in the two species o f sea lions that 

have been studied for the effect of time ashore (Oftedal et al., 1987, Kretzmann et al., 

1991, Gales etal., 1996).

Protein % did not change during the time that females were on shore, but it has 

been reported to change in other fur seal species. In our study, the average protein % of 

milk ranged from 10.0-10.5 % throughout a stay on shore (Table 2.6), which was
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comparable to the average protein o f 10.8% reported by Goebel (2002). Other fur seal 

studies that measured nitrogen directly to calculate protein content, as we did, reported 

declines during shore stays from 12.8% to 8.8% in Antarctic fur seals (Amould and 

Boyd, 1995a), 13.4% to 10.7% in subantarctic fur seals (Georges et al., 2001), and 13.2% 

to 11.0% in Juan Fernandez fur seals (Ochoa-Acuna et al., 1999). The length of time 

ashore varies in each of these species: northern fur seals stay on shore for approximately 

1-3 days (Gentry and Holt, 1986, Goebel, 2002), Antarctic fur seals stay on shore for 

approximately 1-2 days (Doidge et al., 1986, Boyd et al., 1991), subantarctic fur seals 

stay onshore for approximately 4 days (Georges and Guinet, 2000) and Juan Fernandez 

fur seals stay onshore for an average of 5.3 days (Francis et al., 1998). It is possible that 

longer shore visits result in decreases in milk protein %, but the lengths o f shore visits by 

Antarctic fur seals are very similar to those o f northern fur seals and results after just 2-3 

days in subantarctic fur seals showed significant decreases in protein %.

Because time ashore is a sampling bias, results from samples collected after 10 

hours were normalized using the average rate of decrease in lipid and energy content 

listed above. Normalized October results were higher than the previously reported milk 

composition results for northern fur seals and were as high as the highest reported for 

phocid seals. The average normalized milk lipid was 59.8% and energy content was 26.4 

KJ/g. Protein % was not normalized because it was not affected by time ashore in this 

study. Time ashore is known to also affect milk composition during the July perinatal 

period. Costa and Gentry (1986) found that the milk of northern fur seals decreased in 

lipid by 15% (from 46.3% to 39.6%) and Amould and Boyd (1995a) found that the milk 

o f Antarctic fur seals decreased in lipid by 13% (from 40.8% to 35.6%) over the perinatal 

period. In the current study, the change in milk composition during the perinatal period 

was not assessed because samples were only collected once in July, approximately 24-72 

hours postpartum. There were attempts, however, to collect animals close to the same 

time and it is unlikely that females were collected later than 72 hours postpartum or near 

the end of the approximate one-week perinatal period.
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There are three leading theories for why milk composition changes during shore 

visits in fur seals. First, it is possible that the initial high lipid and energy content milk is 

produced solely from the energy that females acquire during their foraging trip to sea, 

and decreases in lipid and energy content are the result of increasingly more milk being 

produced from the females’ fat reserves. Georges et al (2001) support this theory with 

evidence from fatty acid analysis o f milk at different times during a shore visit. The 

second theory is that females have evolved to produce higher energy milk at the 

beginning of the shore visit to compensate for the period in which pups were left fasting 

(Georges and Guinet, 2000, Georges et al., 2001). Decreases in milk quality over the 

shore visit, in this case, would be associated with the pup’s reduced need for energy with 

successive feedings. The third theory is that the milk fed to a pup when a female first 

returns to shore is more concentrated because it is what was stored in the mammary gland 

during the foraging trip (Amould and Boyd, 1995b). In this case, more concentrated milk 

enables the female to store more energy per volume for the initial feeding.

Because the rate o f decrease in milk lipid and energy content is fairly constant 

over time and among females, either the second and/or the third theory are likely 

responsible for the change in milk composition over the time a female is on shore.

Change with time ashore is likely an adaptation that allows females to provide the highest 

amount of energy to the pup upon arrival from foraging while at the same time 

conserving her own fat reserves, which are not extensive due to the fur seal strategy o f 

insulating with fur rather than blubber. If it were caused by a shift from producing milk 

from prey consumed during a foraging bout to producing milk from fat reserves, one 

would expect higher variability in the rate o f decline during a shore visit.

