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Abstract

The thinning of the near-Earth current sheet during the growth phase of magnetospheric 
substorms is a fundamental problem of space physics. It is a characteristic of the slow, 
steady evolution of the magnetosphere during the growth phase, during which the bulk 
kinetic energy of the solar wind is transformed into and stored as magnetic field energy in 
the magnetotail lobes. The thin near-Earth current sheet at the end of the growth phase 
provides the conditions for the onset of the expansion phase, and is fundamentally important 

to understand the physical mechanism for the onset of the rapid evolution during which the 
stored energy is released.

I propose that current sheet thinning occurs because of the evacuation of a ‘magnetic 
flux reservoir’ in the near-Earth magnetotail by convection to replace magnetic flux that 
is eroded on the dayside by magnetic reconnection. My hypothesis is able to predict basic 
properties of current sheet thinning, such as the location, temporal evolution, and dynamics 
of this process.

I examined this new mechanism both conceptually and quantitatively. My conceptual 
considerations enabled the prediction of the location and duration of current sheet thinning. 
This location is largely independent of the detailed state of the magnetosphere. I examined 
this mechanism quantitatively through the use of a three-dimensional ideal MHD simulation. 
I was able to predict the duration of the growth phase by considering the time needed to 
deplete our proposed ‘magnetic flux reservoir.’ The simulation demonstrates the global 
increase of the current density in this reservoir, despite the removal of magnetic flux— 
which one would otherwise expect to lead to a decrease of current—as well as even greater 
local amplifications of the current density. The simulation results are even more significant 
because the model does not include other effects of the real magnetosphere that contribute 
to a further increase of the tail current. The increase in current density and thinning are 
found to be consistent with the amount of flux removed from the system. In addition, I 
have found a new explanation for the very thin bifurcated current sheets that have been 

reported in recent publications.
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Chapter 1 
Introduction

1.1 Fundamental Concepts

This dissertation describes a model for current sheet thinning in the late growth phase 
of magnetospheric substorms. The development of this model is motivated by questions 
surrounding the identity and nature of the trigger of the substorm expansion phase. In 
order to allow for greater appreciation of the nature of these questions, it behooves me to 
first review some basic properties of the magnetosphere and its dynamics.

The terrestrial magnetosphere is a fascinating, and reasonably accessible, natural lab
oratory for a variety of plasma physics processes. It is formed through the interaction of 
Earth’s intrinsic dipolar magnetic field and the interplanetary magnetic field (IMF) that 
is embedded in the solar wind, a stream of plasma flowing outward from the Sun. This 
interaction compresses Earth’s magnetic field on the sunward side and draws it out into a 
long tail in the anti-sunward direction.

The terrestrial magnetosphere is depicted schematically in Figure 1.1. The magne
topause is a current layer that serves as the outer boundary of the magnetosphere proper; 
the plasmas and current systems of the magnetosphere lie within the volume defined by 
this boundary. The near-Earth portions of the magnetosphere, such as the plasmasphere, 
are dominated by Earth’s largely dipolar magnetic field. The volume of the magnetosphere 
is dominated by the magnetotail, the roughly cylindrical low-density region stretching anti- 
sunward for hundreds of Earth radii. [Earth’s radius (6378 km) is a convenient unit of length 
in terrestrial magnetospheric physics. It is denoted by the symbol R e -} The magnetotail is 
divided into two lobes (north and south) with oppositely directed magnetic fields (sunward 
in the northern lobe, anti-sunward in the southern lobe). A current sheet, consisting of 
westward-directed current lying in the equatorial plane of the magnetotail, separates the 
oppositely directed magnetic fields in the two lobes. The charge carriers that maintain this 
current sheet are supplied by the plasma sheet, within which the current sheet is embedded.

Field-aligned currents link portions of the magnetosphere with the auroral ovals, the 
annular regions of the atmosphere surrounding the magnetic poles in which the aurora 
are observed. These field-aligned currents communicate changes in the state of the mag
netosphere to the auroral ionosphere. Similarly, changes in the auroral ionosphere are
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Figure 1.1. Schematic view of the terrestrial magnetosphere. A cut-away 3D view of the 
magnetosphere. [Crooker et al., 1999].
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communicated to the remainder of the magnetosphere through these field-aligned currents.
Various authors (e.g., McPherron [1972], Baker and Pulkkinen [1991]) note the impor

tance of the near-Earth magnetotail (extending from roughly 6  R e to ~  15 Re downtail) 
for both magnetospheric structure and dynamics. It is in this region that the magnetic field 
makes a transition from the largely dipolar configuration of the inner magnetosphere to the 
geometry of the magnetotail. This near-Earth region of the magnetotail is also the location 
for some of the important features of magnetospheric dynamics which will be a focus of this 
dissertation.

Earth’s magnetosphere is continuously interacting with the solar wind, exchanging mass, 
momentum, and energy therewith. The resulting dynamics are extraordinarily complex; but 
researchers have learned much through the years (especially since the advent of the Space 
Age). Of particular interest for this work is the identification of a sequence of changes in 
the auroral ionosphere and the magnetosphere known as a magnetospheric substorm.

The magnetospheric substorm can be considered a fundamental process of magneto
spheric dynamics. It consists of three phases: growth, expansion, and recovery. A ‘classi
cal’ substorm begins with the southward turning of the IMF. A portion of the bulk kinetic 
energy of the solar wind incident on the magnetosphere is transformed into magnetic field 
energy through the process of magnetic reconnection at the dayside magnetopause. This 
energy is stored as enhanced magnetic field energy in the magnetotail lobes until this storage 
is disrupted with the onset of the expansion phase.

The accumulated energy stored during the growth phase is released in an explosive 
fashion during the expansion phase of the substorm. Some of this energy is dissipated 
through the auroral ionosphere, while some of it is expelled down the magnetotail (in the 
anti-sunward direction) in a plasmoid, a bubble of plasma with magnetic field lines detached 
from Earth. The configuration of the magnetosphere returns to its ‘ground state’ during 
the recovery phase of the substorm. The growth and expansion phases each last 30 to 60 
minutes, while the recovery phase occurs over a period of one to two hours.

The process or processes responsible for the transition from the growth phase to the 
onset of the expansion phase are of great interest because they lead to the release of the 
energy that had been stored in the magnetosphere during the growth phase. The nature 
of these processes might also help to explain some of the dramatic differences between
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the growth and expansion phases. The magnetosphere evolves relatively slowly during the 
growth phase, especially when compared to its evolution during the expansion phase.

The evolution of the magnetosphere during the growth phase has been modeled as being
slow, as outlined below. These characteristics render the growth phase suitable for study

the fast-mode transit time across the magnetosphere.
For this reason, the thinning of the current sheet observed in the near-Earth magnetotail

from ~  9 Re to ~  15 Re downtail [e.g., Sergeev et al. [1988], Sergeev et al. [1990]]. Further 
insight into the nature of this central aspect of growth phase dynamics represents a major 
advance in our understanding of substorm dynamics. This dissertation attempts to shed 
light on this important question employing constraints, in particular mass and entropy 
conservation for magnetospheric convection.

1.2 Basic Equations and Properties
In order to more fully appreciate the arguments that follow, it will serve us well to consider 
the MHD equations (i.e., Baumjohann and Treumann [1997], Kivelson and Russell [1995]): 
the mass continuity equation,

through the use of magnetohydrodynamics (MHD), a single-fluid description of a plasma. 
Lee et al. [1995] argue that the time scale of the growth phase is appreciably longer than

during the late growth phase is of particular interest. This phenomenon has been observed

(1.1)

the momentum equation,

=  - V  ■ (pvv) -  V P  +  J x B; ( 1.2 )

Faraday’s law,

—-  =  V x (v x B -  rjJ) ; (1.3)

the pressure equation,

—  =  - V • (Pv) +  ( 7  -  1) [gJ2 -  P  (V • v)] ; (1.4)
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and Ampere’s law,

J = ( ± ) ( V x B ) .  (1.5)

The variables p, P, v, B, J, and 77 represent the mass density, thermal pressure, plasma 
velocity, magnetic field, current density, and resistivity, respectively. The permeability of 
free space is po. The ratio of specific heats 7 , sometimes called the adiabatic or polytropic 
index, is chosen to be | (appropriate for an isotropic plasma with three degrees of freedom). 
In this study, I will use ideal MHD, in which the resistivity 77 is set identically equal to zero. 
This condition is satisfied almost everywhere in the highly collisionless magnetospheric 
plasma.

Equation 1.3 is obtained by combining the induction equation and resistive Ohm’s law. 
Equation 1.5 is Ampere’s law with the displacement current neglected. This neglect is 
justified if velocities and phase velocities are much smaller than the speed of light (c).

Let us now consider the concept of entropy. Combining the energy equation (Equa
tion 1.4) (with 77 =  0) with the continuity equation (Equation 1.1), I obtain an equation for 
the entropy s =  (discussed further in Appendix A):

which implies that s is a constant during convection:

s = ^  = s0. (1.7)

It would be nice to generalize this statement of the local conservation of specific entropy 
so that the conservation of this quantity can be applied more globally. Invoking a mag- 
netostatic equilibrium—in which time derivatives and velocity are both zero—I find that 
Equation 1.2 implies

B • V P  =  0, (1.8)

or in words, the pressure is constant along magnetic field lines. If I invoke the frozen-field
condition of ideal MHD, I see that the different plasma parcels along a particular field
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line have the same pressure. Furthermore, in ideal MHD these plasma parcels will remain 
connected to the same magnetic field line.

Through evaluation of the quantity

the magnetic flux tube volume per unit magnetic flux), one can define the specific entropy

I will use the equatorial plane as a reference plane and determine the distribution of the 
specific entropy of magnetic flux tubes crossing this plane. This provides maps for the

magnetotail convection in Chapter 2.
Let us consider the prospects of utilizing this specific entropy as a conserved quantity. 

It is closely related to the thermal energy of the plasma in the magnetic flux tube under 
consideration. One may envision this flux tube as an isolated system—somewhat akin to a

magnetosphere, its volume (per unit magnetic flux) must change as the flux tube moves into 
regions with different magnetic fields. (Refer to Figure 1.2.) If the specific entropy of that 
magnetic flux tube is conserved, then its pressure must change as its differential volume 
changes. In an analogous manner, the pressure inside a closed balloon must change if that 
balloon is squeezed or stretched. If the distribution of specific entropy in the equatorial plane 
is known, then this distribution allows us to determine the path along which a particular 
flux tube (with a certain value of the specific entropy) is constrained to convect. We can

(1.9)

(discussed further in Equation D.4 of Appendix D) and using the definition

S =  PV~f (1.11)
for any magnetic flux tube. The specific entropy is also conserved for adiabatic convection:

(1.12)

specific entropy distribution in the equatorial plane which will be used for discussion of

long, skinny balloon (with cross-sectional area - * ) •  As this flux tube moves within the
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Figure 1.2. The Erickson-Wolf problem

generalize the motion of this particular flux tube to the motion of ensembles of flux tubes in 
Earth’s magnetotail. Since the frozen-flux condition is assumed to hold in this analysis, we 
can trace the motion of these magnetic flux tubes by the motion of the plasma contained 
within them. Specifically, the concept of entropy conservation implies that steady-state 
convection (J  ̂ = 0 )  is only possible along contours of constant entropy. Vice versa, any 
convection with a velocity component perpendicular to an iso-entropy contour implies time 

dependence.
Before discussing observations of current sheets, I will consider a simple model that will 

help us to place the later discussions in context. There is an exact one-dimensional solution 
for a current sheet. This is so-called Harris sheet model (Harris [1965]). For this model, 
the magnetic field, current density, and pressure are given by

BX =  B0 ta n h (| ) (1.13)
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Figure 1.3. The Harris sheet. Profiles of the magnetic field (Equation 1.13) and the current 
density (Equation 1.14) as functions of z.

J' = (^ i)sech? ( i)  (1-14)
p = ( I t ) >ech2 ( l ) ' ( 1 1 5 )

where L is the characteristic length which I identify as the half-thickness of the current 
sheet. Here the magnetic field is zero in its central plane (z =  0), and reverses sign across 
this plane. It is for these reasons that the current sheet is sometimes called the neutral 
sheet. I remark that magnetic pressure is balanced by the thermal pressure. The magnetic 
field (Equation 1.13) and current density (Equation 1.14) are depicted in Figure 1.3.

While the one-dimensional Harris solution is somewhat idealized, more realistic two
dimensional current sheet models are based on it. Finally, it is worth noting that the 
observed current sheet thinning in the tail cannot be achieved by a simple compression 
of the current sheet. Even an increase of the lobe field by an unrealistic factor of 2 can 
only reduce the current sheet width to about half of its original value, whereas observations
indicate a reduction in width by more than a factor of 10 (Section 1.3).
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1.3 Observed Current Sheet Properties

The importance of the current sheet in substorm dynamics is matched by the challenges 
involved in the determination of some of its most important properties—in particular, its 
position, thickness, and structure. Many spacecraft have flown through the magnetotail 
current sheet since its discovery (Ness [1965]). However, the determination of current 

sheet properties is fraught with difficulties, including the ambiguity of spatial and temporal 
variations in the observations.

It can be quite difficult to distinguish the spatial variations in the current sheet due to 
its structure and the temporal variations of its properties with only one spacecraft. Not only 
that, but using only a single spacecraft one cannot determine, at a given time, the spatial 
gradients in the magnetic field that would allow the calculation of the current density.

