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EXECUTIVE SUMMARY 

 

Warm Mix Asphalt (WMA) technologies, recently developed in Europe, are gaining 

strong interest in the U. S. Field practices.  Studies showed that WMA can reduce 

the high mixing temperatures of regular hot mix asphalt (HMA), increase the 

temperature gap between production and cessation (allowing increased haul 

distances), and decrease the binder viscosity allowing effective compaction, which is 

beneficial for stiff mixes, paving during extreme weather conditions and reduction in 

compaction effort. However, previous research has not focused much on how WMA 

functions in cold weather paving and the performance of the WMA in cold regions.  

 

In line with a field demonstration project of WMA using Sasobit conducted in 

Southeast Alaska, this study focused on experimentally assess the engineering 

properties of Sasobit modified WMA binders and mixes. In this study, PG 58-28 

binder (consistent with that in the field project) was selected to be modified with 

Sasobit in four different contents, i.e. 0%, 0.8%, 1.5%, and 3.0%, respectively. 

Performance tests of binders were conducted according to Superpave specification 

to assess the correlation between the content of additives, and Superpave 

performance grade (PG) and stiffness of modified binders. Tests conducted to assess 

the performance of WMA included 1) permanent deformation (rutting) susceptibility 

by asphalt pavement analyzer (APA) and flow number FN by simple performance 

tester (SPT), 2) low temperature cracking performance including tensile strength and 

tensile creep compliance properties by indirect tension test (IDT), 3) moisture 

susceptibility by moisture induced sensitivity tests (MIST), and 4) dynamic modulus 

|E*| by SPT. Performance tests for field-mixed lab-compacted mixes/field-cored 

samples were also evaluated in the laboratory to compare with the results of  lab-

mixed lab-compacted mixes. 
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Results showed that the addition of Sasobit reduced both mixing and compaction 

temperatures of mixes. Compared with control binder without Sasobit addition, the 

addition of 3% Sasobit contributed to a decrease of more than 15ºC in mixing 

temperature and a decrease of 13ºC in the compaction temperature. The Sasobit 

addition also significantly impacted the PG of binders. With the increase of Sasobit 

content from 0% to 3%, the high temperature end of asphalt PG increased from 58 to 

76, however, the low temperature end also increased from -28ºC to -16ºC as well. 

 

The SPT results showed that |E*| values of lab-mixed lab-compacted mixtures 

increased with the increase of Sasobit content. The field-mixed lab-compacted mix 

presented higher |E*| values than the lab-mixed lab-compacted mix with same 

content of Sasobit (1.5%) and voids in total mix (VTM, 4%). The FN results were 

consistent with those of |E*| values. The improved rutting resistance of lab-mixed 

lab-compacted mixtures with the addition of Sasobit was also found from APA tests, 

which conformed to |E*| and FN results. The MIST results exhibited slightly 

increased TSR values of lab-mixed lab-compacted mixes with the increase of 

Sasobit content, and the TSR values of field mix and laboratory mix with the same 

Sasobit content of 1.5% were very close. Within this study, at least the addition of 

Sasobit did not contribute to moisture damage of WMA compared with the control 

mix.  

 

In a summary, laboratory investigation of Sasobit-modified binders and WMAs in 

this study identified a lot of engineering benefits of WMAs using Sasobit over 

traditional HMA. WMAs using Sasobit with reduced mixing and compaction 

temperatures, improved workability and rutting resistance, and insignificant effect 

on moisture susceptibility favorably indicated the suitability of this WMA 

technology for Alaska conditions. The IDT results showed degraded resistance to 

low temperature cracking of WMA using Sasobit in this study. However, additional 

tests at lower temperatures, along with a more complete thermal cracking analysis 
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for specific environments of interest should be performed to get a more definitive 

answer regarding the effects of Sasobit on low temperature cracking. 

 

The limited tests of field specimens in this study generally displayed higher variance/ 

inconsistency in results than those of lab-mixed lab-compacted specimens. Therefore, 

closer correlation between lab results and field performance data are suggested in the 

future study. Studies should also include long-term performance and associated life 

cycle cost analyses. 
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CHAPTER I 

 

INTRODUCTION 

 

GENERAL 

 

The asphalt industry and its agency partners are constantly looking for ways to 

improve pavement performance, increase construction efficiency, conserve 

resources and advance environmental stewardship (Newcomb 2007). In order to 

achieve these goals, warm mix asphalt (WMA) technologies, now under 

evaluation worldwide, tend to reduce the viscosity of asphalt and provide the 

mixing and compacting temperatures in the range of 20-55°C lower than typical 

hot mix asphalt (HMA) (D’Angelo et al. 2008). A number of benefits are well 

recognized as driving the development of WMA, which are mainly addressed as 

1) improved environmental aspects and sustainable development particularly 

due to the reduction of energy consumption and resulting reduction in CO2 

emission, 2) improvement in field compaction due to the reduction of viscosity, 

thus to extend the paving season and allow the possibility for longer haul 

distance, and 3) welfare of the asphalt worker due to the reduction of odor 

emission, etc. 

 

Among various WMA technologies, Sasobit is described as an “asphalt flow 

improver” due to its ability to lower the viscosity of the asphalt binder (Damm 

et al. 2002). A number of research and field trials have been conducted on the 

performance of WMA with Sasobit additive. The general consensus is that 

WMA with Sasobit additive is expected to provide performance equal to or 

better than HMA (Hurley and Prowell 2005a, AAT 2005, Diefenderfer et al. 

2007, D’Angelo et al. 2008). Although studies have been reported in both 

laboratory and field studies, there are few studies focused on the performance of 

WMA with Sasobit in paving projects in such an extreme cold weather 
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condition as in Alaska. A full scale field trial using Sasobit modified binder and 

mixes was constructed in the summer of 2008 in Southeast Alaska on the 

Petersburg-Mitkof Highway Upgrade Project, Phase II. In line with this field 

trial, this study evaluated the performance of both binders and mixtures 

modified with Sasobit, as presented in this report.    

 

PROBLEM STATEMENT 

 

In cold regions asphalt mixes can be difficult to compact, particularly if the 

asphalt layers are thin and cool weather is present. Contractors at time struggle 

to achieve the density standards. Without adequate compaction, pavements are 

prone to distresses thus reducing pavement life. Field practices and studies 

including several on-going National Cooperative Highway Research Program 

(NCHRP) and other state research projects showed that using WMA can reduce 

the high mixing temperatures of regular HMA, increase the temperature gap 

between production and cessation (allowing increased haul distances), and 

decrease the binder viscosity allowing effective compaction, which is beneficial 

for stiff mixes, paving during extreme weather conditions and reduction in 

compaction effort.  

 

However, previous research has not focused much on how WMA functions in 

cold weather paving and the performance of the WMA in cold regions, with 

respect to the material types and climatic conditions typical of Alaska and other 

cold regions. In line with the field trial using Sasobit modified WMA conducted 

in the summer of 2008 at Southeast region of Alaska, research is needed to 

monitor and evaluate WMA binders and mixes in cold weather conditions. How 

Sasobit additive affects WMA performance regarding low temperature 

performance, rutting resistance, and moisture susceptibility is needed to be 

investigated. A comparison of the performance of field samples and lab 

mixtures is also necessary to determine the suitability of WMA technology for 
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Alaska conditions. 

 

OBJECTIVES 
 
The major objectives of this study are 1) to experimentally assess the 

engineering properties of Sasobit modified WMA binders and mixes, and 2) to 

facilitate the determination of suitability of the WMA technology for Alaska 

conditions. 

 

RESEARCH METHODOLOGY 

 

To meet the objectives of this study, the following major tasks were conducted: 

 

• Task 1: Literature review 

• Task 2: Experimental design and material collection 

• Task 3: Laboratory performance tests for binders 

• Task 4:  Laboratory performance tests for mixtures  

• Task 5:  Data processing and analyses 

• Task 6:  Project summary and recommendations 
 

Task 1: Literature review 

 

A comprehensive literature review of current research efforts and progress in 

the area of WMA with Sasobit was conducted during the whole process of the 

project. The purpose of the review was mainly to gather information on key 

subjects that pertain to this study such as WMA projects in the nation and some 

projects overseas to determine both positive and negative attributes in using 

WMA, binder and mixture characterization, and experimental results and field 

performance. This task is presented in Chapter II. 
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Task 2: Experimental design and material collection 

 

Based on the literature review in Task 1, a detailed laboratory testing plan was 

developed to assess the material properties of WMA including binder 

characterization and mixes performance. Materials used for WMA and control 

mixes (without the sasobit additive), consistent with those used in the field trial, 

were collected including Sasobit, local aggregates and neat asphalt binder. 

Loose mixtures and cores were collected from the field as well.  This task is 

presented in Chapter III. 

 
Task 3: Laboratory performance tests for binders 

 

In this study, PG 58-28 binder was selected to be modified with Sasobit in four 

different contents, i.e. 0%, 0.8%, 1.5%, and 3.0% by weight of the asphalt 

binder, respectively. Performance tests of binders were conducted according to 

Superpave specification in the laboratory in order to 1) assess the 

constructability of WMAs used in the field, and 2) evaluate the correlation 

between the content of additives, and Superpave performance grade and 

stiffness of modified binders. Those tests included: 1) rotational viscosity test 

for constructability performance, 2) dynamic shear rheometer (DSR) for both 

rutting and fatigue performance, and 3) bending beam rheometer (BBR) for low 

temperature performance. Binders at three critical stages were tested, including 

1) un-aged original asphalt binders, 2) binders after short term aging by Rolling 

Thin Film Oven (RTFO), and 3) binders after long term aging by pressure-

aging vessel (PAV). Chapter III describes the work on this task. 

 
Task 4: Laboratory performance tests for mixtures  

 

WMA specimens were prepared by mixing local aggregates and PG 58-28 

binder modified with four different Sasobit contents (i.e. 0%, 0.8%, 1.5%, and 
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3.0%, respectively) in the laboratory. Loose mixtures and cores were also 

collected from the field for laboratory performance tests. The volumetric 

properties of all mixes were validated to meet the design criteria of voids in 

total mix (VTM) before tests according to AASHTO test specifications. 

 

Tests conducted to assess the performance of WMA included 1) permanent 

deformation (rutting) susceptibility by asphalt pavement analyzer (APA) and 

flow number FN by simple performance tester (SPT), 2) low temperature 

cracking performance including tensile strength and tensile creep compliance 

properties by indirect tension test (IDT), 3) moisture susceptibility by moisture 

induced sensitivity tests (MIST), and 4) dynamic modulus |E*| by SPT. 

Performance tests for field-mixed lab-compacted mixes and field-cored samples 

were also evaluated by IDT, APA, SPT and MIST in the laboratory to compare 

with the results of  lab-mixed lab-compacted mixes. Chapter III provides the 

report of this task. 