Days postpartum

Milk composition changes in all mammal species over the course o f lactation, 

although the degree of change differs between phylogenetic groups (Oftedal, 1984). Like 

other mammals, northern fur seals produce colostrum during the perinatal period. There 

is an abrupt transition time when females begin to alternate between foraging trips to sea
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and nursing trips to shore, and when milk fat and energy content appear to increase until 

near to the end of the lactation period (Goebel, 2002). The end of lactation occurs 

somewhere between late October to early November, approximately 125 days postpartum 

(Gentry and Holt, 1986). In this study between the July perinatal period and October, 

lipid increased by an average 23.4% and energy content increased by an average of 

20.5% on Bogoslof; and lipid increased by an average of 19.8% and energy content 

increased by an average of 19.0% on St. Paul. Protein content did not change 

significantly over the sampling period, which was expected because it did not change in 

previous northern fur seal studies (Costa and Gentry, 1986, Goebel, 2002).

Studies that examined milk composition over time in other otariid and phocid 

seals generally reported increases in lipid and energy content until peak lactation, with 

little change in protein. Milk lipid and energy content appear to increase throughout the 

four month lactation period in Antarctic fur seals (Amould and Boyd, 1995a) and 

generally increase midway through lactation and decrease in late lactation in temperate 

species like the subantarctic fur seal (Georges et al., 2001), Australian fin- seals (Amould 

and Hindell, 1999) and Australian sea lion (Neophoca cinerea) (Gales et al., 1996). Lipid 

and energy content of the milk also tend to increase to peak levels in mid-lactation and 

then asymptote throughout late lactation in phocid species like the grey seal (Halichoerus 

grypus) and harbor seals {Phoca vitulina); however, there are individual variations 

(Iverson et al., 1993, Lang et al., 2005).

The results from two otariid studies differed from the above trends in milk 

composition. Kretzmann et al. (1991) found high variability in the milk lipid % of 

Australian sea lions and did not detect a change over the lactation period even though 

samples were collected up to 125 days postpartum, and Trillmich and Lechner (1986) 

found a decrease in the lipid and energy content o f Galapagos fur seal (Arctocephalus 

galapagoensis) milk during their study period. In the first case, Kretzmann et al. (1991) 

did not account for the variable time ashore, whereas in a subsequent study conducted by 

Gales et al. (1996) time ashore was accounted for and increases in milk lipid % between
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early and mid-lactation were reported. In the second case, Trillmich and Lechner (1986) 

used a small sample size (n=19) and only examined milk composition for the first 30 

days of a 2+ year lactation period. There is evidence that milk lipid and energy content 

can decrease during the perinatal fast and that it could take at least three weeks for them 

to rebound to levels recorded immediately postpartum (Costa and Gentry, 1986, Amould 

and Boyd, 1995a).

Hypotheses for why milk lipid and energy content increase over the lactation 

period have been discussed in previous studies. Two theories are that they increase with 

improvements in female mass and body condition or with increases in trip duration 

(Trillmich and Lechner, 1986, Amould and Boyd, 1995a, Amould and Hindell, 1999 

Georges and Guinet, 2000,). These theories, however, assume that milk composition can 

change in relationship to environmental influences on female physiology, which is 

unlikely because proximate composition is largely a function of phylogeny and genetic 

regulation (Iverson, 2007). Environmental influences typically alter milk output instead 

of composition (Iverson, 2007). It seems more likely that the increases in milk lipid and 

energy content have evolved due to the increasing energy needs of the growing pup and 

the development of the digestive system. Decreases do not occur until pups are capable of 

supplementing their diets by foraging on their own.

Island effect

There was a significant difference in milk composition between St. Paul and 

Bogoslof in October (lipid % p<0.01) indicating that there may be factor(s) that differ 

between the two islands that have the potential to alter mammary function. These results 

differ from two previous studies that examined milk composition at multiple locations. 

Goldsworthy and Crowley (1999) compared the milk composition o f Antarctic fur seals 

that breed on South Georgia Island and Macquarie Island and found no significant 

difference between the two locations, and Adams (2000) compared the milk composition 

o f Steller sea lions (Eumetopias jubatus) from five widely spaced rookery sites in Alaska
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(Lowrie, Fish, Chirikof, Seguam and Yunaska Islands) and also found no statistical 

difference between locations.