Coordinated multi-spacecraft observations are far superior to single-spacecraft obser
vations for the determination of current sheet properties. Coordinated multi-spacecraft 
measurements allow the calculation of spatial gradients in the magnetic field that are used 
in the computation of the current density. The joint ISEE-1 and ISEE-2 spacecraft missions 
in 1978 and 1979 allowed investigators many more opportunities (than the rare coincidental 
positioning of two or more satellites) to determine current sheet properties. Examples of 
such studies include McComas et al. [1986], McPherron et al. [1987], Sanny et al. [1994], 
and Zhou et al. [1997]. McComas et al. [1986] analyzed three crossings of the current sheet 
at ~  18 Re - They found that a typical quiet current sheet is several ion gyroradii (p,) thick, 
with typical values of pi ~  3000 km for a 5-keV ion in a 2-nT magnetic field (as described 
in Thompson et al. [2005]). Both McPherron et al. [1987] and Sanny et al. [1994] examined 
a current sheet crossing of ISEE-1 and 2 at a downtail distance of ~  1.3 R e - Sanny et al. 
[1994] found an average thickness of ~  5 Re one hour before substorm onset. The current 
sheet thickness consequently decreased to less than 1 R e before onset. McPherron et al. 
[1987] obtained comparable results. Sergeev et al. [1990] used dual-spacecraft observations 
(GEOS-2 and ISEE-1 in one case, GEOS-2 and IMP-J in another), in conjunction with 
ground-based observations, to study the evolution of the current sheet during the growth 
phase. They determined the half-thickness of ~  0.1 R e at ~  9 R e , suggesting that “the 
flattened current sheet at r ss 1 0  R e is embedded within a broad (a few Re ) plasma sheet. 
[Sergeev et al., 1993, p. 3827] used observations of the ISEE-1 and 2 spacecraft at ~  11 R e
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to study the evolution of the current sheet during the growth phase and early expansion 
phase of a substorm. They found clear evidence of a very thin current sheet, with a half
thickness of ~  0.1 R e, in the near-Earth magnetotail at ~  11 R e  at the end of the growth 
phase. This thickness is “comparable to the gyroradius of a thermal proton outside this 
[very thin current] structure” [Sergeev et al., 1993, P. 17363]. These authors found that the 
current density increased by a factor of 5 to 10 “with respect to its typical value in that re
gion” [Sergeev et al., 1993, P. 17363]. They also found that the small (approximately 1 nT) 
normal component of the magnetic field was dominated by a large shear (B y) magnetic field 
component during the late growth phase, accounting for most of the total magnitude of 
the magnetic field B at that point. These authors also note that nature and characteristic 
scales (both spatial and temporal) of the changes in the plasma sheet and the magnetic 
configuration are different during the growth and expansion phases. During the growth 
phase, the current sheet structure has a global character (akin to, though not as simple as, 
the Harris sheet). During the expansion phase, localized current structures can be found. 
The later study of Zhou et al. [1997] found a minimum thickness of ~  0.5 R e  for a case 
study substorm onset.

More recently, spacecraft constellations such as the four-spacecraft Cluster fleet have 
enabled the determination of spatial gradients of the magnetic field in all three spatial 
directions with greatly improved accuracy. Thompson et al. [2005] utilized observations from 
these spacecraft to determine the current sheet thickness using a “dynamic” (that is, time- 
varying) Harris sheet model. They found minimum current sheet thickness of ~  1000 km 
for three substorm events using data obtained when the Cluster constellation was at 17.3 
and 18.7 Re downtail. These authors also noted that “bifurcation” of the current sheet 
(defined as the splitting of the current sheet into “two distinct sheets of current separated 
by a weaker current region” [Thompson et al., 2005, P. 2 of 26]) has been suggested by 
several studies, including those of Nakamura et al. [2002], Runov et al. [2003], and Sergeev 
et al. [2003].

I will find it useful to summarize the observations that I will find most relevant for my 
future considerations.

• Thin current sheets have been observed at distances from ~  9 R e (Sergeev et al.

[1990]) to ~  18.7Re ( Thompson et al. [2005]).
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• These current sheet have attained thicknesses as small as ~  0.1 R e (Sergeev et al. 
[1990]). This thickness should be compared to characteristic values of ~  5 R e an hour 
before substorm onset (McPherron et al. [1987], Sanny et al. [1994]).

• The spatial and temporal scales, as well as overall structure, differ appreciably in the 
growth and expansion phases of substorms (Sergeev et al. [1993]).

• Bifurcated current sheets have been observed (Nakamura et al. [2002], Runov et al. 
[2003], Sergeev et al. [2003]).

• There is a small (approximately 1 nT) normal component of the magnetic field in the 
current sheet (Sergeev et al. [1993]). But this normal component can be overwhelmed 
by the shear (By) component of the magnetic field (Sergeev et al. [1993]).

• The current density increases by a factor of 5 to 10 over the course of the growth 
phase (Sergeev et al. [1993]).

1.4 Review of Prior Work

Erickson and Wolf [1980] argue that slow, steady, lossless convection in Earth’s magnetotail 
must be time-dependent. Under those conditions, the specific entropy of any particular 
magnetic flux tube is conserved as it convects. Assuming a value of 7  =  | (appropriate for 
a plasma with three degrees of freedom), Erickson and Wolf [1980] consider what would 
happen to the pressure when flux tubes convect from 60 R e downtail to the inner dipole-like 
region of the magnetosphere (in the vicinity of 10 R e downtail). They use a few semi- 
empirical magnetic field models [namely, those of Olson and Pfitzer [1974], Beard [1979] 
(to which Earth’s dipole field was added), and Voigt [1981]], and assume approximate 
balance between the thermal pressure in the plasma sheet and the magnetic pressure in 
the magnetotail lobes. They find that this convection leads to very high pressures in the 
convecting flux tubes—much higher than observed—once the flux tubes reach the inner 
magnetosphere. Erickson and Wolf [1980] argue, on the basis of this “pressure-balance 
inconsistency” and other lines of evidence, that “Apparently, flux tubes do not convect, 
in an approximately lossless and adiabatic way, from x e «  —60 [Re ] to the dipole-like 

field region at xe «  —10 [Re ]” [Erickson and Wolf, 1980, P. 898]. The authors suggest
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the magnetospheric substorm as the means through which the magnetosphere avoids this 
“pressure-balance inconsistency. ”

Figure 1.2 illustrates the nature of the ‘Erickson-Wolf’ problem in a more pictorial man
ner. The flux tube in the far magnetotail has a much greater volume than its counterpart in 
the near-Earth magnetotail. Using the semi-empirical magnetic field model of Tsyganenko 
[1996], one can determine that the adiabatic convection of a flux tube from 60 R e in the 
far magnetotail to 10 Re in the near-Earth magnetotail would require an increase in the 
pressure by a factor of nearly 800. A calculation of the ratio of the pressures at those dis
tances (assuming a balance between thermal pressure and magnetic pressure in the lobes) 
indicates an actual increase of the pressure of less than a factor of 3 between x =  — 60 R e 
and x =  —10 Re - This calculation (the nature of which is discussed in more detail in 
Chapter 2) lends credence to Erickson and Wolf’s arguments.

Schindler and Bim  [1982] have developed a self-consistent theory of time-dependent 
convection in Earth’s magnetotail in two dimensions [in the x-z plane in Geocentric Solar 
Magnetospheric coordinates, with the x-axis pointing toward the Sun and the z-axis pointing 
in the direction of the north magnetic pole (Appendix 3 of Kivelson and Russell [1995])]. 
This model, constructed from the equations of ideal MHD, is appropriate for quiet times 
in the magnetotail. The resulting solutions are appropriate only for the tail-like region 
of the magnetosphere; the inner magnetosphere is excluded. Using this model, Schindler 
and Bim  [1982] find that steady states are possible in the magnetotail, but only under 
very restrictive conditions. Schindler and Bim  [1993] followed up on this earlier work 
by explicitly investigating the formation of thin current sheets in the near-Earth region 
through the application of perturbations to the boundary conditions of a one-dimensional 
sheet equilibrium.

Erickson [1984] has self-consistently modeled the convection of plasma sheet flux tubes 
in two dimensions. His model includes Earth’s dipole field, and so it is not limited to 
the asymptotic tail limit of Schindler and Bim  [1982]. Erickson [1984] has modeled the 
convection of plasma sheet flux tubes as a quasi-static sequence of equilibria preserving the 
specific entropy of a flux tube. His results confirm the time-dependent nature of lossless, adi
abatic convection of magnetic flux tubes found by Erickson and Wolf [1980] and Schindler 
and Bim  [1982]. He also sees the development of a minimum in equatorial magnetic field
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strength in the near-Earth plasma sheet, suggesting the development of an X-line there. 
The formation of an X-line in this region would signal a break-down of the ideal MHD 
conditions necessary for use of this model. This development could serve as the instability 
leading to the onset of the expansion phase.

Using the ‘magnetofrictional method’ of Chodura and Schliiter [1981], Lee et al. [1995] 
have constructed global MHD equilibria in the noon-midnight meridian with the entropy 
per flux tube specified as a constraint. They argue that the formation of very thin current 
sheets is favored by the presence of larger values of the entropy or higher gradients in the 

entropy. They also propose an “entropy anti-diffusion instability” that would accelerate the 
formation of such a thin current sheet.

Lee et al. [1998] have extended the work of Lee et al. [1995] by using the 2-D global 
equilibria presented in the earlier work as initial configurations that are then allowed to 
evolve in time under the influence of a pressure diffusion term in the governing MHD 
equations. Lee et al. [1998] were then able to further investigate the “entropy anti-diffusion 
instability” proposed by the earlier authors.

1.5 Mechanism

I begin my investigation into the nature of the mechanism for current sheet thinning with 
the following argument. Consider the situation in the magnetosphere at the beginning 
of the growth phase, as depicted in Figure 1.4. Once the IMF turns southward at the 
start of the growth phase of a ‘classic’ substorm, magnetic reconnection at the dayside 
magnetopause ‘erodes’ magnetic flux therefrom; as a result, the magnetopause advances 
Earthward by 0.5 to 1.0 Re - This advance is halted after a period of about 15 minutes. 
Since magnetic reconnection continues at the dayside magnetopause, magnetic flux must be 
replenished on the dayside by a flow of plasma from the nightside magnetopause. (Otherwise 
the magnetopause would continue to advance Earthward.) I examine the implications of 
adiabatic convection for this flow. If the specific entropy of magnetic flux tubes is conserved, 
then the magnetic flux at the dayside magnetopause can be replenished by a ‘flux reservoir’ 
located at a limited range of distances in the near-Earth magnetotail. Magnetic flux tubes 
from this region convect approximately along contours of constant entropy to the dayside 
magnetopause. Since the Erickson and Wolf constraint greatly restricts the replenishment
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Sketch of magnetic flux transport

Figure 1.4. Current sheet thinning mechanism. Depiction of the mechanism proposed for 
current sheet thinning in the late growth phase of magnetospheric substorms
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of the ‘flux reservoir’ from regions farther tailward, I argue that the depletion of magnetic 
flux in this ‘flux reservoir’ leads to the formation and thinning of a current sheet there.

This mechanism allows me to estimate the time needed to evacuate the near-Earth ‘flux 
reservoir.’ I argue that this time is consistent with the duration of the substorm growth 
phase. A detailed calculation is provided in Appendix E. Let us consider the downtail 

extent of the magnetic flux reservoir to be 4 Re and its cross-tail extent to be 1 0  Re - 
The typical strength of the magnetic field in this region is 50 nT. Using a cross-polar cap 
electric potential e of 50 kV, which is the rate at which magnetic flux is transported from 
the dayside to the nightside (and vice versa)—and therefore the rate at which it must be 
removed from the flux reservoir—I can estimate the time in which the magnetic flux in the 
reservoir is depleted to be approximately 30 minutes. This is in good agreement with the 
duration of the substorm growth phase.

As we will soon see in Chapter 2, this mechanism allows me to predict the location 
of current sheet thinning. Using a profile of the specific entropy in the equatorial plane, 
one can estimate the region in the near-Earth magnetotail from which magnetic flux can 
convect adiabatically to replace magnetic flux eroded at the dayside magnetopause. This 
region in the near-Earth magnetotail maps to the dayside magnetopause along contours of 
specific entropy.

In summary, I propose that current sheet thinning occurs because of the 
evacuation of the near-Earth flux reservoir by convection to replace magnetic 
flux that is eroded on the dayside. The proposed mechanism predicts basic properties 
of current sheet thinning, such as

• location,

• temporal evolution, and

• dynamics.

Other mechanisms for current sheet thinning make no such predictions. This mechanism 
does not depend on either perturbations in boundary conditions (as suggested by Schindler 
and Birn [1993]) or on the diffusion of pressure (as proposed by Lee et al. [1998]).
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1.6 Model Assumptions and Limitations

This model explicitly assumes that convection during the substorm growth phase can be 
described as slow and adiabatic. In order to utilize the assumption that specific entropy on 
magnetic flux tubes is conserved, I assume that

• the ‘frozen-in flux’ approximation holds;

• the number of particles in a magnetic flux tube is conserved; and

• no energy is transferred into or out of the flux tubes other than by adiabatic (slow) 
compression or decompression of the flux tubes.

I will discuss these assumptions in much more detail in Section 2.6.1.
This model does not explicitly account for non-ideal effects such as magnetic reconnec

tion. It is assumed that the energy flux from the ionospheric footprints of flux tubes is 
negligible. (A relevant calculation is detailed once the necessary tools have been described 
in Chapter 2.)

This analysis could be extended to take into account the “demagnetization” of ions. 
Associated effects become important for gradients on the order of the ion inertial length

or the ion gyroradius. [upi =   ̂^, rgi =  That work is left for future research.

1.7 Scope of the Dissertation

This dissertation presents an investigation of the mechanism proposed above for current 
sheet thinning during the late growth phase of substorms.