 
Task 5: Data processing and analyses 

 

Both laboratory and field performance data were statistically processed and 

analyzed. Based on the statistical analyses and interpretation, the significance 

of using WMA technology was determined. The difference and correlation 

between the test results of field and laboratory mixes were analyzed as well. 

The work in this task is included in Chapter IV. 

 
Task 6: Project summary and recommendations 

 

Based upon the above tasks, a summary of research results and findings from 

this study was provided in this task. Recommendations regarding the feasibility 

of using WMA for Alaska conditions were made, as well as those for future 

work, as presented in Chapter V. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

A comprehensive literature review was conducted to gather information on key 

subjects that pertain to this study such as WMA projects in the nation and some 

projects overseas to determine both positive and negative attributes in using 

WMA, binder and mixture characterization, and experimental results and field 

performance. The literature findings were summarized and documented in this 

chapter. 

 

WMA TECHNOLOGIES 

 

Adopted from Europe, WMA technologies entail the use of additives in asphalt 

binders designed to soften the binder, allowing workability and compactibility at 

lower temperature (a processing temperature range of  250°F ~ 275°F) than with 

traditional HMA (a discharge temperature of between 280°F and 320°F) (Figure 

2.1).  

Hot mix asphalt 280°F (138°C) to 320° F (160°C) 

Warm mix asphalt 250°F (121°C) to 275°F (135°C) 

Cold mix asphalt around 60°F (16°C) 

 
F

 

igure 2.1 Typical mixing temperature range for asphalt mixes (Epps 2007). 

t the time of this report, 14 WMA technologies identified by the WMA A

Technical Working Group (warmmixasphalt.com) have been widely used in the 
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United States and all over the world (Hurley and Prowell 2005a, Hurley and 

Prowell 2005b, Hurley and Prowell 2006, Diefenderfer et al. 2007, Prowell et al. 

2007, Chowdhury and Button 2008, Tao et al. 2009, Kvasnak et al. 2009, 

Wielinski et al. 2009, Middleton and Forfylow 2009). These 14 technologies are 

listed below with the company name given first and followed by the 

product/technology name: 

 

• Advanced Concepts Engineering Co.: Low Energy Asphalt 

• Akzo Nobel: Rediset WMX   

• Arkema Group: CECABASE RT  

• Eurovia Services, GmbH: Aspha-min  

• Astec Industries: Double Barrel Green System  

• Gencor Industries: Ultrafoam GXTM  

• Maxam Equipment Inc.: Aquablack WMA   

• McConnaughay Technologies: Low Emission Asphalt  

• MeadWestvaco Asphalt Innovations: Evotherm  

• Meeker Equipment Corp. Inc.: Aqua Foam WMA System 

• PQ Corporation: Advera WMA  

• Sasol Wax North America Corporation: Sasobit   

• Stansteel: Accu-Shear Dual Warm-Mix Additive System 

• Terex Roadbuilding: WMA System 

 

These WMA technologies generally fall broadly into one of four categories 

based on the type of additive used (Vaitkus et al. 2009), and Table 2.1 provides 

a summary of these technologies. 

 

• Water-based additives: foaming bitumen technology where foaming is 

caused by water (spraying water into hot bitumen or mixing the wet sand 

into asphalt mix).  

• Water-bearing additives: foaming bitumen technology where foaming is 
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caused by natural or synthetic zeolite injection into asphalt mix during 

mixing process. 

• Organic additives: additives are injected into asphalt mixer together with 

mineral materials for the reduction of bitumen viscosity. 

• Chemical additives: additives are injected into the asphalt binder to make a 

“wetter” asphalt so as to more readily coat and lubricate aggregate before 

binder is placed in asphalt mixer.  

 

Table 2.1 Summary of WMA technologies (Perkins 2009) 

Technology Category 

Production 

Temperature 

(oF) 

Modifications 

to Plant 

Required 

Aquablack WMA Water-based NA* Yes 

Double barrel Green Water-based 255 Yes 

Low Energy Asphalt Water-based 255/220 Yes 

Ultrafoam GXTM Water-based NA* Yes 

WAM Foam Water-based 145 Yes 

WMA System Water-based NA* Yes 

Advera Water-bearing 200 Some 

Aspha-min Water-bearing 215 Some 

Evotherm Chemical 195 Minor 

Low Emission Asphalt Chemical 275/215 Yes 

Rediset WMX Chemical 260 Minor 

CECABASE RT Organic 215 Not Known 

Sasobit Organic 235 Minor 

*NA: Information not available. 

 

A number of benefits have been identified with the use of WMA and fall into 

the categories of environmental, product and process improvements, and worker 

health (Kristjansdottir 2006, Button et al. 2007, D’Angelo et al. 2008, Perkins 

2009, Hassan 2009). Benefits in the area of environmental aspects include the 
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reduction of energy consumption and resulting reduction in CO2 emissions. 

Burner fuel savings with WMA typically range from 20 to 35%, with 50% being 

possible for some technologies (D’Angelo et al. 2008, Mallick et al. 2009). 

Emissions such as CO2 and dust are reduced when lower temperatures are used 

in the plant. Reductions of CO2 can range from 15 ~ 40% and dust can be 

reduced by 25 ~ 50% (Perkins 2009). Product and process benefits include the 

ability to pave in cooler temperatures, haul the mix longer distance, compact 

with less effort, and the ability to incorporate higher percentages of recycled 

asphalt pavement (Kristjansdottir 2006, D’Angelo et al. 2008, Perkins 2009). 

Worker health benefits result from an improved worker environment with 

reduced worker exposure to fumes and aerosols, and temperature during 

placement and compaction, which may lead to greater productivity and worker 

retention (D’Angelo et al. 2008, Perkins 2009). 

 

In Alaska asphalt mixes can be difficult to compact, particularly if the asphalt 

layers are thin and cool weather is present. Without adequate compaction, 

pavements are prone to distresses, including cracking, pavement raveling and 

potholing, which accelerate pavement aging leading to a reduced pavement life.  

The application of WMA technologies appears to have great promise to improve 

the overall mix workability which should lead to improved compaction, while 

being able to continue processing at lower air temperatures making the process 

ideal for cold regions where cooler temperatures are more prevalent. Among 

these WMA technologies, Sasobit product appears to be the most economic 

WMA technology for use in South East Alaska. Sasobit has the unique 

capability to be mixed into the binder at the refinery and can then be placed into 

sea going containers and barged to South East Alaska to the project site.  All 

other WMA technologies require some type of plant modification, or special 

handling equipment to incorporate the WMA additive into the plant. To 

contractors producing and placing the WMA with Sasobit modified binder, there 

would be no plant modifications required and no change in field operations to 
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produce WMA except that it can be produced at a lower temperature. 

 

WMA USING SASOBIT 

 

Sasobit is a Fischer-Tropsch wax, which is a synthetic aliphatic hydrocarbon 

wax by heating coal or natural gas with water to 180 to 280 °C (356 to 536 °F) 

in the presence of a catalyst (D’Angelo et al. 2008). Sasobit has a melting point 

of more than 98 °C (208 °F), high viscosity at lower temperatures, and low 

viscosity at higher temperatures. At temperatures below its melting point, 

Sasobit forms a lattice structure in the bitumen that is a basis for the structural 

stability of asphalts containing Sasobit. Sasobit can solidify in asphalt binder 

between 65 and 115ºC (149 and 239ºF) to regular distributed, microscopic small, 

stick-shape particles, hence resulting in an increase of asphalt binder stiffness. 

Figure 2.2 shows two forms of Sasobit, flakes and small prills or pellets. Sasobit 

can be blended with the binder at a terminal or in the contractor’s tank, 

introduced in a molten form, added with the aggregate, or pneumatically blown 

into a drum plant (Hurley and Prowell 2005a).  

 

Figure 2.2 Sasobit flakes and prills (Hurley and Prowell 2005a). 

 

In 1997, Sasobit began to be marketed in Europe as an asphalt mixture 

compaction aid by Sasol Wax International (Sasol Wax 2005). Sasol Wax 
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maintains a list of projects on its web site that utilize Sasobit in asphalt paving. 

As of October 2005, Sasol Wax listed 235 projects and trials in many countries, 

including Germany, Denmark, France, the Czech Republic, Hungary, Italy, the 

Netherlands, New Zealand, Norway, Russia, the United Kingdom, South Africa, 

Sweden, and Switzerland. A wide range of aggregate types and mix types were 

included (e.g., dense-graded mixes, stone mastic asphalt, and Gussaphalt) in 

these projects and trials. Sasobit addition rates ranged from 0.8 to 4 percent by 

mass of binder (Hurley and Prowell 2005a, Button et al. 2007). 

 

Sasobit-Modified Binders 

 

Sasobit is described as an “asphalt flow improver” to lower the viscosity of the 

asphalt binder and to reduce the mixing and compaction temperature (Damm et 

al. 2002, Hurley and Prowell 2005a, Wasiuddin et al. 2007). The study 

conducted by Hurley and Prowell (2005a) showed the compaction temperature 

for the Sasobit modified PG 64-22 is approximately 32oF (18oC) less than that 

for the PG 64-22 control base binder while producing the same viscosity at in-

service temperature. For PG 64-22 and PG 70-28 binders evaluated in 

Wasiuddin et al.’s study (2007), 10-16ºC of  reduction in mixing temperature 

was found for all three percentages of Sasobit (2%, 3% and 4%). 

 

Aging characteristics of warm asphalt binders were investigated through 

simulating the aging of warm asphalt binders in the laboratory and results 

indicated that the binders extracted from the WMA had significantly lower 

aging index (ratio of the viscosity of extracted binders to original binders) 

compared to those extracted from control HMA (Gandhi and Amirkhanian 

2008). The reduced aging of the binder with the addition of Sasobit was also 

found from Hurley and Prowell’s study (2005a).   

 

The addition of Sasobit can significantly impact the PG and viscosity of the 
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binders. Hurley and Prowell (2005a) reported that a PG 64-22 binder was 

produced by adding 2.5% Sasobit to the PG 58-28 binder, adding 4% Sasoflex 

to the PG 58-28 resulted in a PG 70-22, and adding 4% Sasoflex to the PG 64-

22 resulted in a PG 76-22 binder. Wasiuddin et al. (2007) found that 3% Sasobit 

increased the high temperature end of the PG 64-22 binder from PG 64 (actual 

PG 65) to PG 68, while 4% Sasobit improved the PG 70 (actual PG 75) of PG 

70-28 binder to PG 80. In Austerman et al.’s study (2009), the addition of 1.5% 

Sasobit changed the PG grade of the base binder from a PG 64-28 to a PG 70-22 

and addition of 3.0% Sasobit changed the PG to a PG 70-16. The addition of 

Sasobit reduced the viscosity of the binder, with the largest viscosity reduction 

occurring with the dosage of 3.0% Sasobit. Reduction in binder viscosity and 

improvement in binder grading without increasing the viscosity indicates a two-

way reductions (both direct and indirect) in production temperatures by Sasobit 

(Wasiuddin et al. 2007). 