This raises the question of what factors contributed to the difference in milk 

composition between Bogoslof and St. Paul. Factors that are known to differ between the 

two locations include foraging habitat, diet, dive type, trip duration, trip distance and time 

ashore (Goebel et al., 1991, Springer et al., 2010). The differences in foraging habitat 

between the two locations in this study are important because they suggest that the seals 

may be consuming different prey species, but there is no evidence that diet affects milk 

composition in otariids. Previous studies of milk composition in cows and humans have 

concluded that milk fat remains at near normal levels regardless of the nutritional status 

of the mother (Jenness, 1974, Jensen, 1989). Diets that are inadequate in fat or energy 

lead to a mobilization of the mother’s body stores to produce milk o f normal fat content 

(Jensen, 1989). Goebel (2002) studied the dive type of northern fur seals at the Pribilofs, 

which can be used as a proxy for diet, and found no relationship to milk composition. 

Furthermore, in this study, females from Vostochni and Reef rookeries foraged in 

different habitats (on shelf at Vostochni compared to primarily the shelf break and off the 

shelf at Reef), and likely consumed different prey, yet milk composition did not differ 

between rookery sites. The one factor that differs between islands and may be related to 

milk composition is foraging trip duration. This factor and its possible affects on milk 

composition are discussed further in the next section.

Foraging trip duration

When considering central place foraging theory, it has been predicted that females 

that travel farther to find food would make fewer trips and return with greater amounts of 

energy per trip compared to females traveling shorter distances (Orians and Pearson, 

1977). And, indeed, preceding trip duration has been linked to otariid milk composition 

in previous studies through both inter-specific and intra-specific comparisons. From 

inter-specific comparisons, it was hypothesized that one of the evolutionary factors that 

led to higher milk fat in some otariids compared to others is the longer length of time that
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females of some species need to forage to provision their pups (Trillmich and Lechner, 

1986) - lipid rich milk compensates for the longer periods that pups are on shore fasting 

(Costa and Gentry, 1986). Georges et al. (2001) suggested that the higher lipid content in 

milk of Antarctic fur seals, subantarctic fur seals, and Juan Fernandez fur seals compared 

to Galapagos fur seals is because the former make longer foraging trips. The results from 

the Amould and Hindell (1999) study of Australian fur seal milk composition support 

this. However, it those comparisons may be misleading because only the average milk 

composition values were used to assess inter-specific differences, and the Galapagos fur 

seal milk composition data are problematic because they are for just the first 30 days o f 

the 2+ year lactation period. In addition, other variables such as time ashore were not 

accounted for, also discussed above, so there may be less of a difference between species 

than originally thought.

Two otariid studies reported intra-specific relationships between trip duration and 

milk composition - Amould and Boyd (1995b) and Amould and Hindell (1999). The first 

study examined the milk composition of 16 female Antarctic fur seals during two months 

in mid-lactation and found that there was a positive relationship between milk lipid and 

protein and trip duration (Amould and Boyd, 1995b). The second study examined the 

milk composition of seven female Australian fur seals throughout lactation and found that 

milk lipid was positively related to trip duration. However, neither of these studies 

accounted for stage of lactation. In addition, Amould and Boyd (1995b) did not account 

for time ashore. Amould and Hindell (1999) tried to limit the variance associated with 

time ashore by capturing females within the first 6 hours o f their return. We know these 

variables are important when assessing milk composition.

This study found that preceding trip duration was negatively related to milk lipid 

% (p=0.04). This is opposite to what would be expected when considering central place 

foraging theory and it is opposite to all otariid studies that have reported a relationship 

between trip duration and milk composition. A negative relationship between trip 

duration and milk composition could be explained by the affect that long intervals
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between nursing bouts may have on mammary function. Lang et al. (2005) found 

evidence in harbor seals of a feedback mechanism that initiates mammary gland 

involution and a reduction in lipid content o f milk after prolonged intervals between 

suckling. If St. Paul females forage near a threshold limit, because o f poor prey 

availability, such a process may occur. However, Lang et al. (2005) also found that milk 

lipid percent increased to previous levels after nursing was reestablished. The milk 

composition of individual females over their time on shore was not examined in this 

study so it was not possible to detect a reversal of involution. However, the time ashore 

data that were available suggest that there was only a decrease in milk lipid with time 

ashore, not an increase which would be associated with the reversal o f involution. 