Chapter 2 describes the development of a suite of computer programs that allow the 
calculation of the flux tube volume, pressure, and specific entropy pertaining to a mag

netic configuration described by the Tsyganenko [1996] semi-empirical magnetic field model. 
These tools are used to argue further for the plausibility of the suggested mechanism. Yet 
this mechanism cannot be verified without the use of a 3D MHD simulation. Chapter 3 
describes the development of such a model. Chapter 4 describes the results of this model. 
The final chapter will summarize the results of this study.
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Chapter 2

Three-Dimensional Magnetic Field and Plasma Constraints for Adiabatic

Convection

It is important to examine magnetospheric properties that are central to my proposed 
mechanism for current sheet thinning. As discussed in the introduction, the specific entropy 
of a magnetic flux tube can be calculated if one knows the magnetic field along that flux 
tube and the pressure within it. Although one can calculate the specific entropy throughout 
three-dimensional space at any particular time, it often suffices to calculate that quantity 
only in the equatorial plane (z — 0 ) through which all magnetic flux tubes of interest pass. 
In a sense, I have reduced a three-dimensional problem to two dimensions. Surfaces of 
constant specific entropy map to contour lines of specific entropy in the equatorial plane. 
Magnetic flux tubes are constrained to move along these contours if the specific entropy of 
flux tubes is conserved.

This chapter describes the development of a computer model that uses the semi-empirical 
magnetic field model of Tsyganenko [1996] to determine the specific entropy in the equatorial 
plane of the magnetosphere at a particular time. The model accepts the following quantities 
as inputs:

• Pdyn-, the dynamic pressure of the solar wind;

• the Dst index;

• {By)jMF an<l (Bz)[m f > the Y and z components of the IMF, respectively; and

• either the dipole tilt for the time in question; or the time (year, day, and time of day) 
in question, for which the dipole tilt is determined.

These input quantities are discussed further in Section 2.2. Representative results of this 
model are provided. These results are used to demonstrate the plausibility of my proposed 
mechanism for current sheet thinning.

2.1 Semi-Empirical Magnetic Field Models

Fully self-consistent three-dimensional global MHD models [e.g., Lyon et al. [1981], Ogino 
et al. [1986], Wu [1983]] of Earth’s magnetosphere have been available since the early
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1980’s. Even though such models have become increasingly sophisticated and flexible, 
semi-empirical models [e.g., Mead and Fairfield [1975], Tsyganenko [1989]] have continued 
to find use through the years in many studies [e.g., Pulkkinen et al. [1991], Pulkkinen et al. 
[1992], Pulkkinen et al. [1994a], Pulkkinen et al. [1994b], Pulkkinen and Wiltberger [2000]]. 
Semi-empirical models typically describe the magnetosphere by superposing the contribu
tions to the magnetospheric magnetic field due to various large-scale current systems in the 

magnetosphere. Given a set of inputs (quantities such as the solar wind pressure, compo
nents of the IMF, and some sort of activity index), these semi-empirical models utilize a 
large set of spacecraft data to find an ‘appropriate’ representation of the magnetospheric 
magnetic field for those inputs. The convenience of semi-empirical models, coupled with 
the extent to which they can accommodate a large range of physical conditions (through 
adjustment of their input parameters), helps to explain their continued use, as does their 
dependence on actual spacecraft data and their proven track record.

Users of these semi-empirical models should bear in mind their limitations. The repre
sentation of the magnetic field in a particular region is dependent upon the availability of 
satellite data in that region. One should not expect fair representation in magnetospheric 
regions that have been only sparsely sampled by spacecraft. Also, these semi-empirical 
models only give average values of the magnetic field, determined using data from both 
quiet and active periods in the magnetosphere. And there are inherent limitations in the 
ways in which the various current systems are represented. For instance, it is assumed that 
each current system closes in certain regions. It is important to point out that empirical 

magnetic field models are only magnetic field models and do not contain a plasma pressure 
distribution. As noted, these fields are average fields and do not represent an equilibrium 
configuration. Specifically, the models do not contain the plasma pressure distribution 
which we will derive in Section 2.3.

2.2 The Tsyganenko-96 Semi-Empirical Magnetic Field Model

The Tsyganenko [1996] model is used in this study. It incorporates the contributions from 
the following major magnetospheric current systems:

• the magnetopause current system;
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Input Parameter Minimum Value Maximum Value

Pdyn 0.5 nPa 10 nPa

Dst -100 nT +20 nT
IMF By -10 nT +10 nT
IMF Bz -10 nT +10 nT

Table 2.1. Range of input parameters for T96

• the ring current;

• the magnetotail current sheet;

• the Region 1 and 2 Birkeland current systems; and

• an interconnection term representing the penetration, at least in part, of the IMF into 
the magnetosphere ( Tsyganenko [1996]).

This model, hereafter referred to as T96, provides the magnetic field due to the major 
current systems given above. The ranges of the input parameters accepted by T96 are 
given in Table 2.1. Note that the combination of this ‘external’ magnetic field (that due 
only to these current systems) with Earth’s (largely dipolar) ‘intrinsic’ magnetic field yields 
the total magnetospheric magnetic field. A separate suite of subroutines called GEOPACK 
is used to calculate the ‘intrinsic’ magnetic field.

2.3 Pressure and Specific Entropy Model

The goal of the model described in this section is to determine the specific entropy in the 
equatorial plane of the magnetosphere for typical magnetic field configurations during the 

growth phase. It utilizes the values of the magnetospheric magnetic field given by T96 (used 
along with GEOPACK). The magnetic field is used to calculate the flux tube volume per 
unit magnetic flux for closed flux tubes that intersect the equatorial plane (in the domain 
of interest, discussed below). In the following, I will derive a pressure distribution that is 
consistent with the T96 magnetic field in the equatorial plane. The pressure combined with 
the flux tube volume then provides the specific entropy. Although I apply force balance
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in the equatorial plane to derive the pressure, the resulting configuration is not an exact 
equilibrium but rather represents an intelligent guess to an average magnetic field/plasma 
configuration.

This model uses a cylindrical coordinate grid (p, <p) in the equatorial plane of the 
magnetosphere. There are np points in the radial direction and n,P points in the azimuthal 
direction. The radial coordinate p extends from p =  p min to p =  pmax; the azimuthal 
coordinate <p assumes the full range of values (from 0 to 27r radians). The grid is uniform 
in <p, but non-uniform in p. This choice allows for greater resolution in the near-Earth 
magnetosphere, where magnetic field gradients are large. As a function of its corresponding 
grid coordinate i ,  the radial coordinate is given as

p (i) =  Pmin exp (Ki). (2.1)

The quantity k is specified in terms of prnin, Pmaxi and np:

K =  ( ± )  ln ( P™*\ . (2.2)
V ̂ P  J V Pmin J

This formulation ensures that the radial resolution Ap is proportional to p; specifically, it 
yields the relation

A p =  np. (2-3)

The user specifies pmin, p max, np, and nv, as well as Pdyn, Dst, (By)IMF, and (BZ)IMF.

For a typical high-resolution run of this code, we used the values given in Table 2.2. For
these values, the maximum radial resolution at p min =  5R e  is Ap =  0.17Re-  The angular
resolution of this grid is 0.038 radians, or 2.2 degrees; that angular distance corresponds to 

0 .2  Re at pmm =  3 Re -
I calculate the pressure under the assumption that the (thermal) pressure gradient 

force balances magnetic forces since inertial forces are small during the growth phase (Sec
tion 1.1). Thereby neglecting terms in the ideal MHD equation (Equation 1.2) involving

the momentum density pv, I find that I am left with

V P  =  J x B. (2.4)
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Input parameter Value

Pmin 5 R e

Pmax 80 R e

Tip 80

n<p 164

Pdyn 1.0 nPa

D st -15 nT

( B y )  I M F +1.0 nT

(B z ) i m f +1.0 nT

Table 2.2. Input parameters for reference run 

Utilizing Ampere’s law in the form of Equation 1.5

J =  ( —  ) (V x B ) , (2.5)V / W
I can write

V P  =  ( —  ) [(V x B) x B ] . (2.6)
\P-oJ

The gradient in pressure is related to the differential dP of the pressure through the ex
pression

dP =  V P  • ds. (2.7)

Here ds denotes an element of length. Integrating, I obtain

P  = J (V P  • ds) (2 .8 )

=  (+)/l(vP =  —  ) [(V x B) x B] ■ ds. (2.9)

With the knowledge of B from the T96 model, this integral is evaluated throughout the 

equatorial plane.
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I modified the magnetic field line tracing subroutine supplied with GEOPACK to com
pute the distribution of the magnetic flux tube volume per unit magnetic flux V =  f  (j}) d£ 
in the equatorial plane of the magnetosphere for any configuration that can be modeled by 
T96. The pressure combined with the specific flux tube volume then provides the specific 
entropy S =  P V 1.

2.4 Specific Entropy Model Output

This model provides quantitative insight into the distribution of the specific entropy as a 
constraint for magnetospheric convection. I will also discuss properties such as pressure and 
magnetic field magnitude in the equatorial plane. I will discuss these properties for typical 
magnetic field configurations and examine how they depend on IMF parameters.

2.4.1 Mapping from the Dayside Magnetopause to the Near-Earth Magnetotail 
Using the Specific Entropy

Figure 2.1 shows the pressure, magnetic flux tube volume (per unit magnetic flux), and 
specific entropy along the midnight meridian (ijgsm =  zgsm =  0 ) for the typical quiet
time magnetic field configuration displayed in the top panel of the figure. The magnetic 

field configuration was determined through the use of T96. Dotted vertical lines on the 
dayside depict the region of magnetopause erosion typical for the substorm growth phase. 
The corresponding values of the specific entropy are mapped back into the magnetotail. 
That region in the dayside corresponds to —15 Re < xgsm < ~ 9 Re in the near-Earth 
magnetotail. If the specific entropy on magnetic flux tubes is conserved, then it is only 
from this near-Earth magnetotail region that magnetic flux tubes can convect to replace 
magnetic flux eroded from the dayside region depicted in Figure 2.1.

2.4.2 Contour Plots of the Flux Tube Volume per Unit Magnetic Flux, Pres

sure, and Specific Entropy in the Equatorial Plane

Figure 2.2, Figure 2.3, and Figure 2.4 show contour lines of, respectively, the magnetic 
flux tube volume per unit magnetic flux, the thermal pressure, and the specific entropy in 
the equatorial plane for a quiet T96 magnetosphere. The parameters pertaining to these
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Field Lines

x (R e)

Figure 2.1. B, P, V, and S in the midnight meridian. The pressure, magnetic flux tube 
volume per unit magnetic flux, and specific entropy along y =  z =  0  for the magnetic field 
configuration shown at top.
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Tsyganenko T96_01 Flux Tube Volum e D is tr ibu tion

x ( r e)

Figure 2.2. Flux tube volume contour map. Contours of the flux tube volume per unit 
magnetic flux (measured in Re /nT) in the equatorial plane. The asterisks denote the 
position of the magnetopause.
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Tsyganenko T96_01 Pressure D is tr ibu tion
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Figure 2.3. Thermal pressure contour map. Contours of the thermal pressure (measured 
nPa) in the equatorial plane. The asterisks denote the position of the magnetopause.
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Tsyganenko T96_01 Specif ic  Entropy D is tr ibu tion

x (Re)

Figure 2.4. Specific entropy contour map. Contours of the specific entropy (measured in 
arbitrary units) in the equatorial plane. The asterisks denote the position of the magne
topause.
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figures are given in Table 2.3. The asterisks in these figures indicate the location of the 
magnetopause.

Figure 2.2 shows the contours of the magnetic flux tube volume per unit magnetic flux, 
expressed in units of Re / nT, in the equatorial plane. The contour line corresponding to 
0.320 Re /nT maps just inside the magnetopause on the dayside; it maps to ~  10 R e on 
the nightside. Note that the innermost contours of the magnetic flux tube volume per unit 
magnetic flux, corresponding to smaller values of that quantity, appear nearly circular. The 
contours deviate increasingly from circles as one moves outward (to contours corresponding 
to larger values of the magnetic flux tube volume per unit magnetic flux).

Figure 2.3 displays the contours of the thermal pressure in the equatorial plane. As 
one might expect, there is a large gradient in the pressure in the inner portion of the 
magnetosphere. As also shown in Figure 2.1, the pressure profile flattens considerably 
further downtail (~  30Re — 40 Re )- The contour lines lying outside the magnetopause in 
Figure 2.3 are spurious and should be disregarded.

The downtail pressure gradient is considerably smaller than the opposing flux tube 
volume gradient, such that the specific entropy increases strongly with distance from Earth. 
Figure 2.4 shows contour lines of the specific entropy in the equatorial plane. The solid 
contour between 0.10 and 1.00 (arbitrary units) corresponds to the magnetopause. It maps 
to ~  1 2  Re in the nightside magnetotail. This result is consistent with the results from 
Figure 2.1.

2.5 Parameter Study

I would like to ascertain the extent to which these results depend on the choice of input 
parameters to our model. To that end, I explored the effects of varying each of the input 
parameters Pdyn-, IMF By, IMF Bz, and D st while holding the others constant. I used the 
Tsyganenko magnetic field configuration given in Table 2.3 as a reference. These values 
specify a quiet magnetosphere buffeted by low-pressure solar wind carrying a weak, slightly 
northward, IMF. Although Bz is typically southward during the growth phase, I chose 
a slightly positive Bz for reasons given in the discussion of Bz and Dst effects. On the 
particular time and date chosen, Earth’s dipole tilt was nearly normal to the solar wind 
direction.
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The values assumed by the input parameters during the course of this parameter study 
are given in Table 2.4. Each column of this table lists the different values assigned to 
that parameter alone during a sequence of runs of the model. During the sequence of 
runs examining the influence of Pdyn-, the reference value of 1.00 nPa was changed first to
2.00 nPa for one run, and then to 4.00 nPa for another run. All other input parameters 
remained at their reference values during these two runs of the model.

The results of this parameter study are illustrated in the next several figures. Figure 2.5, 
Figure 2.7, Figure 2.9, and Figure 2.11 illustrate the dependence of the value of the specific 
entropy as a function of downtail distance along y =  z =  0  for different values of the input 
parameters Pdyn, IMF By, IMF Bz, and D st, respectively. (Downtail distance is simply 
the negative of the x-coordinate in the GSM coordinate system.) Figure 2.6, Figure 2.8, 
Figure 2.10, and Figure 2.12 are provided to assist the reader in understanding the behav
ior observed in the earlier plots of the specific entropy. They each display the downtail 
(magnetospheric) magnetic field component B z, the magnetic flux tube volume (per unit 
magnetic flux) V, and the thermal pressure P along the midnight meridian as functions of 
the downtail distance, as well as the specific entropy shown in the earlier figures.