 

Biro et al. (2009) conducted rheological tests (DSR and viscosity) to evaluate 

the effect of Sasobit additive on properties of the binders. Their study found that 

Sasobit improved the stiffness and penetration resistance of the base binders, 

and binders with Sasobit had significantly lower permanent deformations after 

repeated creep-recovery tests compared to the base binders. Improvement in 

fundamental property of asphalt binders such as rutting resistance with the 

Sasobit modification was also found in other studies (Wasiuddin et al. 2007, 

Kanitpong et al. 2007). Kanitpong et al. (2007) also found Sasobit-modified 

binders have better fatigue resistance and higher complex shear modulus. 

However, stiffening effect of bitumens at low temperatures in terms of increased 

BBR creep stiffness by adding Sasobit indicated a possible lower resistance to 

cracking at these temperatures (Edwards et al. 2006).  

 

Sasobit was also used to modify polymer modified asphalts (PMAs) (Kim et al. 

2009). The rheological properties of PMAs containing two warm additives 
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(Asphalt-min and Sasobit) were investigated using a Bohlin DSR II. The use of 

Sasobit showed the enhanced rutting resistance properties of PMAs at high 

pavement temperature and more elastic properties at lower temperature.  

 

Sasobit-Modified Mixtures 

 

Laboratory Investigation 

 

Performance of WMA using Sasobit has been widely evaluated in both the 

laboratory and the field. A laboratory study conducted at the national Center for 

Asphalt Technology (NCAT) (Hurley and Prowell 2005a) showed that Sasobit 

improved the compactability of asphalt mixtures in both the Superpave 

gyratory compactor (SGC) and vibratory compactor. The addition of Sasobit 

lowers the measure air voids in the SGC, which may indicate a reduction in the 

optimum asphalt content. The addition of Sasobit does not affect the resilient 

modulus of an asphalt mix compared to mixtures having the same PG binder 

(Hurley and Prowell 2005a). 

 

The mixes containing Sasobit generally provided good rutting resistance (Hurley 

and Prowell 2005a, Kanitpong et al. 2007, Wasiuddin et al. 2007). Sasobit-

modified mixes had a greater resistance to densification under traffic as well as a 

potential of greater resistance to permanent deformation under the traffic loads 

(Kanitpong et al. 2007). Sasobit was found to decrease the APA rut depths 

significantly, and these rut depths correlate well with the rutting factor G*/sinδ 

of binders. It was also observed that rutting potential decreases with decreasing 

mixing and compaction temperatures (Wasiuddin et al. 2007). 

 

The indirect tensile strengths for mixes containing Sasobit were lower, in some 

cases, as compared to the control mixes. This reduction in tensile strength is 

believed to be related to the anti-aging properties of Sasobit observed in the 
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binder testing (Hurley and Prowell 2005a). Roque and Lopp (2006) used the 

Superpave IDT to evaluate Sasobit-modified mixtures’ resistance to cracking. 

Sasobit-modified mixtures reduced the creep rate of the mixtures relative to the 

controls, which indicates that the Sasobit® modified mixtures would have a 

significantly reduced rate of microdamage development relative to the controls. 

It was also found that Sasobit-modified mixtures exhibited a slight reduction in 

failure strain, fracture energy and dissipated creep strain energy, with little or no 

change in stiffness or strength versus the controls. These results indicated that 

Sasobit-modified mixtures would exhibit better field cracking performance than 

the control mixtures. However, researchers also pointed out that lower creep 

response can result in higher thermal stresses. The effects of Sasobit on low 

temperature cracking would depend on the specific conditions to which the 

mixture is exposed. Additional tests at lower temperatures, along with a more 

complete thermal cracking analysis for specific environments of interest should 

be performed to get a more definitive answer regarding the effects of Sasobit on 

low temperature cracking. 

 

The lower mixing and compaction temperatures can result in incomplete dying 

of aggregate. If the moisture contained in the aggregate does not completely 

evaporate during mixing due to the low mix temperatures, water may be left in 

close contact with the aggregate surface, which could lead to increased 

susceptibility to moisture damage. Both tensile strength ratio (TSR) and 

Hamburg tests were conducted to assess moisture susceptibility, and mixtures 

containing Sasobit performed well in terms of moisture susceptibility (Hurley 

and Prowell 2005a). Kanitpong et al. (2007)’s study showed that there is no 

effect of Sasobit on the resistance of asphalt mixtures to moisture damage, but 

the reduction of mixing and compaction temperatures can cause detrimental 

effect on the moisture sensitivity. Xiao et al. (2009) used conventional testing 

procedures such as indirect tensile strength (ITS), TSR, deformation, and 

toughness to evaluate moisture damage in WMA mixtures containing moist 
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aggregates. Their statistical analysis based on data of 180 specimens showed the 

Sasobit additive showed no significant influences on ITS values (dry or wet), 

deformation resistance, and toughness values under identical conditions, 

compared with control mixtures. Wasiuddin et al. (2008) investigated the 

moisture-induced damage mechanisms through evaluating the effect of Sasobit 

on the surface free energy components and related properties (wettability and 

adhesion) of selected binders. In their study, moisture susceptibility was defined 

as the amount of spontaneously released free energy due to the breaking of the 

binder-aggregate bond with water. Their study showed that Sasobit reduced the 

total surface free energy of asphalt binders. It greatly increased the wettability of 

asphalt binders over aggregates and reduced the adhesion between asphalt 

binders and aggregates. 

 

In order to address challenges from increased demands for environmental 

friendly paving mixtures and increasing costs of raw materials, WMA additives 

and recycled asphalt pavement (RAP) have been incorporated into new HMA 

mixtures. Penny (2006) carried out a study to evaluate the use of heated RAP 

materials with emulsion and the use of HMA with Sasobit as base course 

materials. The use of Sasobit helped to achieve almost similar workabilities and 

compactabilities at lower temperatures, as compared to those of HMA with neat 

asphalt binder. No significant difference was found between the modulus of the 

Sasobit and hot mix asphalt samples in her study. In another study of using 

100% RAP HMA as a base course (Tao and Mallick 2009), the workability of 

RAP was improved at temperatures as low as 110oC with the addition of 

Sasobit H8. This was also consistent with the conclusion obtained from the 

study conducted by Austerman et al. (2009). 

 

The effects of Sasobit on asphalt concrete mixture performance when used as a 

compaction aid in high RAP (35% RAP at that time) surface mixtures were 

evaluated in the laboratory of Advanced Asphalt Technologies, LLC (AAT 
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2005). When used at 1.5% by weight of total binder, Sasobit marginally 

increases the high temperature stiffness of the mixture, but has limited effect on 

intermediate and low temperature stiffness. At this concentration, aging 

characteristics and the rutting, fatigue cracking, and thermal cracking resistance 

of the mixture are not significantly affected by the addition of Sasobit. It appears 

that Sasobit may have a beneficial effect of slightly improve the resistance of 

mixtures to moisture damage. However, Austerman et al. (2009)’s work showed 

that the addition of Sasobit increased the moisture susceptibility of the mixture.   

 

Mallick et al. (2008) successfully used Sasobit H8 in recycling HMA with 75% 

RAP at a lower temperature. The results of voids, tensile strength, rutting 

potential and moduli at different temperatures showed that it is possible to 

produce mixes with 75% RAP with similar air voids as virgin mixes at lower 

than conventional temperatures using 1.5% Sasobit. In general, most of the 

mixtures with high percentage of RAP could be designed to meet specification 

requirements for gradation and volumetrics with the addition of Sasobit. 

However, the dose of Sasobit additive may need to be increased (Mogawer et al. 

2009).  

 

Field Practices 

 

Significant work has been conducted to demonstrate construction practices and 

to develop mix design procedures for WMA technologies. Some of examples 

are summarized as follows. 

 

Three trial sections using two WMA technologies (two with Sasobit and one 

with Evotherm) were constructed in various locations in Virginia in 2006 

(Diefenderfer et al. 2007).  The trial sections with Sasobit-modified WMA were 

a 1.5-in overlay placed on a new base mixture on the eastbound lane of US 211 

(as part of a  larger pavement rehabilitation project) in Rappahannock County, 
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Virginia, and a  1.5-in overlay on the southbound lane of US 220 in Highland 

County, Virginia. The sections were evaluated over a 2-year period to assess the 

initial performance of the WMA and compare it with that of HMA control 

sections constructed at the same time. For the two Sasobit trial sites, coring and 

visual inspections were performed regularly along with historic data and 

ground-penetrating radar scans. The HMA and WMA sites performed similarly 

through the first two years of service and should be expected to perform equally 

(Diefenderfer and Hearon 2010). No significant distresses were indicated by 

visual surveys in WMA sections. There were not significant differences of air-

void contents and permeability between the HMA and WMA in each trial, 

though the WMA produced using Sasobit aged at a slightly reduced rate than the 

HMA, as indicated by decreased stiffening.   

 

Goh and You (2008) reported results from a field demonstration consisting 

WMA (using Sasobit) and HMA at M-95, north of US-2 at Iron Mountain, 

Michigan. Observation from the field visit indicated significantly reduced 

emission during WMA construction compared to HMA construction. The 

rutting test of field cores using the APA showed that WMA with a reduction of 

25oC (45oF) in compacting temperature has a similar rutting performance with 

HMA. The moisture susceptibility of WMA was comparable to HMA and the 

fatigue potential of WMA was slightly higher than HMA (Goh and You 2009). 

 

A field project located in Kimbolton, Ohio was conducted to evaluate three 

WMA technologies (i.e. Evotherm, Aspha-min, and Sasobit) with a control 

section (Hurley et al. 2009). Field performance was evaluated through tests of 

mixture volumetric properties, rutting susceptibility, moisture resistance, 

dynamic modulus, and emissions. Different WMA technologies all performed 

equal to or better than the control mixtures. A decrease in emissions was also 

determined for the Sasobit and Aspha-min. Another newly completed project 

using same types of warm mixes sponsored by Ohio DOT (Sargand et al. 2009) 
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confirmed the results obtained by Hurley et al. (2009). This project included a 

test site consisting of an overlay on Ohio State Route 541 in Guernsey County, 

and a test pavement constructed in the Accelerated Pavement Load Facility in 

Lancaster.  

 

Two projects were constructed in Yellowstone National Park, one on the East 

Entrance Road west of Cody, WY and one south of Gardiner, MT (Perkins 

2009). Two WMA technologies (Advera and Sasobit) were used in the East 

Entrance Road project in August of 2007. The contractor saved 20% on fuel 

costs at the asphalt plant, and WMA construction was handled similarly to HMA. 

The slab made with loose mixtures of Sasobit WMA showed slightly higher 

rutting depth than that of HMA in the Hamburg Wheel Test, though both passed 

Montana DOT specifications of 13 mm or less of rut in the specified number of 

passes. The inflection point in the rutting curve indicated stripping of Sasobit 

slab.  