Northern fur seals and other otariid seals have evolved to tolerate multiple day foraging 

trips and the foraging trip durations reported in this study are not unusually long 

compared to past studies. The question of whether mammary gland involution begins on 

longer foraging trips needs further research.

July value in the October analysis

The July value, which refers to a female’s milk composition in July, was included 

in the October analysis to account for high individual variation. It is thought that nutrient 

partitioning by the mammary gland is tightly controlled within individual females and 

that variation between females is related more to physiological capacity than to factors 

such as resource availability, body condition or body size (Lang et al., 2009). Our results 

support that interpretation in the following ways: 1) there was no relationship between 

milk composition and female mass; 2) females that had milk with a higher lipid and 

energy content in July typically had milk with a higher lipid and energy content in 

October. Together, these findings suggest that individual variability is an important factor 

to consider when studying milk composition over the lactation period, and is critical to 

evaluating variability in pup growth and condition at weaning.
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Summary

The northern fur seal population on the Pribilofs has been declining for over 50 

years, but the cause has not been determined. In contrast, the population on Bogoslof has 

been increasing exponentially since it was founded in the mid-1970s. This work was part 

of a larger study conducted to investigate underlying factors that might be responsible for 

the contrasting trajectories. Accurate information on milk composition of the seals across 

lactation was necessary for models of pup growth and condition comparing the two 

populations.

Despite considerable variability in milk composition between individual females 

in both July and October, on average the lipid content increased by approximately 22% 

overall during the portion o f the lactation period our study covered (approximately three- 

fourths). The lipid content near peak lactation is the highest reported among otariid seals 

and lipid content normalized for time ashore is as high as the highest known for phocid 

seals, making it among the highest known for all mammals.

The lipid content of the milk produced by females at Bogoslof was higher 

compared to the milk produced by females at St. Paul in October. There are a number of 

variables that differ between the two islands, but foraging trip duration is the only factor 

that also had an effect on milk composition in this study. The average trip duration for 

females from St. Paul was 6.5 days compared to 2.2 days for Bogoslof females. If  the 

females in this study were foraging close to their physiological threshold on St. Paul 

Island, it is possible that changes in mammary function occurred. Lang et al. (2005) 

found evidence in harbor seals o f a feedback mechanism that initiates mammary gland 

involution and a reduction in lipid content o f milk after prolonged intervals between 

suckling. However, Lang et al. (2005) also found that milk lipid percent increased to 

previous levels after nursing was reestablished. This study did not examine the milk 

composition of individual females over the time on shore so it was not possible to detect
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a reversal of involution, if involution had begun. In fact, the time ashore data suggest that 

there was only a decrease in milk lipid with time ashore. Northern fur seals and other 

otariid species have adapted to making long foraging trips, bu t at St. Paul might be near 

a threshold of initiation of involution. Future research is needed to understand how 

otariid seals are able to produce high-lipid milk during multiple day foraging trips and to 

gain knowledge about when involution begins.

Past inter- and intra-species comparisons o f pinniped milk composition are 

generally difficult, because studies of otariid milk composition often averaged results 

from early, mid and/or late lactation, whereas phocid studies typically reported only 

values at peak lactation. For the first time, this study used only milk composition data at 

or near peak lactation values for northern fur seals, other otariids where available, and 

phocids to compare milk composition. The results suggest that at least northern,

Antarctic, subantarctic and Australian fur seals all have milk comparable in composition 

to milk o f phocid seals.
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Figures and Tables
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Figure 2.1. Location of the Pribilof Islands (St. Paul Island and St. George Island) and 
Bogoslof Island in the Bering Sea.
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Figure 2.2. Locations of Vostochni and Reef northern fur seal rookeries on St. Paul 
Island.
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Figure 2.3. Relationship of milk lipid and energy content to time ashore o f northern fur 
seals at Bogoslof Island and St. Paul Island combined. There was no detectable change in 
milk lipid or energy content until after 10 hours. The rate of change after 10 hours was 
0.31 % per hour in lipid and 0.13 KJ/g per hour in energy.
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Figure 2.4. Change in the average lipid, protein and energy content between July 
(approximately 2 days postpartum) and October (approximately 90 days postpartum). 
There was a significant change in lipid (p<0.01) and energy content (p<0.01) but not in 
protein content (p=0.22).
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Figure 2.5. Variability between individual female northern fur seals from Bogoslof and 
St. Paul Islands in the change in milk lipid content between July and October.
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Table 2.1. Probability values (p) generated from multiple regression analysis o f northern 
fur seal milk composition data from Bogoslof Island and St. Paul Island in July. The 
dependent variables were protein, lipid and energy content and the independent variables 
were island, year, female mass (Kg), and milk sample volume (ml).