2.5.1 Variation of the dynamic solar pressure Pdyn

In this portion of the parameter study, the dynamic pressure Pdyn ° f  the solar wind was 
increased from its reference value of 1.00 nPa to the values 2.00 nPa and 4.00 nPa. Figure 2.5 
shows that the specific entropy is comparable for the different values of Pdyn from the inner 

model boundary of 5 Re to ~  25 — 27 Re tailward and the entropy is smaller for higher 
dynamic pressure in the mid and far tail. Overall, however, the specific entropy changes by 
less than a factor of 2 in the mid and far tail regions for each factor of 2  in the dynamic 
pressure.

Upon examining the plot of magnetospheric Bz in Figure 2.6, one sees that this distance 
corresponds to the minimum in the plot of this quantity for the case wherein Pdyn =
4.00 nPa. The corresponding minimum for the case with Pdyn =  2.00 nPa lies somewhat 
further tailward, whereas the minimum for the reference case with Pdyn — 1-00 nPa lies even 
further tailward. The distribution of B z (including the minimum location) is likely a result 
of the increasing compression of the magnetosphere with increasing solar wind dynamic
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Parameter Value

Pdyn 1.00 nPa

IMF By +1.00 nT
IMF Bz +1.00 nT

Dst -15.00 nT
IOPT 1

Year 1980

Day 6 6

Hour 21

Minute 0

Second 0

Table 2.3. Input Parameters for the reference case used in the parameter study. IOPT is a 
program parameter with no physical significance that has been included here for the sake 
of completeness. Note that these values represent a relatively quiet magnetosphere.

P iy n  (nPa) IMF B y (nT) IMF B z (nT) Dst (nT)

Reference Value 1 .0 0 + 1 .0 0 + 1 .0 0 -15.00

2 .0 0 -2 .0 0 -5.00 -25.00

4.00 -1 .0 0 -2 .0 0 0 .0 0

0 .0 0 - 1 .0 0 + 1 0 .0 0

+ 2 .0 0 0 .0 0

+ 2 .0 0

+5.00

Table 2.4. Parameter values used in the parameter study
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Figure 2.5. Dependence of specific entropy on Pdyn• The specific entropy S along y =  z =  
0  for different values of the solar wind dynamic pressure Pdyn-
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M agnetospher ic  Bz Flux Tube Volum e

Downta il d is ta n c e  (RE) 

Pressure

Downta il d is ta n c e  (RE) 

Speci f ic  Entropy

Downtail  d is ta nce  (RE) Downtail  d is ta nce  (RE)

Figure 2.6. Dependence of Bz, V, P, and S on Pdyn■ Magnetospheric Bz, magnetic flux 
tube volume (per unit magnetic flux) V, thermal pressure P, and specific entropy S along y 
=  z = 0 for different values of the solar wind dynamic pressure Pdyn• Note that the plot of 
the specific entropy is the same as that in Figure 2.5.
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Figure 2.7. Dependence of specific entropy on IMF By. The specific entropy S along y 
=  0 for different values of IMF By.
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M agnetospher ic  Bz Flux Tube Volum e

Downta il d is ta nce  (RE)

Pressure

Downtail  d is ta nce  (RE)

Speci f ic  Entropy

Downta il d is ta nce  (RE) Downtail  d is ta nce  (RE)

Figure 2.8. Dependence of Bz, V, P, and S on IMF By. Magnetospheric Bz. magnetic flux 
tube volume (per unit magnetic flux) V, thermal pressure P, and specific entropy S along 
y =  z =  0 for different values of IMF By. Note that the plot of the specific entropy is the 
same as that in Figure 2.7.
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Figure 2.9. Dependence of specific entropy on IMF B z. The specific entropy S along y 
=  0 for different values of IMF Bz.
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 Bz =  - 5 . 0 0  nT
_  _  Bz =  - 2 . 0 0  nT

 Bz =  - 1 . 0 0  nT

 Bz =  0 .0 0  nT

 Bz =  + 1 .0 0  nT

 Bz =  + 2 .0 0  nT

fB, =  + 5 . 0 0  nT

20  4 0  60  80
Downta il d is ta nce  (RE)

Pressure

Downtail  d is ta n c e  (RE)

Speci f ic  Entropy

Downta il d is ta nce  (RE) Downtail  d is ta nce  (RE)

0

Figure 2.10. Dependence of Bz, V, P, and S on IMF Bz. Magnetospheric Bz, magnetic flux 
tube volume (per unit magnetic flux) V, thermal pressure P, and specific entropy S along 
y =  z =  0 for different values of the IMF Bz. Note that the plot of the specific entropy is 
the same as that in Figure 2.9.
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Figure 2.11. Dependence of specific entropy on D st. The specific entropy S along y =  z 
0  for different values of the D st index.
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Magnetospher ic  Bz Flux Tube Volume
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Figure 2.12. Dependence of Bz, V, P, and S on Dst. Magnetospheric Bz, magnetic flux 
tube volume (per unit magnetic flux) V, thermal pressure P, and specific entropy S along y 
=  z =  0 for different values of the Dst index. Note that the plot of the specific entropy is 
the same as that in Figure 2.11.
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The Bz features are reflected in the plots of the flux tube volume, wherein one sees 

a maximum ratio of less than 2 between the flux tube volume corresponding to Pdyn =
4.00 nPa at a particular downtail distance and the analogous value for Pdyn =  1-00 nPa. 
Note that the magnetic field along a field line assumes a minimum in the equatorial plane 

with a value of B  «  Bz such that this portion of a flux tube has the greatest contribution 
to the flux tube volume V =  f  (jj) dl.

The third panel of Figure 2.6 depicts the thermal pressure as a function of downtail 
distance. One sees that the thermal pressure is greater for larger values of Pdyn throughout 
the magnetotail, with the effect most pronounced at distances < 40Re-  In the far tail 
(80 R e ), the thermal pressure is only slightly modified by increasing dynamic pressure. 
This is expected: the higher dynamic pressure has a stronger effect in the near-Earth region 

because the flaring angle of the magnetopause is larger. The thermal pressure is relatively 
smooth (as a function of downtail distance), and does not readily reflect the minimum in 
Bz. But that minimum is reflected in the plots of the specific entropy, in part through the 
contribution of the flux tube volume to that quantity. Still, the specific entropy varies, at 
any particular downtail distance, only by a factor slightly greater than 2 , at most.

2.5.2 Variation of IMF By

Figure 2.7 shows us that varying IMF By has very little effect on the value of the specific 
entropy along the midnight meridian. This result is not surprising, since one would expect 
the least effect of IMF By along that axis. Figure 2.8 lends credence to this expectation; 
magnetospheric Bz, flux tube volume V, and the thermal pressure P all share this behavior 
with the specific entropy S.

2.5.3 Variation of IMF Bz

Figure 2.9 shows the effect of varying IMF B z on the specific entropy. At small and large 
distances the effect of IMF Bz on the specific entropy is negligible. However, there is an 
effect in the midtail between 20 and 45 Re where, Earthward of 30 Re, the entropy gradient 
steepens and tailward the entropy flattens out for decreasing B z up to the point where the 
entropy has a small maximum at ~  35 Re for Bz =  5 nT.

pressure.
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Looking at Figure 2.10, one sees a minimum in magnetospheric B z of increasing depth 
with decreasing values of the IMF Bz. The location of that minimum is the same for the 
different values of the IMF. The influence of this superposition is seen in the plots of the flux 
tube volume: that quantity increases for decreasing values of the IMF B z at this minimum. 
The influence of this input parameter is small in the pressure such that the changes in B z 
and therefore the flux tube volume dominate the changes in entropy for different IMF B z. 
Note that the minima in Bz may actually be somewhat artificial in the sense that they may 
well be a result of the sampling of both quiet and active (substorm) times. During active 
times reconnection and plasmoid formations actually generate negative B z.

2.5.4 Variation of Dst

Figure 2.11 shows the effect of varying the storm index D st on the specific entropy. The plot 
for Dst equal to the reference value of -15.00 nT appears well-behaved, as does that for D st 
equal to -25.00 nT. But the corresponding plots for D st equal to 0.00 nT and +10.00 nT 
appear anomalous. Looking at Figure 2.12, one sees that the minimum in magnetospheric 
Bz attains rather small values for D st equal to 0.00 nT and +10.00 nT. An x-line actually 
forms at the location of the magnetospheric minimum for the case with D st =  +10.00 nT. 
The anomalous behavior of these two cases suggests that we take great care in interpreting 
the corresponding results.

The storm index D st provides a measure of the strength of the ring current. Increas
ingly negative values of Dst indicate the increasing magnitude of the ring current. As the 
ring current grows in magnitude, it increases the value of the magnetospheric B z in the 
magnetotail. This behavior explains the larger values of magnetospheric B z for increasingly 
negative Dst. The magnitude of the ring current is diminished for the cases with D st equal 
to 0.00 nT and +10.00 nT, allowing for small and even negative values of magnetospheric 

Bz.

The plots of the specific entropy for D st equal to -25.00 nT and -15.00 nT lie rather 
close to one another. If one restrict his consideration to downtail distances of less than 
25 Re , then he can also consider the cases with D st equal to 0.00 nT and +10.00 nT. Even 
with these cases considered, one sees that the specific entropy varies considerably less than 
an order of magnitude among these four cases (for the limited downtail region mentioned
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above).
Again the results with negative values of Bz in the tail is an artifact of the sampling of 

active and quiet times. In the T96 model, D st directly controls the magnitude of the ring 

current. The ring current plays an important role in the determination of the magnetic field 
in the near-Earth region. Note, from Table 3.1, that the allowed range of D st in the T96 
model is —100 nT < D st <  +20 nT. The values of D st for which I obtained extremely small 
values of Bz in the magnetotail—namely, D st =  0 nT and Dst =  +20 nT—are close to the 
maximum of that range. Accordingly, I have some concerns regarding the possible spareness 
of relevant data points in addition to aforementioned concerns regarding the sampling of 
active and quiet times.

2.6 Calculation of the Ionospheric Energy Flux Resulting from Steady Con

vection of Magnetic Flux Tubes

2.6.1 Motivation

In drawing conclusions about the implications of specific entropy conservation for the slow 
and steady convection of magnetospheric flux tubes, I have relied upon the assumptions 
given in Section 1.5:

• The ‘frozen-in flux’ approximation holds.

• The number of particles in a magnetic flux tube is conserved.

• No energy is transferred into or out of the flux tubes other than by adiabatic (slow) 
compression or decompression of the flux tubes.

The frozen-in condition is actually extremely well satisfied in the highly collisionless 
magnetospheric plasma on sufficiently large scales. Violation of the frozen-in condition 
occurs only on sufficiently small scales, specifically on the ion inertia scale Aj =  which 
is about 1 0 0  km in the plasma sheet.

Let us consider the second assumption, regarding conservation of the number of particles 
in a magnetic flux tube. Particle production or loss mechanisms within the flux tube 
would lead to changes in the number of particles. Such mechanisms include ionization, 
recombination, and precipitation of particles out of the end of the magnetic flux tube. The
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last of these mechanisms—precipitation— is considered in the following sections. However, 
one would expect ionization and recombination to be significant only within or in the vicinity 
of the ionosphere. The vast bulk of any particular magnetic flux tube being considered in 
this analysis lies outside of the ionosphere. Accordingly, I disregard particle production 
through ionization or particle loss through recombination; precipitation out of the end of 
the flux tube is the only particle production or loss mechanism that I consider.

Even with the frozen-in flux approximation holding, one could envision particle drifts 
that carry particles out of a particular magnetic flux tube. But such drifts perpendicular to 

the magnetic field B would also carry particles into that same flux tube, replacing any that 
were lost. A particle drift would lead to a change in the number of particles in a flux tube 
only if a there is a large enough gradient in that drift across the flux tube to give rise to a 
difference between the number of particles leaving the flux tube and the number of particles 
entering the flux tube. I argue that no particle drifts give rise to appreciable violation of 
the conservation of particle number on magnetic flux tubes in this system.

This leaves as a potentially significant loss process the loss of particles out of the iono
spheric ends of the magnetic flux tubes. Particles exiting a flux tube through these means 
will deposit their energy into the ionosphere.

I can calculate the energy flux into the ionosphere resulting from the steady convection 
of magnetic flux tubes. Once I have done so, I can determine if the calculated flux is 
consistent with the energy flux observed in the auroral zone.

2.6.2 Results from  Derivation

The detailed derivation of the ionospheric energy flux is provided in Appendix D. Some of 
the key results from that derivation are reproduced here.

The energy flux out of the ionospheric end of a magnetic flux tube is given by the 
product of the instantaneous plasma energy density e and the instantaneous plasma speed 
u:

f  =  eu. (2 .1 0 )

If the energy density e is identified as that corresponding to the internal energy of this 
system, then I can write
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e = (2.11)

where P  is identified as the thermal pressure as before. Accordingly,

uP. (2.12)

My challenge lies in determining an expression for the plasma speed u in terms of readily- 
available quantities. As shown in Appendix D, I can write

Here E  is the magnitude of the convection electric field. Bmsp is the magnetic field at a 
magnetic flux tube’s intersection with the equatorial plane, and Bisp is the magnetic field 
at one of the ionospheric footpoints of the flux tube. The quantity

(This relationship is discussed further in Appendix D.)

2.6.3 Results of Calculations

For the purposes of my calculations, I use a constant value of 0.5 mV/m for E. This 
convection electric field corresponds to a cross-polar cap potential of 50 kV applied over a 
distance of approximately 16 Re -

T96 is used to provide both Bmsp and Bisp. The pressure and specific entropy models 
described in Section 2.3 are used to calculate the pressure P  and the derivative The 
latter quantity is evaluated in the equatorial plane of the magnetosphere.