 

In addition, test sections containing moderate and high levels of RAP (20% and 

45% RAP) with Sasobit addition were established at the NCAT test track (West 

et al. 2009). All sections performed well for rutting and raveling. The 45% 

RAP section with PG 76-22 plus Sasobit had moderate cracking, which appears 

to reflect cracking from the underlying pavement.  

 

Experiences with these trial sections were used in the development of state 

DOTs’ special provision to allow the use of WMA. An informal survey of state 

DOTs produced 12 states having specifications for WMA use (Perkins 2009).  

These states include Alabama, California, Florida, Idaho, Indiana, Iowa, Maine, 

Ohio, Pennsylvania, Texas, Virginia, and Washington.    
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CHAPTER III 

 

EXPERIMENTAL DETAILS 

 

A detailed laboratory testing plan is described in this chapter to assess the 

material properties of WMA including binder characterization and mixes 

performance. Materials and mix designs are presented as well.  

 

MATERIALS 

 

Materials used for both binder and mixes including aggregates, control binder 

(PG 58-28), and Sasobit were consistent with those used in the field trial in the 

Petersburg-Mitkof Highway Upgrade Project, Phase II. PG 58-28 asphalt 

binder and Sasobit were provided by U.S. Oil & Refining Co., and Figure 3.1 

shows the Sasobit used in this study, which is a type of high melting point 

Fischer-Tropsch paraffin wax. Three Sasobit contents (i.e. 0.8%, 1.5% and 3% 

of weight of binder) were selected based on both previous studies and field trial 

experience. Aggregates, loose mixtures, and cores were collected and delivered 

from the field to the university laboratory for laboratory testing. 

 

 
Figure 3.1 Sasobit used in the study. 
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BINDER TESTS 

 

Binder tests were conducted for control PG 58-28 asphalt binder and Sasobit 

modified binders according to Superpave criteria. Table 3.1 gives a list of 

testing equipment to conduct various physical tests for PG grading, the related 

purpose for testing, and the related performance parameter being partly 

influenced by the asphalt binder. Table 3.2 summarizes the tests conducted in 

the laboratory. For each test, at least three replicates were provided for each 

temperature measured. The testing data were then analyzed according to the 

ASTM C670-03, which is the standard practice for preparing precision and bias 

statements for test methods for construction materials. The detailed results for 

determining PGs according to the AASHTO M320-05 are presented in the 

Appendix.  

 

Table 3.1 Superpave asphalt binder testing equipment and purpose (Brown et al. 
2009) 

Equipment Purpose 
Performance 

Parameter 

Rolling Thin Film 
Oven (RTFO) 

Simulate binder aging (hardening) 
during HMA production and 
construction 

Resistance to aging 
(durability) during 
construction 

Pressure Aging 
Vessel 
(PAV) 

Simulate binder aging(hardening) 
during HMA service life 

Resistance to 
aging(durability) 
during service life 

Rotational 
Viscometer 

(RV) 

Measure binder properties at high 
construction temperature Handling and pumping 

Dynamic Shear 
Rheometer (DSR) 

Measure binder properties at high 
and intermediate service 
temperatures 

Resistance to 
permanent deformation 
(rutting) and fatigue 
cracking 

Bending Beam 
Rheometer 

(BBR) 

Measure binder properties at low 
service temperature 

Resistance to thermal 
cracking 

Direct Tension 
Tester (DTT) 

Measure binder properties at low 
service temperature 

Resistance to thermal 
cracking 
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Table 3.2 Summary of binder tests conducted in the lab 
Binder 
Aging Tests Specification Test equipment 

/Model 
Rotational 
viscosity ASTM D4402-06 Brookfield DV-III Original 

Binder DSR test AASHTO T315-08 Rheometric 
Scientific/ARES-RAA 

DSR test AASHTO T240-08 
AASHTO T315-08 

Rheometric 
Scientific/ARES-RAA 

Short-term 
aging 

(RTFO) Mass loss AASHTO T240-08 Mettler Toledo Balance 

DSR test AASHTO R28-06 
AASHTO T315-08 

Rheometric 
Scientific/ARES-RAA Long-term 

aging 
(PAV) BBR test AASHTO R28-06 

AASHTO T313-08 
Cannon Instrument/TE-

BBR 
 

Testing of Original Binder 

 

Testing of original binder includes flash point test (AASHTO T48), RV test 

(ASTM D4402), and DSR test (AASHTO T315). The flash point test was not 

conducted in the lab. The RV test utilizes a Brookfield viscometer (including a 

temperature controller, a digital data controller and a rotational viscometer as 

shown in Figure 3.2) to ensure ease of pumping and handling of the binder at 

the hot mix production plant. This is attained by specifying a maximum 

viscosity of 3 Pas (≈3000mm2/s) at 135°C. In addition, the RV tests were 

performed for all binders at temperatures from 105ºC to 165ºC to determine 

mixing and compaction temperatures at which the viscosities of binders range 

between 0.15 and 0.2 Pa.s, and between 0.25 and 0.3 Pa.s, respectively.  

 

The DSR is conducted on both the original and aged binder. A controlled-strain 

DSR (Figure 3.3) was used to measure the viscoelastic behavior at different 

temperatures of the binder in terms of complex modulus (G*) and phase angle 

(δ). The DSR applies a torque to a thin film of binder specimen placed between 

two plates at a frequency of 10 radians per second. The applied torque and 

resulting shear strain are used in the computation of G* and δ. The 

specification requires determining the temperature that corresponds to a 
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minimum value of 1.0 kPa for G*/sinδ. 

 

 
Figure 3.2 Brookfield rotational viscometer. 
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Figure 3.3 Dynamic Shear Rheometer. 

 
Testing of RTFO Aged Residue 
 
According to AASHTO T240-08, the RTFO (Figure 3.4) exposes fresh thin 

films of binder to heat (163°C) and air for 85 minutes by rotating coated bottles 

(15 revolutions/minute) and blowing air into the bottles (4000 ml/minute). The 

average percent mass loss is calculated after testing. The specification of 1% 

maximum mass loss guards against binders that age excessively. The RTFO 

residue is tested again using the DSR. In this case the limit on G*/sinδ required 

is 2.2 kPa for a loading rate of 10 radians/second. DSR tests on the original and 

RTFO aged binders are supposed to evaluate the binder’s resistance to rutting. 
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Figure 3.4 Rolling Thin-Film Oven (RTFO). 

 
Testing of PAV Aged Residue 
 
The RTFO residue is aged again in a PAV (Figure 3.5 (a)) to simulate long term 

aging. In this case, the binder is subjected to high temperature (90°C, 100°C, or 

110°C) and pressure of 2070 kPa for 20 hours according to AASHTO R28-06. 

The sample pans are then placed in the degassing oven (Figure 3.5 (b)) 

maintained at 163°C for 30 minutes to remove entrapped air from the samples.  

  
(a)  (b) 

Figure 3.5 a) Pressuring aging vessel; b) degassing oven. 
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The PAV residue is then tested using the DSR to evaluate the fatigue resistance 

of the binder. The specification in this case requires determining the temperature 

associated with a maximum G*sinδ of 5000 kPa for a loading rate of 10 

radians/second. The BBR Test (Figure 3.6 (a)) is used to evaluate the stiffness of 

the PAV aged binder at low temperatures. As illustrated in Figure 3.6 (b), The 

BBR subjects a small beam of binder to a constant creep load and measures the 

resulting deflection at a temperature related to the anticipated lowest pavement 

service temperature. By using simple beam theory, the creep stiffness (S) and 

the creep rate (m-value) which is defined as the rate of change of stiffness with 

time are calculated. The S at 60 seconds must be less than 300 MPa, and the m-

value at this time of loading must be at least 0.30 in order to meet the binder 

specification (AASHTO M320). If the stiffness is between 300 MPa and 600 

MPa, then the direct tension test (DTT) (AASHTO TP3) should be used. In this 

test, a dog-bone shaped sample of binder is pulled at a slow rate of 1 mm/minute 

at low temperatures to determine the failure strain (defined at the maximum 

recorded load during the test). The specification requires that the failure strain 

be at least 1%. The m-value requirement must be satisfied in both cases. 

 

 
(a)  
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(b) 
Figure 3.6 a) BBR equipment; b) components of BBR. 

 

MIXTURE DESIGN 
 
As shown in Table 3.3, Superpave mix design was used to prepared mixtures in 

the lab with same binder content (5%) and binder grade (PG 58-28) consistent 

with the field design. The job mix formula (Marshall mix design) used for field 

mixtures was re-produced in the lab as well. Gradations of aggregates used in 

the field and the laboratory designs are illustrated in Figure 3.7.  
 
MIXTURE TESTS 

 

A detailed laboratory testing plan of WMA mixtures (Table 3.4) was developed 

to assess the performance of WMA mixtures, including 1) volumetric 

properties (i.e. voids filled with asphalt (VFA), voids in mineral aggregate 

(VMA) and VTM); 2) material characterization (dynamic modulus |E*| and 

flow number FN) by the SPT; 3) rutting performance by the APA; 4) low 

temperature performance by the IDT; and 5) moisture sensitivity. Specimens 

for all tests were fabricated by the SGC specified in AASHTO T312-08.  
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Table 3.3 Details of mix designs 
Mixture 
Name 

Control 
Mixture 

Sasobit 
Mixture 1

Sasobit 
Mixture 2

Sasobit 
Mixture 3 

Field 
Mixture 

Mix Design Type Superpave Marshall

Gmm 2.6784 2.6763 2.6626 2.6517 2.6237 

Gmb 2.575 2.5553 2.5545 2.5421 2.5702 

Design Binder Content   5% 

Design Binder Type PG 58-28    

Design Sasobit content 0 0.8% 1.5% 3.0% 1.5% 

Design air void 4% 2.5% 

Metric (U.S.) Sieve Gradation (%passing) 

19mm (3/4 in.) 100 100 

12.5mm (1/2 in.) 96 87 

9.5mm (3/8 in.) 84.3 75 

4.75mm (No.4) 51.3 53 

2.36mm (No.8) 28.9 39 

1.18mm (No.16) 18.5 29 

0.6mm (No.30) 11.5 22 

0.3mm (No.50) 7.5 16 

0.075mm (No.200) 5 6.3 
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Figure 3.7 Aggregate gradations for mix designs. 