. Year , Female 
Mass (Kg)

MQk 
Volume (ml)

• ' 1 ■ 0.80 0.82 0.87 0.90
I M d K  ' 0.18 0.96 0.27 0.86
Energy content (KJ/g) 0.46 0.58 0.52 0.80

Table 2.2. Probability values (p) generated from multiple regression analysis o f northern 
fur seal milk composition data from Bogoslof Island and St. Paul Island in October. The 
dependent variables were lipid, energy and protein content and the independent variables 
were island, time ashore, days postpartum, preceding trip duration, and July value 
(protein %, lipid % or energy content). Significant values are listed in bold.

Isl&nd Time 
Ashore (hre)

Days Post 
' Partuaa

Preceding 
Trip Duration 

(dsys)

July value

Lipid % <u.01 <0.01 <0.01 0.04 <0.01

Protein % 0.12 0.52 0.22 0.48 0.31

Energy Content 
(KJ/g)

0.11 <0.01 <0.01 0.22 <0.01
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Table 2.3. The means and standard errors for dry matter, lipid, protein and energy 
content of northern fur seal milk from Bogoslof Island and St. Paul Island in July and 
October. There was no difference between the two islands in July (lipid p=0.80, protein 
p= 0.18 and energy p=0.46), but there was in October lipid % (p<0.01). October protein 
and energy content were not different between the two islands (protein p=0.12, energy
p=0.11).

Mean Dry 
Matter % SB

M m lip M
% SE

Mem  
Protein % SE

• Mean 
Energy 
Content 
(KJ/g) SE

Bogoslof July 57.7 0.7 45.8 0.7 10.3 0.2 20.8 0.3

Bogoslof October 68.8 0.9 57.3 0.8 10.0 0.2 25.2 0.3

St Pail July 56.9 0.7 45.5 0.7 10.0 0.2 20.5 0.3

S t Paul October 66.2 1.0 53.8 1.0 10.5 0.2 24.0 0.4

Table 2.4. The milk lipid and protein content for otariid and phocid seals from studies 
with comparable data. All data were collected at or near peak lactation, (l. current study, 2. 
Amould and Boyd, 1995a, 3. Amould and Hindell, 1999,4. Georges et al., 2001, 5. Iverson et al., 1993, 6. 
Lang et al., 2005, 7. Oftedal et al., 1988, 8. Le Boeuf and Ortiz, 1977, 9. Carlini et al., 1994)

# Species Sample
size

Lipid% Protein % Approximate length 
o f lactation

1 Northern fur seal 68 55.6 10.3 4 months
2 Antarctic fur seal 8 52.7 14.0 4 months
3 Australian fur seal 89 50.0 10.4 11 months
4 Subantarctic fur seal 14 52.3 11.5 10 months

3 Grey seal 42 59.8 9.2 16 days
6 Harbor seal 71 50.2 9.0 28 days
7 Hooded seal 22 61.0 4.9 4 days
8 Northern elephant seal 9 54.4 9.0 28 days

: 9 Southern elephant seal 46 43.2 10.2 24 days
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Table 2.5. Comparison of the milk composition results from all previous northern fur 
seal studies.