(2.13)

(2.14)

H  =  P~<V (2.15)

is simply related to the specific entropy S by

H  — . (2.16)
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The ionospheric energy flux is shown as a function of the downtail distance (the distance 
to which a particular flux tube maps in the equatorial plane) for the reference case in 
Figure 2.13. The ionospheric flux is shown as a function of latitude in Figure 2.14. (The 
latitude in question here is the latitude of the ionospheric footprint of a magnetic flux tube, 
as determined through use of T96.) Various quantities affecting the value of the ionospheric 

energy flux are shown as functions of downtail distance in Figure 2.15.
The shape of the ionospheric flux plot in the near-Earth magnetotail is determined 

largely through the behavior of the magnetospheric magnetic field Bmsp. The large mag
netic field in that region strongly reduces the value of the ionospheric flux. Note that 
the magnitude of the derivative ^  is also small here. The influence of these two trends 
overwhelms the (relatively) large value of the pressure P in the near-Earth tail.

The decrease of Bmsp and the increasingly negative value of with downtail distance 
leads to the increase of the ionospheric flux to its global maximum. This maximum is 
reached in the vicinity of 25 to 35 Re - It seems to coincide with the minima in both Bmsp 
and The latter feature (namely, the minimum in ^ )  seems to arise from a flattening 
of the curve of V in that region.

The ionospheric flux decreases from that point. It shortly reaches a local minimum 
(arising from a decrease in the magnitude of ^ ) .  Note that a local maximum in Bmsp 
seems to lie there, as well. It should also be noted that BiSp is nearly constant throughout 
the region of interest, varying by less than 0.51% of its average value of ~  5.4 x 104 nT 

throughout the plotted range.
It is shown that the ionospheric energy flux is appreciably greater than 100 ergs/(cm2- 

s) for flux tubes convecting at downtail distances greater than 10 R e - These results suggest 
that the steady convection of magnetic flux tubes under the constraint of conserved specific 
entropy on magnetic flux tubes is inconsistent with auroral observations even under extreme 
conditions (e.g., Lanchester et al. [1997], Lummerzheim et al. [1997]). I therefore conclude 

that flux eroded on the dayside cannot be replaced by magnetic flux from the mid and 
far tail regions. Therefore there is only a limited region in the near-Earth tail which can 
provide the magnetic flux reservoir for the eroded flux from the dayside.
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Figure 2.13. Ionospheric energy flux as a function of downtail distance along the midnight 
meridian (y =  z =  0 ).
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Figure 2.14. Ionospheric energy flux as a function of latitude.
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Figure 2.15. Factors in the ionospheric flux. Various quantities involved in the calculation 
of the calculation of the ionospheric energy flux, given as functions of downtail distance in 
the midnight meridian plane (y =  z =  0). Note that the reciprocal of Bmsp, instead of that 
quantity itself, is given in the panel labeled ‘Magnetospheric Magnetic Field.’
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2.7 Discussion and Summary

This chapter has discussed the construction of a time-independent model designed to ex
amine the plausibility of the mechanism proposed for current sheet thinning in the late 
growth phase. This model uses the magnetic field provided by the semi-empirical magnetic 
field model of Tsyganenko [1996] (working in conjunction with the associated GEOPACK 
suite of subroutines) to calculate the specific entropy S on a cylindrical grid (uniform in the 
azimuthal angle ip, but non-uniform in the radial coordinate p). This calculation required 
the use of a pressure model. Lacking an appropriate pressure model, I developed one based 
on magnetostatic force balance with the magnetic field provided by Tsyganenko [1996].

Profiles of the specific entropy and related quantities along the midnight meridian were 
calculated to demonstrate how the specific entropy can be used to map the region of magne
topause erosion on the dayside magnetopause to a ‘flux reservoir’ in the near-Earth magne
totail. The extent of this reservoir was given as roughly ~ 9 R e to ~  15 Re in the near-Earth 
magnetotail. Mapping of contour lines in the equatorial plane yielded a location of this 
‘flux reservoir’ somewhere in the vicinity of ~  12  Re in the nightside magnetotail.

A parameter study was conducted to explore the effects of varying the input parameters 
of this model (the same as the inputs of Tsyganenko [1996] upon which it was based) upon 
the specific entropy. At any fixed location the specific entropy was found to vary by, at 
most, a factor slightly larger than two for the considered parameter variations.

This analysis has relied upon the assumption that the number of particles on a magnetic 
flux tube remains constant during convection—or that the departure from this condition 
can be safely neglected. This assumption is consistent with the constraint on the steady adi
abatic convection of magnetic flux tubes from the far magnetotail to the near magnetotail 
proposed by Erickson and Wolf [1980]. I analyzed in detail the energy flux into the iono
sphere required to allow steady convection. I found that the ionospheric energy flux that 
would result from slow, steady adiabatic convection of magnetic flux tubes is inconsistent 
(by several orders of magnitude) with the energy flux corresponding to auroral observations.

In summary the two central results from this chapter are the following.

• The specific entropy increases by several orders of magnitude from the near-Earth 
region at about 5 Re to the mid and far tail at distances larger than 40 Re - This 
increase is not significantly altered by any solar wind parameters.
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• The amount of energy that must be lost from a flux tube which convects Earthward 
is far in excess of the energy loss that could be accounted for through energy flux into 
the ionosphere.

Despite the utility of these models, they are hindered by their time-independent nature. 
The distribution of specific entropy in the magnetosphere is changed by the convection 

consistent with the conservation of this quantity. Only the development and use of a self- 
consistent time-dependent model can model this convection as it develops. The development 
of such a model is described in the following chapter.
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Chapter 3 

3D MHD Model— Properties

3.1 Introduction

The results of the study described in the previous chapter give confidence that the sug
gested mechanism for current sheet thinning indeed provides a plausible explanation for the 
observed current sheet thinning. I was able to utilize the properties of magnetic flux tubes 
to draw conclusions regarding the dynamics of the system in three dimensions. However, 
my earlier study was not self-consistent, in the sense that it used static average properties 
of the magnetosphere and did not consider dynamical configuration changes such as the 
evolution of the entropy distribution caused by slow convection.

In order to demonstrate that our mechanism for current sheet thinning can indeed 
operate, I have developed a self-consistent local MHD model in three dimensions. This 
model is used to study the effects of a plasma flow which diverges from the near-Earth 
tail, i.e., from the previously identified ‘magnetic flux reservoir’ region, toward the dayside 
magnetopause. I would like to see if this model supports my hypothesis that this flow will 
lead to the observed formation and thinning of a current sheet in the region of this ‘flux 
reservoir.’

The model has been developed through the coupling of the self-consistent three-dimensional 
magnetohydrodynamic code of Otto [1990] with the semi-empirical magnetic field model of 
Tsyganenko [1996]. The use of the model of Tsyganenko [1996] allows the proper treatment 
of Earth’s magnetic field in the near-Earth magnetotail. However, as noted, the Tsyga
nenko model only provides a magnetic field configuration, and is not an equilibrium model 
because it does not provide plasma pressure and density in the magnetosphere. To use the 
Tsyganenko model it is necessary to include plasma pressure and density and to generate 
an equilibrium which is suitable as an initial configuration for the MHD simulation.

This chapter describes this model. It is worth noting that this model not only provides a 
suitable initial condition for this simulation but can also be used to study in general the quiet 
time magnetotail configuration, i.e., field-aligned current distribution, etc. After discussing 
some basic aspects (namely, the governing equations solved by it, the numerical technique 
used, the non-uniform grid used in the simulation, and the normalization of quantities used 
in the model), I will turn to a discussion of the boundary conditions. Once that is done, I
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will be prepared to consider the generation of an appropriate initial equilibrium state for 
the simulation. Then I will discuss how boundary conditions simulating plasma outflow 
from the ‘flux reservoir’ region of the near-Earth magnetotail are imposed.

3.2 Governing Equations, Normalizations, and Grid

The simulation domain in shown in Figure 3.1. Expressed in terms of geocentric solar 
magnetospheric (GSM) coordinates, it extends from —45 Re <  x <  —5 Re downtail, 

—15 Re < y < +15 Re in the dawn-to-dusk direction, and 0 R e < z <  12 Re in the 
z-direction. Note that the origin of the simulation domain is displaced 5 R e downtail from 
Earth’s center (the origin of the GSM coordinate system). The equatorial plane of the 
magnetosphere is defined as z =  0 .

The model formed through the combination of Otto [1990] and Tsyganenko [1996] solves 
the following (normalized) MHD equations:

dp
dt =  - V  ■ (pv) (3.1)

d(pv)
dt

=  - V - pw  +  ( 2 ) (P +  b2) I _ b b (3.2)

db
dt

=  V x (v x b — pj)

dh , , f— = -  V • (hit) + ( ( 7 - 1 )
7

(3.3)

(3.4)

j =  V x b (3.5)

with

* = ( ! ) ’ , (3-6)

and where I is the identity tensor. The variables p, p, v, b, j, and ?/ represent the (nor
malized) mass density, thermal pressure, plasma velocity, magnetic field, current density,
and resistivity, respectively. The ratio of specific heats 7 , sometimes called the adiabatic
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Figure 3.1. Domain of the simulation. The figure is not to scale. The domain of the 
simulation is shown in purple. Note the displacement of the origin of the coordinate system 
used in the simulation from the origin of the GSM coordinate system by the distance 
rmi„ =  5 Re along the x-axis.
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Quantity Normalized value

Length 1 Re (6378 km)

Number density 1 cm - 3

Mass density 1.67 xlO - 2 4  g/cnt’

Magnetic field 20 nT

Plasma velocity 437 km/s
Time 14.6 s

Pressure 0.159 nPa

Table 3.1. Normalized values of simulation quantities

or polytropic index, is chosen to be | (appropriate for an isotropic plasma with three de
grees of freedom). Since this study is being performed within the realm of ideal MHD, the 
resistivity rj is set identically equal to zero.

The quantities in the equations above are dimensionless, having been normalized to 
‘typical’ or ‘characteristic’ values. Length scales in the model are normalized to the distance 
Lo =  1 Re (6378 km). Number densities are normalized to no =  1cm-3 . The characteristic 
mass density po is given by po =  mono, where mo is the characteristic mass of a constituent 
ion. For my purposes, mo is equal to the proton mass, as is appropriate for a predominantly 
hydrogen plasma. Magnetic fields are normalized to bo =  20.0 nT, the typical lobe magnetic
field. Plasma velocities are normalized to the Alfven speed v a =  -^===. Time is expressed

t b2in units of the Alfven time Pressures are normalized to the magnetic pressure
With the values given above, I find (again, for a predominantly hydrogen plasma) that the
typical Alfven speed va has the value of 437 km/s, while the characteristic Alfven time t a
is 14.6 s. The pressure is normalized to 0.159 nPa. These normalizations are summarized
in Table 3.1.

3.3 Numerical Solution of the Governing Equations

The governing equations are solved using the leapfrog scheme, an explicit finite differences 
method that is accurate to second order in both space and time [e.g., Fletcher [1991], Potter 

[1973]], i.e., the error is proportional to (A x)2. To start my discussion of this numerical
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Figure 3.2. Uniform grid in one spatial dimension and time. A uniform numerical grid in 
one spatial dimension (x ) and time (t). The index i indicates the position in space, whereas 
the index n indicates the ‘position’ in time. The grid spacing in x is Ax; the grid spacing 
in time is At. Note that At is sometimes called the ‘time step.’ The grid point (i,n) is 
indicated by a circle.

scheme, I will begin by considering a continuous scalar quantity /(x ,t )  that is defined in 
one space dimension (namely, x) and time t. Let us define it on a uniform discrete grid 
such as that depicted in Figure 3.2. I shall adopt the convention scheme of Fletcher [1991]. 
Accordingly, the value of /  at the position x =  x, at the time t =  tn is denoted by

f ?  =  f ( x i,tn). (3.7)

Returning to the governing equations (Equations 3.1 through 3.5), one sees that he must 
concern himself with first partial derivatives of various quantities in space and time. The 
central difference approximation of the first partial derivative of /  with respect to position 
x, evaluated at position x =  Xj and time t =  tn, is given by

d l
dx 2Ax

Similarly, the central difference approximation of the first partial derivative of /  with respect 
to time t, evaluated at position x =  x,; and time t — tn, is given by

» f n a r ' - i r ' )
dt , 2Ai ' '  ' '
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I now consider applying these expressions to the continuity equation (Equation 3.1); for the 

sake of simplicity, I restrict my considerations to one dimension. Then I have

dp d . . . .

For the sake of latet notational simplicity, I will introduce the mass flux

s =  pv. (3-11)

Then I can write Equation 3.10 as

% -  " I -
Discretizing the partial derivatives in Equation 3.12 in the manner illustrated in Equa
tions 3.8 and 3.9, I obtain

( p r ‘ - o r ‘ ) _  ( « ? « - ( 3 1 3 )
2A t 2Ax

r̂ n+1
Z 7 .A .^ 1  C O O l U l l  i U i  f

obtain the result
I can solve this expression for p" , the mass density at the next time step. Doing so, I

c = p t 1 -  ( £ )  (»?+i -  «?-i) • (3.i4)
One sees that the advancement of p at a particular position (x =  Xj)—that is, its solution 
at successive time steps—requires knowledge of its value at that position at the previous 
time step (t =  t„-  i), as well as knowledge of the mass flux s at the neighboring spatial 
points (x =  Xi- 1  and x =  Xj+i) at the current time (t =  tn). This dependence is illustrated 
in Figure 3.3.