 

Table 3.4 Summary of laboratory testing plan  

Tests Parameters Specimen 
Size (mm) 

Target 
air void 

(%) 

Test 
Temp. 
(°C) 

Volumetric 
Properties 

Maximum specific gravity 
(Gmm); bulk specific 
gravity (Gmb); VMA; 

VFA; VTM; 

115(H) 
150(D) 4.0 25 

Simple 
Performance 

Tests 

Dynamic modulus |E*|; 
Flow number FN

150(H) 
100D) 4.0 4.4, 21.1, 

37.8, 54 

Rutting Test Rut depth measurement 75(H) 
150(D) 7.0 58 

Indirect 
Tensile Test 

(IDT) 

Tensile creep compliance 
and creep stiffness, Dt and 

S; tensile strength (σt) 

38-50(H) 
150(D) 7.0 -20, -10, 

0 

Moisture 
Induced 

Sensitivity 
Test (MIST) 

TSR 90(H) 
150(D) 7.0 25 
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Simple Performance Tests  

   

Purely elastic materials exhibit their strain response to applied stress in phase, 

that is to say they perfectly correspond with no time lag. A purely viscous 

material exhibits a 90º lag in strain to applied stress, which is known as phase 

angle (δ) and characterizes the extent to which a material is elastic or viscous.  

Asphalt mixtures exhibit viscoelastic material behavior and therefore there is a 

phase angle falling between the two extremes, as graphically presented in 

Figure 3.8. Because of this viscoelastic behavior, asphalt mixtures demonstrate 

both storage and loss (dissipation) of energy.  

 

Figure 3.8 Typical dynamic modulus loading and response (Bonaquist et al. 

2003). 

 

The stress-strain relationship for asphalt mixes under continuous sinusoidal 

loading can be defined by a complex number, E*, which is defined as the ratio 

of the amplitude of the sinusoidal stress of pulsation ω applied to the material σ 

= σosin(ωt) and the amplitude of the sinusoidal stain ε = εosin(ωt-δ) that results 

in a steady state: 
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The modulus of this complex number E* is the dynamic modulus |E*|, where σo 

is the stress amplitude and εo is the recoverable strain amplitude: 

 

o

oE
ε
σ

=*   (3.2) 

 

The dynamic modulus test is a strain controlled test performed as a 100 mm (4 

inch) diameter, 150 mm (6 inch) tall cored cylindrical specimen is subjected to 

a continuous haversine axial compressive load. The test is performed over a 

range of loading frequencies (25, 20, 10, 5, 2, 1, 0.5, and 0.1 Hz) and four 

temperatures (4.4, 21.1, 37.8, and 54°C) according to the proposed standard 

practice in NCHRP report 614 for NCHRP Project 9-29 (Bonaquist 2008).  The 

SPT manufacture by IPC Global of Australia was used to perform the test, 

which is a digital servo hydraulic control testing machine equipped with a 

continuous electronic control and data acquisition system (CDAS). The cored 

cylindrical samples are placed within the machine and affixed with three 

radially mounted linear variable displacement transducers (LVDT). The 

LVDTs measure displacements across a 70 mm gauge length.  Figure 3.9 

shows the setup of the SPT.   
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Figure 3.9 Setup of the SPT. 

 

The FN test is a repeated-load permanent deformation test used to evaluate the 

creep characteristics of HMA as related to permanent deformation. Tests are 

performed by applying a uniaxial compressive load to a 100 mm (4 inch) 

diameter, 150 mm (6 inch) tall cored cylindrical specimen. The compressive 

load is applied in haversine form with a loading time of 0.1 seconds and a rest 

duration of 0.9 seconds for a maximum of 10,000 cycles or until a deformation 

of 50,000 microstrain is reached. In this study, the specimens were tested at 

temperature of 54°C.   

 

Permanent strain of samples used in FN evaluation demonstrates itself in three 

distinct stages. The primary zone is a period of rapid strain accumulation at the 

beginning of the test, followed by the secondary zone which is identifiable by a 

constant accumulated strain rate. As the secondary zone continues and the 

pavement structure breaks down there is eventually a jump to the tertiary zone, 

marked by an increase in strain rate. The point at which the permanent strain 

rate is at its minimum and tertiary flow begins is noted as the flow number for 

that mixture. Figures 3.10 and 3.11 graphically demonstrate this progression of 

permanent strain.  
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Figure 3.10 Typical accumulation of permanent strain in FN test. 
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Figure 3.11 Typical accumulation of permanent strain rate in FN test. 

 

The same SPT used for the |E*| testing is used for FN testing with exclusion of 

the previously mentioned LVDTs. Permanent deformations are measured 

internally by the displacement of the load frame. The CDAS processes 

accumulated strain to a strain rate by the following formula: 

 

( ) n
dt

id
nini Δ−≅ Δ−Δ+ 2/δδδ  (3.3) 

 

where, 
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dδi/dt =  strain rate at logged datum “i” (cycle or second), 

δi+Δn  =  strain at i+Δn samples, 

δi-Δn =  strain at i-Δn samples, and 

Δn  =  sampling interval. 

  

The derivatives are smoothed to ensure proper calculation of the minimum strain 

rate by determining a running average at each point. This eliminates the effects 

of jumps in the data which may cause anomalies. Two points before and after 

and also the point in question are summed and then divided by 5. 

 

( ) 5///// 22 niniinini dtdtdtdt
dt

id
Δ+Δ+Δ−Δ− ++++≅ δδδδδδ  (3.4) 

  

Data is then analyzed on a comparative basis. Mixtures with higher flow 

numbers are more stable mixes which should exhibit less permanent 

deformation in field conditions than mixes with lower flow numbers which are 

deemed as poorer quality mixes.  

 

For simple performance tests, three scenarios of specimens were prepared: 1) 

lab-mixed lab-compacted specimens using raw materials with 4% of air voids 

content (Superpave mix design); 2) field-mixed lab-compacted specimens using 

loose mixtures collected from the field with 4% of air voids content (Superpave 

mix design); and 3) field-mixed lab-compacted specimens using loose mixtures 

collected from the field with 2.5% of air voids content (job mix formula in the 

field).  

 

Rutting Performance Test 

 

The rutting performance of WMA was determined by using the APA according 

to AASHTO TP63-07.  The APA allows for an accelerated evaluation of 
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rutting potential after volumetric design (Skok et al. 2002). Permanent 

deformation (rutting) susceptibility of mixes is assessed by placing a beam or 

cylindrical samples under repetitive wheel loads and measuring the permanent 

deformation. The APA features an automated data acquisition system, which 

obtains rutting measurements and displays these measurements in a numeric 

and/or graphical format.  

 

Specimens of 75±2 mm in height and 150 mm in diameter were fabricated with 

VTM of 7±0.5% and volumetric properties were verified before tests.  Field 

cored samples with diameters of 150 mm were also cut to the required heights 

before testing. For each mix, four specimens (in left and right tracks shown in 

Figure 3.12) were used for the tests.  A test temperature of 58 ºC was selected 

to conform to the climate condition in Alaska area. The APA hose pressure was 

set at 100 psi with a wheel load of 100 lbs and frequency of 60 Hz. A total 

stroke time of 8000 was applied to evaluate rutting susceptibility. 

 

 
Figure 3.12 APA for rutting test. 
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Indirect Tensile Test (IDT) 

 

The IDT device (Figure 3.13) along with an environmental chamber and a 

programmed data acquisition system was used to determine the tensile creep 

stiffness S(t), and tensile strength St according to AASHTO specification T322-

07. The IDT is performed by loading a cylindrical specimen under a uniform 

compressive load, which develops a relatively uniform tensile stress ultimately 

causing the specimen to fail by splitting along the vertical diameters. 

Specimens of 38-50 mm in height and 150 mm in diameter were fabricated 

with VTM of 7±0.5% and volumetric properties were verified before tests.  

Field-cored samples with diameters of 150 mm were also cut to the required 

heights before testing. Tensile creep compliance D(t) of each mixture was 

monitored at three different temperatures at 10°C intervals, i.e. -20, -10 and 

0°C, respectively. At each tested temperature, normalized horizontal and 

vertical deformations from 6 specimen faces (3 specimens, two faces per 

specimen) were measured with LVDTs shown in Figure 3.13.  

 

Creep compliance D(t) of each mixtures were tested and calculated according 

to the test specification as the formula:  

 

( )
Δ × ×

= ×
×

avg avg
cmpl

avg

X D b
D t C

P GL   (3.5) 

 

where, 

D(t)  =  creep compliance (kPa), 

ΔX  =  trimmed mean of the horizontal deformations (meter), 

Davg  =  average specimen diameters (meter), 

bavg  =  average specimen thickness (meter), 

Pavg  =  average force during the test (kN), 

GL  =  gage length (38mm), and 
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Ccmpl  =  creep compliance parameter at any given time, computed as 

 

10.6354 ( ) 0.332−= × −cmpl
XC
Y

 (3.6) 

 

where,  

X  =  horizontal deformation, and  

Y  =  vertical deformation. 

 

     

Figure 3.13 IDT setup.  

 

Creep stiffness S(t) at the time t was calculated as the inverse of the creep 

compliance D(t), i.e.   

 

1( )
( )

S t
D t

=  (3.7) 
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Since creep test is a non-destructive test, further testing was conducted on the 

same set of test specimens to determine the indirect tensile strength by applying 

a load to the specimen at a rate of 12.5mm/min of vertical movement. The 

indirect tensile strength S was calculated by Equation 3.8.  

 

2×
=

× ×
failP

S
b Dπ  (3.8) 

 

where, 

Pfail  =  failure (peak) load,  

b  =  specimen thickness, and 

D  =  specimen diameter. 

 

Moisture Induced Sensitivity Test (MIST) 

 

The MIST, also called retained tensile strength test or TSR test, is conducted to 

measure the change of indirect tensile strength resulting from the effects of 

water saturation and accelerated water conditioning of a freeze-thaw cycle for 

WMA specimens according to AASHTO T283-07. It is intended to evaluate the 

susceptibility of WMA mixtures to the long term stripping.   

 

Specimens of 90±5 mm in height and 150 mm in diameter were fabricated with 

VTM of 7±0.5% and volumetric properties were verified before tests.  Field-

cored samples with diameters of 150 mm were also cut to the height of 55±5 

mm before testing.   At least six specimens were prepared for each mix: three 

as the control set (dry) and the other three as the conditioned set. Specimens for 

dry subset wrapped in plastic bags were placed in a water bath (with a 

temperature of 25±0.5°C) for 2h±10 min with a minimum 25mm of water 

above their surface before measurement of indirect tensile strength.  Specimens 

of the conditioned set were first placed in a vacuum container with a vacuum 
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absolute pressure of 25 in. Hg partial pressure for approximately 5 minutes 

before submerged in water for another 5 minutes. If the degree of saturation 

was between 70-80 percent, water saturated specimens were covered with a 

plastic film and wrapped in a plastic bag. The wrapped conditioned specimens 

were then placed in a freezer at a temperature of -18°C for 16 hours, followed 

by soaking in a water bath water at 60°C for 24 hours. After a complete freeze-

thaw cycle, specimens for conditioned set were tested for their indirect tensile 

strength as that of dry set.  