Table 2.6. The average reported milk composition of otariid species in studies that did 
not account for peak lactation or other variability. (1. Trillmich and Lechner, 1986, 2. Figueroa- 
Carranza, 1994, 3. Ochoa-Acuna et al., 1999, 4. Ponce de Leon, 1984, 5. Oftedal et al., 1987, 6. Wemer et 
al., 1996, 7. Adams, 2000)

# S p -c* . “ S '
Protein

% 1 5 2
T.me.am pled Approximate length 

o f  lactation

’ % Galapagos fur seal 19 29.4 12.1 Early 1-30 days 24+ months
W ' Guadalupe far seal 14 43.2 9.9 Early - mid 1-60 days 8-9 months

Juan Fernandez far seal 44 41.4 11.9 Early, mid ~1 and-90 days 7-10 months
if*! South American far seal 11 44.3 10.5 Mid ~  150 days 6-12 months
;|§g
U ! California sea lion 12 43.7 8.9 Early -  mid 1-60 days 12-24 months

Southern sea lion 10 33.5 10.8 Early 1 -20 days 12+ months
Steller sea lion 51 21.6 9.3 Early 1-30 days 12 + months
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CONCLUSIONS

What is causing the northern fur seal population decline on the Pribilof Islands? 

This is the big picture question that the project Consequences of Fur Seal Foraging 

Strategies (COFFS) assessed. The two chapters from this thesis contributed to this larger 

study.

Chapter 1 reviewed the potential causes o f the current population decline on the 

Pribilofs in the context of other important changes to the ecosystem since the middle 20th 

century and summarized research questions that still need to be addressed. Factors such 

as diseases, parasites, subsistence harvests, direct shootings and bycatch likely had small 

effects on fur seals in the past and during this current population decline, but they could 

not have caused a reduction o f this magnitude without being detected. Factors that were 

important to consider in the past and that should continue to be monitored, but are 

probably not issues in the current decline, include entanglement and contaminants. The 

factors that could cause a population to decrease to the current level seen on the Pribilofs 

are nutritional limitation due to climate change or fisheries competition, predation, or a 

combination of those causes that also includes conditions in the North Pacific during the 

winter. Until we have a better understanding of fur seal vital rates, effects o f fisheries and 

environmental change on fur seal prey fields and diets, and sources and levels o f fur seal 

mortality, particularly predation mortality, it is unlikely that definitive answers will be 

achieved.

The milk composition results from Chapter 2 provide information necessary to 

calculate how much energy pups from St. Paul and Bogoslof receive during the nursing 

period, and were part of a broader assessment by COFFS of whether nutritional limitation 

could be causing the northern fur seal population decline on St. Paul. There was no 

difference in milk composition between islands in July shortly after pups were bom but 

there was a 7% difference in October that may be related to trip duration. Females that 

make the longest foraging trips may begin mammary gland involution similar to what is 

known to occur in harbor seals (Lang et al 2005). However, otariids have evolved a
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lactation strategy that includes extended periods o f foraging away from the neonate.

There is little evidence to suggest that the foraging trips recorded in this study were 

unusually long and there is no evidence to suggest that a reversal o f involution occurred 

once suckling was reestablished. Future research is needed to understand when involution 

begins in otariids.

On average milk lipid content increased by approximately 22% between July and 

October, from about 33% to about 54%. The northern fur seal milk produced in October 

near peak lactation has the highest lipid content known among otariid seals and is 

comparable to the milk composition of phocid seals, making it among the highest known 

for all mammals. This has important implications when considering evolutionary biology. 

There must be an adaptive advantage to producing milk with such a high energy density. 

Fur seals have a short lactation period relative to other otariids, and they make multiday 

foraging trips while their pups fast on shore. These factors result in less time for females 

to transfer the necessary energy for growth and development. Higher milk fat increases 

the rate of energy transfer so pups can develop faster, tolerate periods o f extended fasting, 

and leave the rookeries at weaning with sufficient fat reserves to survive until they are 

proficient at capturing prey on their own.

There was large variability in the milk lipid content between individual females in 

both July and October, and in general females with higher values in July also had higher 

values in October. These longitudinal data on milk composition, coupled with data on 

female foraging trip durations, will allow a detailed evaluation of the energetics o f pup 

growth and condition near weaning that likely affects survival during their first winter.

The COFFS project found that females from St. Paul travel approximately two 

times farther and leave their pups fasting on shore for approximately three times longer 

than females from Bogoslof. Trip duration has been found to be an indicator of the 

proximity and availability of prey, so these findings suggest that females from St. Paul 

need to exert more energy to find food than females from Bogoslof. Longer foraging trips 

have a direct consequence to the pups because they are left on shore fasting for longer
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and are not fed as often. In addition, if the beginning stages o f involution occur in 

females that make longer foraging trips, pups that are already fed less often, will 

experience additional reductions in provisioning.
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