Since the leapfrog scheme requires knowledge of quantities at the previous time step, 
another numerical scheme must be used to advance the governing equations to the first time 
step (that is, to solve these equations and obtain the values of all quantities at time t =  At). 
I use the Lax scheme to initialize the integration. The central difference approximation of 
first partial derivatives with respect to time (in the manner of Equation 3.9 are replaced by 
the forward difference approximation, which has the form
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Schematic:
Leapfrog

Figure 3.3. Leapfrog scheme in one spatial dimension. An illustration of the solution 
(Equation 3.14) of the one-dimensional mass continuity equation (Equation 3.1) for the 
mass density p at successive times through use of the leapfrog scheme. Note the dependence 
of the solution p" +1 at time t =  tn+\ on the mass density p” - 1  at the previous time step 
(t =  tn_ i) and the same spatial grid index (i), as well as its dependence on the mass fluxes 
s"+1 and s" _ 1 at the same time step (t =  tn) but neighboring spatial grid indices. Quantities 
at the indices (i,n) are not used in the solution; they are ‘leapt over.’ Also note that the 
solution proceeds on separate ‘sub-grids’ (depicted here in red and purple).

S f l ( / ? - / ? )
a t , =  At  ' (3' 15)

The central difference approximation is still used for the spatial partial derivatives. The 
mass continuity equation in one dimension now assumes the form

(Pi ~ P°) (s°+i ~ s°-i)
At 2Ax  ‘ [ }

Solving this expression for p\, I obtain

=P*~ ( 2̂ ) ^ +1 ~ ' (3'17)
Note that this solution depends only on quantities at the initial time step (t =  10 ). The 
Lax step is also used to complete the solution of the governing equations on the grid at the 
end of a simulation run and every time a full output of all data is generated.
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In extending the leapfrog scheme to two and three dimensions, one must take care to 
ensure that the neighboring grid points used to update a particular variable (such as the 
mass density) all correspond to the current time step. Circumventing the use of already- 
updated grid points results in the update of grid points in the leapfrog pattern that gives 
the scheme its name.

It should be noted that, strictly, the leapfrog method has no numerical diffusion, but 
suffers like other methods from numerical dispersion. Particularly, in the presence of strong 
gradients this can lead to strong grid oscillations. If and where these occur a small viscous 
or diffusive term is added to avoid this problem.

3.4 Boundary Conditions

The selection of boundary conditions for the simulation is an important, and often chal
lenging, part of the specification of the problem to be solved. This selection is dictated 
by the character of the system under study. A proper mathematical formulation of the 
boundary conditions requires the solution of the characteristics of MHD in three dimen
sions. Note that the ideal MHD equations are hyperbolic and have only real characteristics. 
While possible in principle, the solution of the boundary problem has not been solved in 
three-dimensional MHD. Resistive terms contribute an additional challenge. For practical 
purposes, boundary conditions either employ well-defined symmetries or are good “guesses” 
of the real conditions using physical intuition and experimentation.

The boundaries in this simulation can be divided into three categories, based on the 
manner in which the boundary conditions are determined at the boundary in question:

• the equatorial plane (z =  zmin =  0 ), at which the boundary conditions are determined 
by making use of the symmetry of the northern and southern lobes of the tail;

• the boundaries at xrnrn, ymin, Umax-, and zrnax, at which the physical behavior of the 
system variables and consideration of earlier studies is used to determine the boundary 
conditions; and

• the Earthward boundary at x max, at which physical consideration and a fair deal of 
experimentation are used to determine the boundary conditions.
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Figure 3.4. Physical and mathematical boundaries of the grid. A depiction of a two
dimensional grid in x and y. The indices corresponding to x and y are i and j , respectively. 
The portion of the mathematical boundary corresponding to the grid indices at i =  1 and 
j  =  1 is shown in red. The portion of the physical boundary corresponding to the grid 
indices i =  2  and j  =  2  is shown in green.

Boundary conditions are applied to all MHD variables (such as the mass density, veloc
ity, and magnetic field) after every time step (that is, after all field quantities have been 
advanced). Since the evaluation of first order spatial derivatives in the leapfrog scheme 

requires values at surrounding grid points, the grids in x, y, and z contain ‘mathematical 
boundary points’ that are used for the implementation of the boundary conditions, usu
ally by prescribing appropriate derivative conditions. This arrangement is illustrated for a 
two-dimensional (x,y) grid in Figure 3.4.

3.4.1 Boundary Conditions Applicable to All Boundaries

Before attending to the differences between the boundary conditions applied at different 
boundaries, I should first take a moment to consider the boundary conditions common to 
all boundaries. The mass density p and the pressure analogue h (and therefore the pressure 
p) are symmetric across all boundaries. The vanishing divergence of b (that is, the condition 
V • b =  0) is explicitly maintained at all boundaries except for the equatorial plane (where 
its application could break the symmetry across that boundary) and where the symmetry 
includes V • b =  0 as an initial condition.
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3.4.2 The Equatorial Plane (z = zmin =  0)

Some physical systems, such as the magnetosphere, possess certain symmetries that make 
the selection of the boundary conditions across certain planes of symmetry somewhat easier. 
The half of the system on one side of a symmetry plane is mirrored across that plane. If 
a quantity is symmetric across that plane, it has the same value on both sides of the 

symmetry plane. For instance, if the mass density p is symmetric across the plane 2  =  0, 
then p(x,y,z)  =  p(x, y, —z). If, on the other hand, that quantity is anti-symmetric across

that symmetry plane, then its value on one side of the symmetry plane is the negative of
its value on the other side; this also implies that the quantity is zero on the boundary. [If 
the mass density p is anti-symmetric across the plane 2  =  0 , then p(x, y, z) — —p(x: y, —2 ).]

In the case of the magnetosphere, two sets of symmetries present themselves. When 
IMF By — 0 and there is no dipole tilt, the magnetotail is symmetric across the noon- 
midnight meridian (y — 0 ). I utilize the symmetry of the magnetotail about the equatorial 
plane (2  =  0). The northern and southern lobes of the magnetotail are symmetric. This 
symmetry across the equatorial plane allows us to reduce our computational effort by half, 
since I can model just the northern portion ( 0  < 2  < zmax) of the magnetosphere and use 
symmetry to extend those results to the southern region (—zmax < 2  < 0). Furthermore, 
this symmetry—which is associated with the magnetotail current (separating the northern 
and southern lobes of the magnetotail) that serves as the source of the magnetic field in the 
lobes—remains robust enough for me to use it for my purposes in determining the boundary 
conditions across the equatorial plane.

Let us consider the implications of that symmetry for the components of b and v. Before 
proceeding, I should attend to some matters of terminology. I can write the magnetic field 
as

b =  b x & x  T b y G y  T b z G z . (3.18)

The quantities bx , by. and bz are the components of the magnetic field in the x, y, and
z directions, respectively. Those directions are given by the unit vectors e x, ey, and ez, 
respectively. Similar notation can be applied to v and its components.

If one follows a closed magnetic field line (that is, one anchored at both ends in the
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ionosphere) from the southern lobe of the magnetotail to the northern lobe of the mag
netotail (or vice versa), he finds that bx and by change sign across the equatorial plane. 

This reversal is illustrated in Figure 3.5. These components (tangential to the equato
rial plane) of the magnetic field are anti-symmetric across the equatorial plane. That is, 
bx(x,y ,z) =  —bx(x ,y ,—z) and by(x ,y ,z) =  —by(x ,y ,—z). On the other hand, the compo

nent of the magnetic field normal to the equatorial plane (namely, bz) is symmetric across 
that plane. That is, bz(x ,y ,z )  — bz(x,y, —z).

Considering the plasma flow, one can argue that the tangential components of the plasma 
velocity (vx and vy) must be symmetric so that the portions of a magnetic flux tube im
mediately above (northward) and below (southward) of the equatorial plane move with one 
another. That is, vx(x,y ,z) =  vx(x ,y ,—z) and vy(x ,y ,z) =  vy(x, y, — z). On the other 
hand, any motion of that field line perpendicular to the equatorial plane would destroy the 
symmetry of the system; and so the normal component of the plasma velocity (vz) must be 
zero in the equatorial plane, and anti-symmetric across that plane. That is, vz(x,y, 0) =  0 
and vz(x, y, z) =  - v z(x, y, - z ) .

3.4.3 The Earthward Boundary at x =  x max

The Earthward boundary at x =  x max is special in that it lies in the near-Earth region, 
wherein the magnetic field is making the transition from a dipole to a magnetotail con
figuration. The special nature of this boundary is not as evident during the relaxation of 
the system to an equilibrium (discussed in the next section). The Earthward boundary is 
subject to the same boundary conditions as those applied at x =  xm7;„, y  =  y min , y  =  y max> 
and z =  Zmax during the relaxation. The Earthward boundary plays a critical role in the 
later portion of the research, when a special outflow boundary condition is imposed on 
this boundary to simulate the depletion of the near-Earth ‘flux reservoir.’ This boundary 

condition is discussed in more detail in Section 4.1, because the applied outflow leads to the 
associated current dynamics. Here I discuss only the boundary conditions as applied to the 
relaxation to the initial equilibrium configuration.
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Figure 3.5. Illustrations of symmetries and anti-symmetries across the equatorial plane, 
a) Two dimensional sketch of a portion of a magnetotail magnetic field line lying in the 
noon-midnight meridian (x,z) plane. The magnetic field is decomposed into its x and z 
components at three points along the magnetic field. Note that the x-component bx changes 
sign as one passes from below (z < 0 ) to above (z > 0 ) the equatorial plane (2  =  0 ). b) 
Perspective sketch of a magnetic field line lying out of the noon-midnight meridian plane. 
The magnetic field is decomposed into its x and y components at two points along the 
magnetic field line. Note that both the x-component bx and the y-component by changes 
direction as one passes from below (z < 0 ) to above (z >  0 ) the equatorial plane (2  =  0 ).
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3.4.4 The Boundaries at x — s-mm? y — j/mwM y — ymaxi und z — %max

The boundaries at x  =  x min, y  =  y min , y  =  y max> and z =  zmax are chosen so that 
the system lies within the magnetopause, so that the additional challenges of modeling 
that boundary are avoided. Note that the same physics could be modeled with a global 
simulation, i.e., one which contains the entire magnetosphere embedded in the solar wind. 
However, such a model is not able to provide the required high resolution needed to model 
the dynamics of current sheet thinning appropriately. Determination of the appropriate 

boundary conditions to apply at these boundaries (again, at x  =  x min , y  =  y mtn , y  =  ym ax> 
and 2 =  zmax ) requires some degree of experimentation and input from earlier numerical 
studies of relevance (e.g., Otto [1990], Hesse and Bim [1993]). A summary of the actual 
applied boundary conditions is presented in Table 3.2. The normal component of the plasma 
velocity v is set equal to zero at these remaining boundaries. The tangential components 
of v are symmetric across the boundaries at x — xr„jn, y  =  y min , and y  =  ym ax• On 
the other hand, the tangential component of v at 2  =  zmax is anti-symmetric across that 
boundary. As explained in Section 3.4.1, the mass density p and thermal pressure p are both 
symmetric across all these boundaries. The tangential components of the magnetic field at 
these boundaries are symmetric. The maintenance of the divergence-free condition on b 
(that is, V • b =  0) on these boundaries determines the behavior of the normal component 
of the magnetic field across them.

3.5 Relaxation of the Initial Configuration to an Equilibrium State

The combination of the 3D MHD code of Otto [1990] with the semi-empirical magnetic field 
model of Tsyganenko [1996] allows me to establish an initial magnetic field configuration 
that properly includes the influence of Earth’s strong dipolar magnetic field in the near
Earth magnetotail. However, this initial configuration is not in force balance (that is, the 
net force density is not zero everywhere in the system). The Tsyganenko [1996] model is 
only a magnetic field model; it does not incorporate plasma pressure and density. Hence 
force balance is not relevant to the Tsyganenko [1996] model.

In order to generate an acceptable equilibrium configuration, I must first introduce 
plasma pressure and density, and then allow the resulting system to relax to an equilibrium 
state from which I can start the plasma outflow. For a study such as this, it is absolutely
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xmin Xmax Vmini Umax Zmin Zmax

p Symm. Symm. Symm. Symm. Symm.

Vx 0 Special 0 Symm. 0

Vy 0 Special 0 Symm. 0

Vz 0 Special 0 Anti-symm. 0

bx <1 O' II o <1 o' II o Symm. Anti-symm. Symm.

by Symm. Symm. ! < O' II o Anti-symm. Symm.

bz Symm. Symm. Symm. Symm. V • b  =  0

P Symm. Symm. Symm. Symm. Symm.

Table 3.2. Summary of boundary conditions on the velocity and magnetic field used in the 
simulation. Magnetic field components identified with the entry V  • b  =  0 are determined 
through use of the divergence-free condition on the magnetic field on that boundary. Vari
ables denoted by the designation “Symm.” are symmetric across the boundary in question, 
whereas those denoted by the designation “Anti-symm.” are anti-symmetric across the 
boundary in question. The entries “Special” pertain to the velocity boundary conditions 
at xmax. During the ballistic relaxation, vx =  vy =  vz =  0. Once the initial equilibrium 
configuration has been established, these velocity components are specified in the manner 
discussed in Section 4.1.
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crucial to start with an equilibrium state; otherwise the effects of the plasma outflow cannot 
be distinguished from the dynamics resulting from a non-equilibrium configuration. Note 
also that the magnetosphere is very close to equilibrium during quiet times such as the 
growth phase.

As suggested in Chapter 1 , many authors have addressed issues concerning equilibrium 
configurations of the magnetosphere (e.g., Chodura and Schluter [1981], Voigt and Wolf 
[1988], Hesse and Bim [1993], Lee et al. [1995], Voigt [1996], Lemon et al. [2003]). My 
approach is based on the ‘ballistic relaxation’ described by Hesse and Bim [1993]. Over 
the course of a run establishing an equilibrium state (referred henceforth as an “equilibrium 
run” ), the system is subjected to several intervals (in time) during which this relaxation is 
applied.