 

The TSR was then calculated as: 

 

2

1

S
TSR

S
=  (3.9) 

 

where,  

S1  =  average tensile strength of the dry subset, kPa, and 

S2  =  average tensile strength of the conditioned subset, kPa. 
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CHAPTER IV 

 

RESULTS AND ANALYSIS 

 

This chapter summarizes data results and analysis for both binder and mixture 

tests. The constructability of WMAs used in field trials was assessed and the 

correlation between the content of Sasobit additive and Superpave PG and 

stiffness of modified binders were evaluated. Engineering properties of Sasobit 

modified mixtures including dynamic modulus, low-temperature performance, 

rutting susceptibility, and moisture sensitivity were presented as well. 

 

PERFORMANCE OF SASOBIT-MODIFIED BINDERS 

 

Constructability of Sasobit-Modified Binders 

 

The RV was used to evaluate high temperature workability of un-aged asphalt 

binders. High temperature binder viscosity was measured to ensure that the 

asphalt is fluid enough during pumping and mixing. Figure 4.1 illustrates the 

viscosity of Sasobit-modified binders at temperatures ranging from 105ºC to 

165ºC. All binders exhibited the decrease of viscosity with the increase of 

temperature. In addition, viscosity decreased with the increase of Sasobit 

content from 0% to 3% at each test temperature. The mixing and compaction 

temperatures of binders were determined based on Figure 4.1, and summarized 

in Table 4.1, with corresponding viscosities between 0.15 and 0.2 Pa.s, and 

between 0.25 and 0.3 Pa.s, respectively.  It can be seen from Table 4.1 that the 

addition of Sasobit decreased both mixing and compaction temperatures. 

Compared with the control binder without Sasobit addition, the addition of 3% 

Sasobit contributed to a decrease of more than 15ºC in mixing temperature and 

a decrease of 13ºC in compaction temperature. It was consistent with a well-

accepted statement that Sasobit is an “asphalt flow improver” both during the 
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asphalt mixing process and during laydown operations, due to its ability to 

lower the viscosity of the asphalt binder (Damm et al. 2002, Hurley and 

Prowell 2005a, Wasiuddin et al. 2007). 

 
Figure 4.1 Viscosity of Sasobit-modified binders. 

 
Table 4.1 Mixing and compaction temperatures of Sasobit-modified binders 

Sasobit 
(%) 

Mixing  
Temp (ºC) 

(Viscosity 0.15~0.20 Pa.S) 

Compaction  
Temp (ºC)  

(Viscosity 0.25~0.30 Pa.S) 
0 160~170 146~153 

0.8 151~160 139~144 
1.5 148~158 137~142 
3.0 146~155 135~139 

 

PG of Sasobit-Modified Binders 

 

Results of Superpave binder tests are summarized in Table 4.2. Detailed testing 

results are presented in the Appendix. The direct tension strain data were not 

available, because based on the specification, the direct tension strain is only 

necessary when m-value requirement is satisfied but the creep stiffness 

requirement is not. The direct tension test is not required if the creep stiffness is 

less than 300 MPa. As shown in Table 4.2, for different Sasobit contents, the 
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PG high temperature ranged from 58ºC to 76ºC, while low temperature ranged 

from -28ºC to -16ºC. With the increase of Sasobit content from 0% to 3%, the 

high temperature end of asphalt PG increased from 58 to 76, however, the low 

temperature end also increased from -28ºC to -16ºC. Similar impacts of Sasobit 

addition on binder PG can be found from other researchers’ studies (Hurley and 

Prowell 2005a, Wasiuddin et al. 2007, Austerman et al. 2009).  

 

Table 4.2 Summary of Superpave binder test results 
Grade Temp (ºC) 

for DSR 
Grade Temp 
(ºC) for BBR PG Grade Sasobit 

(%) 

Mass 
Loss 
(%) 

Viscosity 
@135ºC Origin RTFO PAV BBR- 

S 
BBR-

m 
High Low 

0 0.47 0.433 58 64 19 -18 -18 58 -28 
0.8 0.41 0.491 70 64 22 -12 -12 64 -22 
1.5 0.26 0.445 70 70 22 -12 -12 70 -22 
3.0 0.17 0.392 76 76 25 -6 -6 76 -16 

 

Figure 4.2 illustrates PGs of Sasobit-modified binders. According to Superpave 

specification, a PG 58-28 binder (control binder) is intended for use in an 

environment where an average seven-day maximum pavement temperature of 

58ºC and a minimum pavement design temperature of -28ºC, are likely to be 

experienced. A PG 76-16 binder (modified with 3% Sasobit) is intended for use 

in an environment where an average seven-day maximum pavement 

temperature of 76°C and a minimum pavement design temperature of -16°C, 

are likely to be experienced, etc. Since the Superpave asphalt binder 

specification is meant to be performance based, it addresses three primary 

performance parameters of asphalt pavements: permanent deformation 

(rutting), fatigue cracking, and low temperature (thermal) cracking.  
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Figure 4.2 PGs of Sasobit-modified binders. 

 

Effects of Sasobit on Rutting Performance of Binders 

 

The Superpave binder specification uses a rutting factor, G*/sinδ, as a measure 

of asphalt binder’s stiffness or rutting resistance at high pavement service 

temperature. The testing results of G*/sinδ for both original and RTFO aged 

binders are illustrated in Figures 4.3 and 4.4, respectively. For both conditions, 

the rutting factor increased with the increase of Sasobit addition, and the 

increment became more significant at higher percentage of Sasobit content. The 

high temperature of PG is determined based on that the G*/sinδ must be at least 

1.00 kPa for the original asphalt binder and a minimum of 2.20 kPa for the 

RTFO aged asphalt binder when tested by DSR. With the increase of Sasobit 

content from 0%, 0.8%, 1.5% to 3%, accordingly, high temperature of PG 

increased from 58ºC, 64ºC, 70ºC to 76ºC, indicating improved rutting 

resistance of binders with the addition of Sasobit. This conformed to other 

researchers’ findings (Wasiuddin et al. 2007, Kanitpong et al. 2007, Biro et al. 

2009). 
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              Figure 4.3 Rutting factor of original Sasobit-modified binders. 

 

RTFO

0

5

10

15

20

25

55 60 65 70 75 80 85
Temperature  ( OC )

G
* /

 S
in

 0
 (k

Pa
)

0%
0.8%
1.5%
3.0%

66 68 71.5 77.8

2.2

 
                  Figure 4.4 Rutting factor of RTFO aged Sasobit-modified binders. 

 

Effect of Sasobit on Fatigue Resistance of Binders 

 

The specification uses a fatigue factor, G*sinδ, which represents asphalt 

binder’s resistance to fatigue cracking. The specification has a maximum limit 

of 5000 kPa for G*sinδ for the binder subjected to PAV aging, and tested at 
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intermediate pavement service temperature. Figure 4.5 illustrates the results of 

G*sinδ as a function of temperature for PAV aged binders.  It can be seen that 

the G*sinδ increased with the increase of Sasobit addition. The additions of 

0.8% and 1.5% Sasobit showed very close increment compared with the control 

binder without Sasobit addition. The binder with 3% Sasobit provided highest 

increment of G*sinδ. In addition,  the intermediate pavement service 

temperature increased with the increase of Sasobit addition. Kanitpong et al. 

(2007) found that Sasobit-modified binders have better fatigue resistance. 

However, our results shown in Figure 4.5 implied higher fatigue factor at same 

intermediate temperature, and associated reduced resistance to fatigue cracking.  
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          Figure 4.5 Fatigue factor of PAV aged Sasobit-modified binders. 

 

Effect of Sasobit on Low Temperature Performance of Binders 

 

A lower creep stiffness and a higher m-value of PAV aged binder at a low 

temperature usually mean a higher resistance to low temperature cracking of 

pavement materials. Figures 4.6 and 4.7 illustrate creep stiffness and m-value 

of PAV aged binders by BBR tests. With the increase of Sasobit content, creep 

stiffness increased while m-value decreased, indicating that Sasobit addition 

increases the tendency for low temperature cracking of the base asphalts. This 
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result was not consistent with Gandhi and Amirkhanian (2008)’s results which 

showed the Sasobit additive did not have any significant effect on the fatigue 

cracking parameter (G*sinδ) or the creep stiffness of the binders. 
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Figure 4.6 Creep stiffness of PAV aged Sasobit-modified binders. 
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Figure 4.7 m-value of PAV aged Sasobit-modified binders. 
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PERFORMANCE OF SASOBIT-MODIFIED MIXTURES 

 

Simple Performance Tests  

 

Volumetric properties of Sasobit-modified mixtures were verified before tests 

and the results are summarized in Table 4.3. The VTM (%) of laboratory 

mixtures met the design criteria, i.e. 4±0.5% air voids for SPT specimens.  

Specimens were also compacted using loose mixtures collected from the field 

with two different VTMs: 1) 4% to be consistent with that those lab-mixed lab-

compacted specimens; and 2) 2.5% to be consistent with that in the job mix 

formula for the field mix.  

 

Table 4.3 Volumetric properties for SPT specimens 

Mix Name Control Mix Sasobit Mix 1
(0.8%) 

Sasobit Mix 2
(0.8%) 

Sasobit Mix 3 
(0.8%) Field 2% Field 4%

Gmm 2.6792 2.6763 2.6626 2.6517 2.6237 2.6237 
Sasobit content 0 0.80% 1.50% 3.00% 1.50% 1.50% 

SPT Specimens 
Gmb 2.5557 2.5553 2.5545 2.5421 2.5702 2.5237 

VTM(%) 4.61 4.52 4.06 4.13 2.05 3.82 
VMA(%) 13.53 13.55 13.57 13.99 11.87 13.46 
VFA(%) 65.94 66.62 70.09 70.46 82.72 71.61 
STD(s) 0.43% 0.35% 0.23% 0.11% 1.80% 0.07% 

 

Dynamic Modulus (|E*|) 

 

Figure 4.8 illustrates the curves of |E*| versus loading frequency in logarithm at 

four test temperatures for all mixes. Results showed that ay any loading 

frequency, the |E*| decreased with an increase in temperature for any mix. 

Under constant temperature, the |E*| increased with the increase of loading 

frequency. It is clear that the |E*| is dependent of both temperature and loading 

frequency.  
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(b) Field mix (4% VTM) 
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(c) Control mix 
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(d) 0.8% Sasobit mix 
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(e) 1.5% Sasobit mix 
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(f) 3.0% Sasobit mix 

Figure 4.8 |E*| of SPT mixtures. 
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Figure 4.9 illustrates the measured |E*| of all mixtures at different temperatures. 

In general, higher Sasobit content contributed to higher |E*| value. In addition, 

this trend (or the effect of Sasobit addition on the |E*|) was more significant at 

higher temperatures for lab-mixed lab-compacted mixtures. At lower test 

temperatures (i.e. 4.4°C and 21.1°C) as shown in Figures 4.9 (a) and (b), lower 

Sasobit addition (i.e. 0.8% and 1.5%) did not change |E*| value compared with 

the control mixture, while 3% Sasobit addition significantly increased the |E*| 

value. At higher temperatures (i.e. 37.8°C and 54°C) as shown in Figures 4.9 

(c) and (d), the |E*| increased with the increase of Sasobit content from 0% to 

3%. Therefore, the |E*| value was more sensitive to Sasobit addition at higher 

temperatures.  

 

It is generally accepted that low |E*| values at low and intermediate 

temperatures are beneficial for an asphalt mixture to resist low temperature and 

fatigue cracking, whereas high |E*| values at high temperatures are desirable for 

rutting resistance. According to the |E*| results, it appears that the addition of 

Sasobit was beneficial to the rutting resistance of the mixtures with an increase 

of |E*| value at higher temperatures (i.e. 37.8°C and 54°C) and was not to 

resistances to low temperature and fatigue cracking because of higher |E*| 

values at low and intermediate temperatures (i.e. 4.4°C and 21.1°C). More 

performance tests are needed to evaluate the contribution of Sasobit addition, as 

presented later.  
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(b) 21.1°C 
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(c) 37.8°C 
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(d) 54°C 

Figure 4.9 |E*| of mixes at different temperatures.   

 

The field mixtures (field-mixed lab-compacted specimens) with both 2% and 

4% of VTMs showed very close |E*| values. In addition, their |E*| values were 

the highest at higher temperatures (i.e. 37.8°C and 54°C).   At the lowest 

temperature (i.e. 4.4°C), the |E*| values of field-mixed lab-compacted mix 

modified with 1.5% Sasobit were very close to those of lab-mixed lab-

compacted mix modified with same Sasobit addition. However, with the 

increase of temperature, field-mixed lab-compacted mix presented higher |E*| 

values at all loading frequencies. The difference between their |E*| values 

became most significant at the highest temperature (i.e. 54°C). 

 

Phase angle (δ) 

 

Figure 4.10 illustrates the measured phase angle (δ) of mixtures with the 

change of loading frequency at different temperatures. Phase angle (δ) is an 

angle in degrees between a sinusoidal applied stress and the resulting strain in a 

controlled stress |E*| test. δ is primarily employed to estimate viscoelastic 

property of mixtures. It exhibits purely elastic behavior for δ value of 0°, purely 

viscous behavior for δ value of 90° and viscoelastic behavior in between for 
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most asphalt mixtures in practice. Results showed that for all mixtures, at lower 

and intermediate temperatures of 4.4°C and 21.1°C (Figures 4.10 (a) and (b)), δ 

decreased with an increase in loading frequency, but increased at higher 

temperatures of 37.8°C and 54°C (Figures 4.10 (c) and (d)). In addition, at any 

temperature and loading frequency, δ value of lab-mixed lab-compacted 

mixtures (Superpave mix design with 4% of air voids content) decreased with 

the increase of Sasobit content.  
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(d) 54°C 

Figure 4.10 Phase Angel (δ) at different temperatures.   

 

As for the field mixtures (field-mixed lab-compacted specimens), at lower 

temperatures, the mix with 4% VTM showed lower δ values than that with 2% 

VTM. However, with the increase of the temperature, the former presented 

higher δ values, indicating its more viscous behavior than the latter.  At any 

temperature, the δ value of field-mixed lab-compacted mix modified with 1.5% 

Sasobit (4% VTM) was lower than that of lab-mixed lab-compacted mix 

modified with same Sasobit addition (4% VTM). This was also consistent with 

the comparison of their |E*| values.   
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Flow Number (FN) 

 

Flow number (FN) test is a laboratory approach to determine the permanent 

deformation characteristics (rutting performance) of paving materials by 

applying a repeated dynamic load. As introduced in Chapter III, the FN of the 

mixture is defined as the starting point (or the minimum strain rate) in cycle 

number, at which tertiary flow occurs on a cumulative permanent strain curve 

during the test. Figure 4.11 illustrates FN and associated microstrain values of 

mixtures at test temperature of 54°C, where “Field VTM 2%” stands for field-

mixed lab-compacted specimens with 2.5% of air voids content (job mix 

formula in the field), and “Field VTM 4%” stands for field-mixed lab-

compacted specimens with 4% of air voids content (Superpave mix design). 

For all lab-mixed lab-compacted specimens using raw materials with 4% of air 

voids content (Superpave mix design), FN increased with the increase of 

Sasobit content. Mixtures with higher FNs are more stable mixes which should 

exhibit less permanent deformation in field conditions. Therefore Sasobit 

addition provided better rutting performance of mixes, which was consistent 

with the result for Sasobit-modified binders. Field mixture with 2.5% of VTM 

showed the highest FN value of 2104 among all mixtures. Field mixture with 

4% of VTM also had higher FN value (906) compared with that of lab-mixed 

lab–compacted mixture with raw materials (390) with same design air voids 

and Sasobit addition (1.5%). It may be because of stiffer mixes prepared with 

loose mixtures, which was correlated with their higher |E*| values shown in 

Figure 4.9 (d). 
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Figure 4.11 FNs and associated microstrains of mixtures. 

 

Rutting Performance 

 

Rutting performance of laboratory prepared specimens using raw materials and 

field core samples was evaluated by the APA according to AASHTO TP63-07 

at the temperature of 58°C. Volumetric properties of Sasobit-modified mixtures 

were verified before tests and the results are summarized in Table 4.4. Results 

show that VTM (%) of laboratory mixtures meets the design criteria, i.e. 

7±0.5% air voids for APAspecimens. 
 

Table 4.4 Volumetric properties for APA specimens 
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Results from APA test are illustrated in Figure 4.12. It can be seen that with the 

increase of Sasobit content from 0% to 3%, rutting depth of lab-mixed lab-

compacted specimens decreased from 4.222mm to 2.643mm accordingly, 

indicating improved rutting resistance of mixtures with the addition of Sasobit. 

It conformed to FN results presented above. It was also consistent with 

Kanitpong et al. (2007)’s APA test result. In addition, the rutting depth of the 

field-cored samples (3.788 mm) was higher than that of lab-mixed lab-

compacted specimens with same 1.5% of Sasobit content (2.849 mm).  

 

 
Figure 4.12 APA rutting depths for all mixtures. 

 

Low Temperature Performance  

 

Low temperature performance of mixtures including their tensile creep stiffness 

S(t), and tensile strength S was evaluated according to AASHTO specification 

T322-07 by the IDT. Volumetric properties of IDT specimens were verified 

before test and results are summarized in Table 4.5. Results show that VTM 

(%) of lab-mixed lab-compacted mixtures using raw materials meets the design 

criteria, i.e. 7±0.5% air voids for IDT specimens. Field-cored samples showed 

lower VTM.  
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Table 4.5 Volumetric properties for IDT specimens 

 
 

Tensile strength is a general accepted measuring factor for asphalt mix for their 

low temperature cracking resistance. Higher tensile strength at low 

temperatures indicates higher resistance to thermal cracking. As show in Figure 

4.13, tensile strength of all mixes increased with the decrease of temperature 

because of its corresponding higher elastic property under lower temperature. 

For all laboratory prepared specimens, tensile strength decreased with the 

increase of Sasobit content at all testing temperatures, which indicated 

degraded resistance to low temperature cracking. This observation was 

consistent with that of Sasobit-modified binders as discussed previously. Field-

cored samples presented highest tensile strengths probably due to the 

contribution of lower VTM to the tensile strength of mixtures.  

 
Figure 4.13 Tensile strengths of mixes at different temperatures. 
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Figure 4.14 compares creep stiffness S(t) of all mixes as a function of loading 

time under three temperatures, i.e. 0°C, -10°C and -20°C. In general, creep 

stiffness increased with the decrease of temperature, which was correlated to 

the trend of tensile strength over temperature. At testing temperature of 0°C, 

creep stiffness increased with the decrease of Sasobit content. However, large 

variability of creep stiffness was observed with the change of Sasobit content at 

lower temperatures. When test temperature dropped to -10°C, 0.8% Sasobit 

addition provided highest creep stiffness; while at temperature of -20°C, mix 

with 1.5% Sasobit content had the highest creep stiffness. Field mixture 

presented the lowest creep stiffness at all testing temperatures, which was 

different from its performance in tensile strength.  
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Figure 4.14 Creep stiffness of mixes at different temperatures.  

 

Moisture Sensitivity 

 

The effect of Sasobit on moisture susceptibility of mixes was evaluated by the 

MIST according to AASHTO T283-07. The volumetric properties were 

verified and summarized for MIST specimens in Table 4.6. Results showed that 

VTM (%) of laboratory prepared mixtures meets the design criteria, i.e. 

7±0.5% air voids content. Field-cored samples showed 5.9% of VTM.  
 

Table 4.6 Volumetric properties for MIST specimens 

 
 
Table 4.7 summarizes the detailed results of MIST and Figure 4.15 illustrates 

the TSR results.  The test results exhibited almost no difference in their tensile 

strength for all laboratory mixes in dry condition. However, TSR value slightly 

increased with the increase of Sasobit content from 0% to 3%, indicating 
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slightly better resistance to moisture susceptibility with the addition of Sasobit 

content.  The TSR values of field mix and laboratory mix with the same Sasobit 

content of 1.5% were very close. Although there was a concern of increased 

susceptibility to moisture damage due to Sasobit addition from previous studies 

(Wasiuddin et al. 2008), the results from this study indicated at least the addition 

of Sasobit did not contribute to moisture damage of WMA compared with the 

control mix. Other studies also showed Sasobit performed well or had no 

significant influences in terms of moisture susceptibility (Hurley and Prowell 

2005a, Kanitpong et al. 2007, Xiao et al. 2009). 

 
Table 4.7 Tensile strength and TSR (%) of MIST specimens. 

 
 

 
Figure 4.15 Moisture sensitivity of mixes. 

 



61 

CHAPTER V 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

In line with the Sasobit WMA demonstration project conducted in Southeast 

Alaska, this study focused on evaluating performance of WMA binders and 

mixes in the laboratory. This chapter presents the summary of research findings 

as well as recommendations regarding the feasibility of using WMA for Alaska 

conditions and future work.   

 

CONCLUSIONS 

 

The following conclusions could be made from this study: 

 

• The addition of Sasobit reduced both mixing and compaction temperatures 

of mixes. Compared with control binder without Sasobit addition, the 

addition of 3% Sasobit contributed to a decrease of more than 15ºC in 

mixing temperature and a decrease of 13ºC in the compaction temperature.  

• The Sasobit addition significantly impacted the PG of binders. With the 

increase of Sasobit content from 0% to 3%, the high temperature end of 

asphalt PG increased from 58 to 76, however, the low temperature end also 

increased from -28ºC to -16ºC as well. Results from binder tests implied 

that Sasobit improved rutting resistance but deteriorated resistances to both 

fatigue and low temperature cracking.   

• The SPT results showed that for lab-mixed lab-compacted mixtures, |E*| 

value increased with the increase of Sasobit content. This trend (or the 

effect of Sasobit addition on the |E*|) was more significant at higher 

temperatures. The field-mixed lab-compacted mixtures with both 2% and 

4% of VTMs showed very close |E*| values. At the lowest temperature (i.e. 