During such a relaxation interval, the system first evolves freely, thereby relaxing unbal
anced forces (and converting magnetic energies into kinetic energy). At the end of each such 
interval the plasma velocity is set equal to zero everywhere in the simulation domain. This 
results in the removal of the plasma kinetic energy throughout the domain and a successive 
relaxation of unbalanced forces. This technique is strictly a computational tool designed to 
evolve the system toward an equilibrium.

A specific example might serve to better illustrate the relaxation process. Table 3.3 
displays the parameters (namely, the starting time step Na and the period rr for each 
relaxation interval) pertaining to the relaxation for a particularly successful ‘equilibrium 
run.’ The time step At was equal to 0.01 t4  during this run. The ballistic relaxation 
technique is first applied (that is, the plasma velocity is set to zero everywhere in the 
simulation domain) at time t — 2 £4 . It is applied again at times t. — .3 £ 4  and t =  4 £4 . 
The interval from t =  2 £ 4  to t =  4 £ 4  constitute the first ‘relaxation interval.’ This 
first relaxation interval is followed immediately by another relaxation interval (starting at 
t, =  A tj\). during which ballistic relaxation is applied every rr =  2 £4 . That is, the ballistic 
relaxation is applied at times t =  4 £4 , t =  6  tA, and £ =  8  £4 . The time from t =  4 tA 
to t =  8  tA constitutes the second relaxation interval. During the third relaxation interval, 
starting at £ =  8  £4 , the ballistic relaxation is applied every Tr =  4 £4 , up until £ =  40 £4 .

Table 3.3 illustrates that I change the period rr for setting the velocity to zero from 
each relaxation interval to the next. This is motivated by the following considerations. The
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Starting time of relaxation interval ta Period rr of relaxation (tA)

2 1

4 2

8 4

40 0.4

44 4
72 0.4

76 8

96 0.4

1 0 0 4

Table 3.3. Relaxation parameters for a sample ‘equilibrium run.’ The time step during this 
run was At =  0.01 tA■ Ballistic relaxation was discontinued at t =  120 tA-

system has unbalanced forces on small and large scales. Carrying out the relaxation with 
relatively short relaxation periods will help to remove small-scale forces. However, running 
the relaxation only with small relaxation periods would lead to a very long relaxation 
time scale for the removal of large-scale forces. This process is accelerated by using longer 
relaxation periods. The system undergoes relaxation intervals with alternately frequent 
and infrequent applications of the ballistic relaxation until it is decided that the system has 
relaxed to a sufficient extent. But how is that decided?

It is useful to have a quantitative measure in order to follow the approach of the system 
to equilibrium. Following the convention of Hesse and Bim [1993], I define the ‘force norm’ 
as

N  =  [  ( -V p  + j  x b ) 2 dV. (3.19)
Jv

This quantity is a measure of the unbalanced forces throughout the system. The volume 
integral is evaluated throughout the total system volume V. Figure 3.6 illustrates the value 
of the force norm through the course of an ‘equilibrium run.’ The force norm is seen to 
decrease by four orders of magnitude during the run. Although the length of an equilibrium 
run can be arbitrarily long (leading to arbitrarily small values of the force norm, limited 
only by numerical errors), practical considerations led me to consider this reduction of the
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Force Norm

t

Figure 3.6. Force norm. The force norm throughout an equilibrium run. The horizontal 
axis is the time in units of the Alfven time (tA)- The vertical axis is the (normalized) force 
norm.

force norm to be sufficient for my purposes.
As a second measure the maximum magnitude of the plasma velocity throughout the 

system is also used to monitor the the approach of the system to an equilibrium state. 
Figure 3.7 shows the plot of this quantity corresponding to the system used in Figure 3.6. 
The application of the ballistic relaxation—periodically setting the plasma velocity to zero 
everywhere in the system—is explicitly demonstrated in this figure.
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M ax im u m  Veloci ty Magni tude in System

t

Figure 3.7. Maximum velocity magnitude. The maximum magnitude of the plasma velocity 
throughout an equilibrium run. The horizontal axis is the time in units of the Alfven time 
(tA)- The vertical axis is the (normalized) velocity magnitude. Note that this run is the 
same as that for which the force norm is displayed in Figure 3.6.

3.6 Description of the Initial Equilibrium State

We will find it helpful to acquaint ourselves with the initial equilibrium state before consid
ering the evolution of the system under the plasma outflow boundary conditions (discussed 
in Section 4.1). Doing so will also allow us the opportunity to compare this initial equi
librium state with the decidedly non-equilibrium state of the system at the start of the 
ballistic relaxation.

I will begin by considering the magnetic field at the Earthward boundary. Figure 3.8 
shows this quantity at the beginning of the relaxation, while Figure 3.9 shows it at the end
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time = 0.01
x = 0.0

—> = 9.90 Magn. Field By/Bz

-12 -6 0 6 12
y

Figure 3.8. Non-equilibrium magnetic field at the Earthward boundary. The magnetic field 
at the Earthward boundary (x =  x rnax =  0) at t =  0.01 t^, shortly after the beginning of 
the relaxation. Arrows show the direction of the tangential magnetic field b t =  byey +  bze z, 
while colors give the value of the normal magnetic field component bx .

time = 130
x = 0.0

= 11.1 Magn. Field By/Bz

-12  -6  o 6  12

Figure 3.9. Equilibrium magnetic field at the Earthward boundary. The magnetic field at 
the Earthward boundary (x  =  x rnax) at t =  130 t^, at the end of the relaxation. The same 
convention used in Figure 3.8 is used here.
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time = 0.01
y = 0.1

= 117 Magn. Field Bz/Bx

0 -5 -10 -15 -20
x

Figure 3.10. Non-equilibrium magnetic field near the noon-midnight meridian. The mag
netic field in the plane y =  0.1 at t =  0.01 tA, very early in the relaxation. Arrows show 
the direction of the tangential magnetic field b< =  bxex +  bzez, while colors give the value 
of the normal magnetic field component by.

time =130
y = 0.1

= 11.8 Magn. Field Bz/Bx

X

Figure 3.11. Equilibrium magnetic field near the noon-midnight meridian. The magnetic 
field in the plane y =  0.1 at t — 130 tA, at the end of the relaxation. The same convention 
used in Figure 3.10 is used here.
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of the relaxation. The magnetic field at this boundary does not change appreciably in the 
course of the relaxation from the T96 configuration used for its initialization. This point 
is also illustrated in Figure 3.10, which shows the magnetic field in the plane y =  0.1 at 
t =  0.01, and Figure 3.11, which shows the corresponding plot at the end of the relaxation.

Now let us turn to the density and pressure in the noon-midnight meridian (y =  0) at 
two different times—at the beginning of the relaxation (at time t =  0 .0 1  and at the 
end of the relaxation (at time t =  130 Ia )- These profiles are shown in Figure 3.12 and 
Figure 3.13. One sees that the density decreases in the lobes as the relaxation proceeds. 
At the end of the relaxation, the high-density and high-pressure regions are confined to the 
vicinity of the equatorial plane, in the region that is identified as the plasma sheet. The 
maximum and minimum values of both the density and pressure decrease by the end of the 
relaxation.

Next let us consider the current density in the noon-midnight meridian (y — 0). These 
profiles are shown in Figure 3.14 and Figure 3.15. We see that the region of appreciable 
current density (with values denoted by reds and yellows in the figure) has greater extent 
at the end of the relaxation. At t =  0.01 tA, this tailward extent of this region is roughly 
— 8  < z < —3, whereas its extent in z is roughly 0 < z <  1.8. The corresponding ranges of 
values at time t =  130 tA are —12 < x < —2.8 and 0 < z <  2.5. Over the course of the 
relaxation the maximum magnitude of the current density decreased from 1.39 to 0.90— 
a decrease of slightly over 35%. The current density profile at the end of the relaxation 
(Figure 3.15) assumes a profile that is similar to those of the density and pressure at that 
time (Figure 3.13).

Figure 3.16 and Figure 3.17 show the current density at the Earthward boundary near 
the beginning (t =  0.01) and at the end (t =  129), respectively, of the relaxation. The 
regions of strong current extend to larger values of z at the end of the relaxation than they 
had at the beginning. This change is more prominent for larger values of \y\. Figure 3.18 
shows the current density in the plane x =  —5.2, near the maximum in the current density 
show in Figure 3.15. The closure of the current density is shown in the equatorial plane in 

Figure 3.19.
Let us focus for a short while on the field-aligned currents at the Earthward boundary. 

We see that the field-aligned current structure at the Earthward boundary (x =  x max)
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Figure 3.12. Non-equilibrium density and pressure in the noon-midnight meridian. The 
density and pressure in the noon-midnight meridian (y =  0 ) at t =  0 .0 1  tA, at the beginning 
of the relaxation.
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time = 130
y = 0.0

10.0
Density

10.0

45.39 [

34.42

23.45

12.49

1.521

45.39 f

34.42

23.45

12.49

1.521

Figure 3.13. Equilibrium density and pressure in the noon-midnight meridian. The density 
and pressure in the noon-midnight meridian (y =  0) at t =  130 tA, at the end of the 
relaxation.
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time = 0.01
y = 0.0

Curr. Dens. Jy

X

Figure 3.14. Non-equilibrium current density in the noon-midnight meridian. The y- 
component of the current density in the noon-midnight meridian (y =  0 ) at t =  0 .0 1  t a , at 
the beginning of the relaxation.

time = 130
y = 0.0

Curr. Dens. Jy

0 -5 -10 -15 -20
x

Figure 3.15. Equilibrium current density in the noon-midnight meridian. The y-component 
of the current density in the noon-midnight meridian (y =  0) at t =  130 t^, at the end of 
the relaxation.
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time = 0.01
x = 0.0

—=> = 0.94 Curr. Dens. Jy/Jz

y

Figure 3.16. Non-equilibrium current density at the Earthward boundary. The current 
density at the Earthward boundary (x — x max) at t — 0.01 tA, at the beginning of the 
relaxation. The arrows represent j t =  j yey +  j 2e2, the component of the current density 
that lies in this plane. The colors give the value of j x, the component of the current density 
that is normal to this plane.

tim e = 130
x = 0.0

—> = 0.77 Curr. Dens. Jy/Jz
10.0 ‘  ~

7.5
z

5.0

2.5 

0.0
-12 -6 0 6 12

Figure 3.17. Equilibrium current density at the Earthward boundary. The current density 
at the Earthward boundary (x =  xmax) at f =  130 tA, at the end of the relaxation. The 
same convention used in Figure 3.16 is used here.
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Figure 3.18. Downtail current density. The current density in the plane (x — —5.2) at 
t =  130 tA, at the end of the relaxation. The same convention used in Figure 3.16 is used 
here.

time = 130 Curr. Dens. Jx/Jy
0.02

0.01

o.oo

- 0.01

- 0.02

Figure 3.19. Equilibrium current density in the equatorial plane. The current density in the 
equatorial plane (z =  0) at t =  130 t^, at the end of the relaxation. The arrows represent 
it — jxe x +jy&y, the component of the current density in this plane. The background color 
represents the value of j z, the component of the current density that is normal to this plane.
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J parallel
10.0 '  "

7.5 
z 

5.0

2.5 

0.0
-12 -6 0 6 12

y

Figure 3.20. Non-equilibrium field-aligned currents at the Earthward boundary. Field- 
aligned currents at the Earthward boundary (x =  x max) at t — 0.01 tA, at the beginning of 
the relaxation.

time = 0.01
x = 0.0

time = 130
x = 0.0

J parallel
10.0 ‘  **

7.5 
z 

5.0 

2.5 

0.0
-12 -6 0 6 12

y

Figure 3.21. Equilibrium field-aligned currents at the Earthward boundary. Field-aligned 
currents at the Earthward boundary (x =  x rnax) at t =  130 tA, at the end of the relaxation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

changes form appreciably in both sense and structure over the course of the relaxation. 
The field-aligned currents there at the beginning of the relaxation (t =  0.01 Ia ) are shown 
in Figure 3.20, whereas that system at the end of the relaxation (t =  130 <a) is shown 
in Figure 3.21. We see that these field-aligned currents reverse direction by the end of 
the relaxation. Although there are similarities between the structure at the beginning of 
the relaxation and at its end, we see that the stronger currents at higher values of z have 
bifurcated. This field-aligned current system at the end of the relaxation has the sense of the 
Region-2 field-aligned current system. There is a weaker current system at smaller values 
of z that has the same sense as the Region-1 field-aligned current system. The Region-1 
currents map to high latitudes in the ionosphere; the Region-2 currents map equatorward 
of the Region-1 currents. I have found that the sense of these field-aligned current systems 
depend sensitively to the manner in which the pressure is calculated. I continue work to 
better understand this dependence.

It serves one to compare the total acceleration at the beginning of the relaxation (at 
t =  0.01 Ia ) and at its end (t =  130 t^). The total acceleration in the plane y =  0.1, near 
the noon-midnight meridian, at these two times are shown in Figure 3.22 and Figure 3.23. 
These figures show two-dimensional cuts of the acceleration in the interior of the simulation 
domain. The acceleration on and immediately inside the simulation boundaries have not 
been plotted since it would overwhelm that in the interior. Note that this practice is 
consistent with the calculation of the force norm shown in Figure 3.6, which is calculated 
only in the interior of the simulation domain.

The magnitude represented by the reference arrow in Figure 3.22 is slightly more than 
three times the size of the corresponding arrow in Figure 3.23. One also sees that the range 
in the values of the normal component of the acceleration is slightly larger in Figure 3.22 
than in Figure 3.23. But it is important to consider the structure of the acceleration profiles 
in the system.