4.4°C), the |E*| values of field-mixed lab-compacted mix modified with 
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1.5% Sasobit were very close to those of lab-mixed lab-compacted mix 

modified with same Sasobit addition. However, with the increase of 

temperature, field-mixed lab-compacted mix presented higher |E*| values at 

all loading frequencies. The difference between their |E*| values became 

most significant at the highest temperature (i.e. 54°C). 

• The results of δ values of mixtures were consistent with the comparison of 

their |E*| values. At any temperature and loading frequency, δ value of lab-

mixed lab-compacted mixtures (Superpave mix design with 4% of air voids 

content) decreased with the increase of Sasobit content. As for the field-

mixed lab-compacted specimens, at lower temperatures, the mix with 4% 

VTM showed lower δ values than that with 2% VTM. However, with the 

increase of the temperature, the former presented higher δ values, indicating 

its more viscous behavior than the latter.  At any temperature, the δ value of 

field-mixed lab-compacted mix modified with 1.5% Sasobit (4% VTM) 

was lower than that of lab-mixed lab-compacted mix modified with same 

Sasobit addition (4% VTM). 

• Mixtures with higher FNs are more stable mixes which should exhibit less 

permanent deformation in field conditions. For all lab-mixed lab-compacted 

specimens with 4% of air voids content (Superpave mix design), FN 

increased with the increase of Sasobit content. Therefore Sasobit addition 

provided better rutting performance of mixes, which was also consistent 

with the result for Sasobit-modified binders. Field-mixed lab-compacted 

mixture had higher FN value compared with that of lab-mixed lab–

compacted mixture with same design air voids (4% of VTM) and same 

Sasobit addition (1.5%). 

• For all lab-mixed lab-compacted specimens, the increase of Sasobit content 

from 0% to 3% produced reduced rutting depth from 4.222 mm to 2.643 

mm accordingly, indicating improved rutting resistance of mixtures with 

the addition of Sasobit. It conformed to |E*| and FN results from the SPT, 

and it was also consistent with other researchers’ findings. In addition, the 
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rutting depth of the field-cored samples was higher than that of laboratory 

prepared specimens with same 1.5% of Sasobit content.  

• For all laboratory prepared specimens, tensile strength decreased with the 

increase of Sasobit content at all testing temperatures, which indicated 

degraded resistance to low temperature cracking. This observation was 

consistent with that of Sasobit-modified binders. Field cored samples 

presented highest tensile strengths probably due to the contribution of lower 

VTM to the tensile strength.  

• The MIST results exhibited slightly increased TSR values of lab prepared 

mixes with the increase of Sasobit content from 0% to 3%.  The TSR values 

of field mix and laboratory mix with the same Sasobit content of 1.5% were 

very close. The results from this study indicated at least the addition of 

Sasobit did not contribute to moisture damage of WMA compared with the 

control mix.  

 

RECOMMENDATIONS 

 

Laboratory investigation of Sasobit-modified binders and WMAs in this study 

identified a lot of engineering benefits of WMAs using Sasobit over traditional 

HMA. WMAs using Sasobit with reduced mixing and compaction 

temperatures, improved workability and rutting resistance, and insignificant 

effect on moisture susceptibility favorably indicated the suitability of this 

WMA technology for Alaska conditions. The IDT results showed degraded 

resistance to low temperature cracking of WMA using Sasobit in this study. 

However, the effects of Sasobit on low temperature cracking would depend on 

the specific conditions to which the mixture is exposed. Additional tests at 

lower temperatures, along with a more complete thermal cracking analysis for 

specific environments of interest should be performed to get a more definitive 

answer regarding the effects of Sasobit on low temperature cracking. 
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The limited tests of field specimens in this study generally displayed higher 

variance/ inconsistency in results than those of lab-mixed lab-compacted 

specimens. Therefore, closer correlation between lab results and field 

performance data should be sought in the future study. Studies should include 

long-term performance and associated life cycle cost analyses. 
 
Since the field demonstration project of WMA using Sasobit was constructed in 

2008 in Southeast of Alaska, another two field trials in both central and northern 

regions of Alaska used WMA technologies (Double Barrel Green and 

Evotherm) in the 2009 paving season.  It is expected that WMA use will 

increase in future Alaskan paving projects. In addition, in order to address 

challenges from increased demands for environmental friendly paving mixtures 

and increasing costs of raw materials, other WMA applications in Alaska such 

as incorporating WMA additives to RAP and crumb rubber asphalt mixture are 

needed to be investigated. 

  

WMA technologies are new, and most are proprietary. The NCHRP has 

currently several major completed/on-going research projects (projects 09-43, 

09-47, and 09-47A) that are evaluating different aspects of WMA technologies 

including mixture design, performance testing, field construction, emission 

measurement, etc. The National Asphalt Paving Association (NAPA) and 

NCAT in cooperation with FHWA have spent a lot of research efforts as well.  

There are also a lot of completed/on-going research projects funded by different 

state highway agencies and private industries to evaluate these new 

technologies. However, nationally coordinated studies are still needed to answer 

lots of questions regarding the implementation of WMA technologies, especially 

long-term performance, cost analysis, specifications and quality control.   
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APPENDIX – PG Tests of Binders 
 

 
Table 1 Data summary of control binder 

 
Binder Parameters  Specification Temperature 

Measured 
Measured 

Parameters 
Pass/Fail 

Viscosity at 135ºC 3 Pa·s, Max 135 ºC 0.433 Pass 
58 ºC 2.0723KPa Pass 
64 ºC 0.9871 KPa Fail Original DSR G*/Sinδ 1.0 kPa, Min. 
70 ºC 0.7228 KPa Fail 

Mass Loss 1%, Max 163 ºC 0.47% Pass 
58 ºC 4.3172 KPa Pass 
64 ºC 3.0646 KPa Pass 

RTFO 
aged DSR G*/Sinδ 2.2 kPa, Min 

70 ºC 1.1682 KPa Fail 
13 ºC 6502KPa Fail 
16 ºC 4835KPa Pass DSR G*Sinδ 5000 kPa, Max
19 ºC 3355KPa Pass 
-6 ºC 22.14 MPa Pass 
-12 ºC 103.5 MPa Pass 
-18 ºC 226.5 MPa Pass 

BBR-Creep 
stiffness (S) 300 MPa, Max 

-24 ºC 558 MPa Fail 
-6 ºC 0.4315 Pass 
-12 ºC 0.3595 Pass 
-18 ºC 0.3005 Pass 

PAV 
aged 

BBR-m-value 0.300, Min 

-24 ºC 0.21 Fail 
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Table 2 Data summary of binder modified with 0.8% Sasobit 
 

Binder Parameters Specification Temperature 
Measured 

Measured 
Parameters 

Pass/Fail 

Viscosity at 
135ºC 3 Pa·S, Max 135 ºC 0.491 Pass 

58 ºC 3.8278KPa Pass 
64 ºC 2.0337KPa Pass 
70 ºC 1.0850KPa Pass 

Original 
DSR G*/Sinδ 1.0 kPa, Min. 

76 ºC 0.6298KPa Fail 
Mass Loss 1%, Max 163 ºC 0.41% Pass 

58 ºC 7.2419 KPa Pass 
64 ºC 3.6027KPa Pass 
70 ºC 1.8473KPa Fail 

RTFO 
aged DSR G*/Sinδ 2.2 kPa, Min 

76 ºC 0.9900KPa Fail 
19 ºC 5510KPa Fail 
22 ºC 3814KPa Pass DSR G*Sinδ 5000 kPa, Max
25 ºC 2628KPa Pass 
-6 ºC 71.65MPa Pass 
-12 ºC 160 MPa Pass BBR-Creep 

stiffness (S) 300 MPa, Max 
-18 ºC 282.5 MPa Pass 
-6 ºC 0.3670 Pass 
-12 ºC 0.3125 Pass 

PAV 
aged 

BBR-m-value 0.300, Min 
-18 ºC 0.272 Fail 
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Table 3 Data summary of binder modified with 1.5% Sasobit 
 

Binder Parameters Specification Temperature 
Measured 

Measured 
Parameters 

Pass/Fail 

Viscosity at 
135ºC 3 Pa·S, Max 135 ºC 0.445 Pass 

58 ºC 3.8523KPa Pass 
64 ºC 2.0344KPa Pass 
70 ºC 1.0888KPa Pass 

Original 
DSR G*/Sinδ 1.0 kPa, Min. 

76 ºC 0.6287KPa Fail 
Mass Loss 1%, Max 163 ºC 0.26% Pass 

58 ºC 10.7444 KPa Pass 
64 ºC 5.4831KPa Pass 
70 ºC 2.7777KPa Pass 

RTFO 
aged DSR G*/Sinδ 2.2 kPa, Min 

76 ºC 1.4787KPa Fail 
19 ºC 5730KPa Fail 
22 ºC 4121KPa Pass DSR G*Sinδ 5000 kPa, Max
25 ºC 2708KPa Pass 
-6 ºC 63.90MPa Pass 
-12 ºC 135.50 MPa Pass BBR-Creep 

stiffness (S) 300 MPa, Max 
-18 ºC 249 MPa Pass 
-6 ºC 0.3570 Pass 
-12 ºC 0.3020 Pass 

PAV 
aged 

BBR-m-value 0.300, Min 
-18 ºC 0.2720 Fail 
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Table 4 Data summary of binder modified with 3.0% Sasobit 
 

Binder Parameters Specification Temperature 
Measured 

Measured 
Parameters 

Pass/Fail 

Viscosity at 
135ºC 3Pa·S, Max 135 ºC 0.392 Pass 

58 ºC 6.4579KPa Pass 
64 ºC 3.3371KPa Pass 
70 ºC 1.5516KPa Pass 
76 ºC 1.0790KPa Pass 

Original 

DSR G*/Sinδ 1.0 kPa, Min. 

82 ºC 0.6600KPa Fail 
Mass Loss 1%, Max 163 ºC 0.17% Pass 

58 ºC 20.2569KPa Pass 
64 ºC 10.3197KPa Pass 
70 ºC 5.0488KPa Pass 
76 ºC 2.6025KPa Pass 

RTFO 
aged DSR G*/Sinδ 2.2 kPa, Min 

82 ºC 1.3918KPa Fail 
19 ºC 7256KPa Fail 
22 ºC 5438KPa Fail DSR G*Sinδ 5000 kPa, Max
25 ºC 4043KPa Pass 
-6 ºC 88.33MPa Pass 
-12 ºC 166 MPa Pass BBR-Creep 

stiffness (S) 300 MPa, Max 
-18 ºC 310MPa Fail 
-6 ºC 0.3010 Pass 
-12 ºC 0.2715 Fail 

PAV 
aged 

BBR-m-value 0.300, Min 
-18 ºC 0.2470 Fail 
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