One finds Figure 3.22 dominated by two structures: one extending from —5 < x <  —2.5 
and 2.5 < z < 10 and the other extending from —2.55 < x < 0 and 0 < z < 2.5. The struc
ture at large values of z features large values of the tangential acceleration at its boundary 
at x =  —2.5 throughout much of its extent in z. It features a smaller region, extend
ing from 5 < z < 7.5, in which the normal component of the acceleration is appreciable.
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time = 0.01
y = 0.1

1.78e-03 r

6.88e-04

-4.05e-04

-1.50e-03

-2.59e-031

Figure 3.22. Total acceleration at the beginning of the relaxation. The total acceleration 
in the plane y =  0.1 at t =  0.01 tA, at the beginning of the relaxation. The arrows depict 
the acceleration at that is tangent to the plane (a* =  axex +  aze z). The color bar give the 
value of the component of the total acceleration that is normal to the plane (an — ay).

: 0.04
10.0

Total Accel. (a_tot)_z/(a_tot)_x

time = 130
y = 0.1

1.78e-03[

6.88e-041

-4.05e-041

-1.50e-031

-2.59e-031

Figure 3.23. Total acceleration at the end of the relaxation. The total acceleration in the 
plane y =  0.1 at t =  130 tA, at the end of the relaxation. The same conventions used in 
Figure 3.22 are used here.
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The structure at smaller z features appreciable tangential acceleration throughout much of 
its domain, as well as large magnitudes of the normal acceleration increasing toward the 
Earthward boundary.

Looking at Figure 3.23, one finds that the large ordered structures found in Figure 3.22 
are gone. There is a region near the Earthward boundary, extending from 2.5 < z < 5, 
where there are the normal component of the acceleration assumes large values. There 

is also a patch of high normal acceleration at (x,z) =  (-4.8,5.1). There are two isolated 
instances of large tangential acceleration, namely at (x,z) (1,2.5) and (x,y) =  (1,4.5). There 
is a region of smaller tangential acceleration extending from —10 < x <  — 6  and 3 < z <  5. 
On the whole, the region of high acceleration at the end of the relaxation is mostly confined 
to the vicinity of the Earthward boundary.

I conclude by considering the distribution of the specific entropy in the equatorial plane 
for the initial equilibrium state, shown in Figure 3.24. Upon considering this figure along 
with Figure 2.4 (and keeping in mind that the origin of the x-axis in the simulation units 
of the former is offset 5 Re from the origin of the x-axis in the latter) it seems that specific 
entropy contours in the range — 2 2  < x < — 1 0  (in simulation units) are relatively ‘flat’ (that 
is, remaining at the same value of x) in the vicinity of the noon-midnight meridian until 
drawing close to the dawn and dusk boundaries of the simulation domain. Contours lying 
further tailward bulge toward Earth, with these bulges growing increasingly prominent as 
one moves tailward.

3.7 Discussion and Summary

This chapter began with a discussion of basic aspects of the model, namely:

• the simulation domain

• the normalized equations solved by the simulation code, as well as the manner of their 
solution

• the normalization of quantities in the simulation

• the boundary conditions used in the simulation
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Specific Entropy S = H**gamma

0 -10 -20 -30 -40
Specific Entropy S = PV**gamma time = 130

0 -10 -20 -30 -40
x

Figure 3.24. Specific entropy at the end of the relaxation. The specific entropy S at the 
time t =  130 tA- Colors are used to denote the value of the specific entropy (in simulation 
units). Contour lines are also provided. The top panel shows the specific entropy calculated 
using the expression S =  H 1. The lower panel shows the specific entropy calculated using 
the equivalent expression S =  P V y.
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That discussion gave way to another concerning the relaxation of the initial configuration 
to an equilibrium state (from which the plasma outflow can be instituted). The chapter 

ended with a discussion of the resulting initial equilibrium state.
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Chapter 4

3D MHD Model— Outflow Boundary Condition and Results

4.1 Specification of the Outflow Boundary Condition

Once I have obtained a satisfactory equilibrium configuration, I need to apply the plasma 
flow toward the dayside as an outflow condition at our Earthward boundary (at x max). In 

the real magnetosphere this flow is caused by erosion (through magnetic reconnection) at the 
dayside which causes a flow channel at a radial distance of about 1 0  R e from the nightside 
to the dayside. The velocity in this channel is determined by the global reconnection rate 
which is approximately given by the cross polar cap potential. Thus each (westward and 
eastward) channel transports approximately the magnetic flux corresponding to half the 
cross-polar cap potential.

The outflow causes the evacuation of the flux reservoir located in the near-Earth mag
netotail. This boundary condition is applied by mapping an azimuthal velocity profile 

specified in the equatorial plane to the Earthward boundary.
The velocity magnitude and width of the channel should be scaled with the observed 

flux transport rate. In order to speed up the simulation, the simulated transport is chosen 
to be slightly higher than observed. The outflow boundary condition is instituted shortly 
after the end of the relaxation.

4.1.1 Specification of Azimuthal Velocity Profile in the Equatorial Plane

I begin by specifying the velocity profile in the equatorial plane. The mapping of this profile 
to the Earthward boundary will be discussed in the following subsection. The velocity profile 
in the equatorial plane has the form

v =  v^e^. (4.1)

Here v<p is the azimuthal component of the velocity in the equatorial plane (with the origin 
at Earth’s center) and is the unit vector in the azimuthal direction. Note that this 
velocity has no radial component. (That is, vr =  0.) The azimuthal component depends on 
both r and ip

v{p= v ip(r,tp) (4.2)
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Parameter Value (in normalized units) Value (in physical units)

ro 9.0 9.0 Re

re 1 .0 1 .0  Re

rw 0.5 0.5 Re

yo 1 0 .0 1 0 .0  Re

ye 2 .0 2 .0  Re

*e 2.5 2.5 Re

vo 0.222991 97.45 km/s

to 0 .2 2.92 s

tst 130 31.6 minutes

$>E 1.035 57.7 kV

Table 4.1. Typical Outflow Parameters

and is chosen to have the form

V<P ( r ,  <f) =  2v0f(r )
( < p -  7T)

7T
(4.3)

Here vo is the characteristic speed of the outflow and the p dependence is chosen so that 
the flow is divergent in the midnight sector. (As shown in Figure 4.1, <p is measured from 
the Sunward direction.) The function f (r )  is designed to limit the outflow to an annular 
region in the equatorial plane. It is given by

f ( r ) = tanh (r -  r0 +  re) — tanh (r -  r0 -  re) } (4.4)

It has a magnitude near unity in the annular region wherein the outflow lies. It quickly, but 
smoothly, decreases to zero outside this ‘outflow channel.’ The values of the parameters ro, 
re, and rw are given in Table 4.1. Note that the form of v.„ (r, ip) ensures that its magnitude 
at both (p =  | and <p =  ^  is no scaled by the factor /(r ) ;  it also ensures that the direction 
of the flow is correct. (Please refer to Figure 4.1.)

In order to implement this outflow profile in the simulation code, it must be expressed in 
Cartesian coordinates. The azimuthal unit vector e.:„ can be decomposed into its Cartesian

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

A?

Figure 4.1. Specification of the plasma outflow at the Earthward boundary (x =  Xmax). On 
the left is shown the simulation domain, with the imposed plasma outflow from y =  0  in the 
equatorial plane being depicted by open arrows. The Earthward boundary of the simulation 
box is shown in red. Note that the origin of the coordinate system used in the simulation is 
displaced from the origin of the GSM coordinate system by the distance rmjn — 5 Re along 
x. The Earthward boundary lies at x =  0 in the simulation domain; but it is located at 
x g s m  =  —Xmin in GSM coordinates. That is, the Earthward boundary of the simulation is 
located 5 Re downtail from Earth. On the right is shown the polar geometry used to specify 
the outflow in the equatorial plane (viewed from above). Open arrows depict plasma flow. 
The ‘flow channel’ lies in the limited radial range depicted in blue. Note that the angle <p 
is measured from the x-axis.
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components:

e v =  — sin (ip) ex +  cos (ip) ey. (4.5)

Here ex and ey are the unit vectors in the directions of x and y, respectively. Now I can 
write the velocity in terms of its x and y-components.

v =  vx (r, <p) ex +  vy (r, <p) ey,

with

vx (r,<p) =  —2 t>0 / ( r )  

Vy (r, <p) =  2vo f (r )

( ip -  it)
7T

7T

sin (p) 

cos (ip).

Since

sin (ip) =
r

and

x

while the radius is given by

cos (<p) =
r

=  (x2 +  y2) \

I can write

vx (r,tp) =  —2 i>0 / ( r ) 

vy (r,ip) =  2 v0f(r )

' ( ip -  7T)' y
7r _(x2 +  y2 ) 5 _

'(<p- it)' X
TV _(x2 +  y2 )5_

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

These expressions use GSM coordinates, rather than simulation coordinates. To write them 
in terms of the simulation coordinates, one must take into account the displacement of the
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origin of the simulation along the x-axis by the distance rmvn =  5 Re - If one applies the 
transformation

x x  +  rmin (4.14)

the results above will be expressed in simulation coordinates. Typical parameters used to 
specify this imposed velocity profile in this study are shown in Table 4.1.

4.1.2 Mapping of the Equatorial Velocity Profile to the Earthward Boundary

The actual formulation of the outflow boundary condition is a non-trivial problem. A rigor
ous approach to MHD boundary conditions would require the solution of the characteristics 
of the MHD equations for the actual configuration. However, the problem has not been 
solved for a general three-dimensional system. Therefore any 3D MHD boundary condition 
except for cases with a defined symmetry (e.g., the equatorial plane in our simulation) is 

usually a more or less intelligent guess. The choice of boundary conditions is subject to 
a number of constraints depending on the specific situation. In this case the challenge is 
to move not only plasma but also magnetic flux through a boundary in a continuous and 
smooth manner, i.e., without causing extreme currents that will ultimately lead to the ter
mination of a simulation. In initial attempts I specified an outflow profile at the Earthward 
boundary without considering the magnetic field structure inside the simulation. Despite 

a large number of variations on the outflow conditions, attempts to apply smoothing and 
diffusion (to suppress high current densities), etc., these efforts were not successful. I finally 
came to the conclusion that a specified outflow has to consider the structure of the magnetic 
field that maps into the outflow region. The assumption of the outflow channel (Equations 
4.12 and 4.13) finally provided a solution to the outflow problem. For the actual mapping I 
used two methods, one of which would map the convection electric field from the equatorial 
plane along the magnetic field to the Earthward boundary. The other one would ensure a 
rigid rotation of field lines for this mapping. Since the second method proved slightly better 
I describe it in more detail. While these methods did not yield the desired duration for the 
runs, they did improve stability greatly and allowed the results presented here.

Consider a magnetic field line that connects a point on the Earthward boundary with a 
point on the equatorial plane. If one assumes that this magnetic field line moves as a rigid
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body, then those two points will move with the same angular velocity ip =  Since the 

magnitude of the azimuthal velocity of the point on the equatorial plane, located at the 
radial distance req, is given by

('vv)\eq =  reqV>. (4-15)

I can write

. KOI eqtp = --------
feq

Similarly, the magnitude of the azimuthal velocity of the corresponding point 
ward boundary, located at the radial distance 7-5 , can be written as

(4.16) 

on the Earth-

K )l  b =  rbV- (4.17)

I can use Equation 4.16 to write

K ) l t  =  rb
K )l eq

' eq
(4.18)

or

K ) l t  =  ( ) K ) l
’ eq

i eq (4.19)

The magnetic field line passing through each point on the Earthward boundary is traced 
to the equatorial plane to determine the location of its footpoint on the equatorial plane. 
Once that location is known, req can be readily calculated. Since (v )̂\ is the specified 
outflow velocity given by Equation 4.3, I can use Equation 4.19 to compute the velocity 
field on the Earthward boundary. I invoke Equation 4.19 to write the x and y components 
of the velocity at the Earthward boundary as

[ K ) U X —
rb
eq

K )| eq (4.20)

a n d

[K)I&L — ( „  ) K ) leq
1 eq (4.21)
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where and [(%>)!{,],, are given by Equations 4.12 and 4.13, respectively. These
expressions are applied to the specification of the mass flux at the Earthward boundary:

(s )̂lb =  Pb [(*V)lf>];r (4.22)

(sy)lb =  Pb • (4-23)

4.2 Evolution of the System under the Influence of the Outflow Boundary 
Condition

4.2.1 Outflow and Magnetic Flux Transport

In the following section I will discuss and analyze one specific case in more detail. This case 
is representative of several runs that gave very similar results. Parameters that I varied for 
these runs include the frequency with which the magnetic field line tracing was performed 
and the application of anti-symmetry of sx across the Earthward boundary. The main 
objective for these variations was the attempt to maintain the simulation for about 120 
to 160 Alfven times (corresponding to the 30 to 40 minute growth phase). However, the 
best runs have durations of 7 to 12 minutes, short of the ~30 minutes expected for drastic 
thinning. However, the results show the beginning of current sheet thinning, documenting 
the dynamics associated with current sheet thinning, and allow one to determine the rate 
of current sheet thinning. For these reasons I believe I are justified in focusing on one 
particular case.

The outflow described in the last section is imposed at t =  130 t/1, immediately after the 
end of the relaxation. The velocity profile in the plane z =  0.03, just above the equatorial 
plane, at t =  135 t,j\ is shown in Figure 4.2. The arrows in this figure represent the velocity 
vt — vxex +  VyVy in this plane. The colors represent the value of vz, the velocity component 
that is normal to this plane. Although there is some slight variation in vz, the velocity in 
the z-direction is less than 0.01 (in simulation units) in this plane. The imposed azimuthal 
flow pattern is clearly dominant. This flow was discussed in Section 4.1.1 and sketched in 
Figure 4.1. Again, the parameters corresponding to this flow are shown in Table 4.1. This 
flow is divergent, increasing in magnitude as one moves to larger values of \y\; the velocity
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tim e = 135
z = 0.03 

0.00431-  12
Velocity Vx/Vy

0.0024

0.00055 ■  0

-0.0013 ■  -6

-0.0032 ■  -121

Figure 4.2. Velocity profile immediately above the equatorial plane. The imposed velocity 
profile in the plane z =  0.03, just above the equatorial plane, at t =  1351,4. The arrows 
represent the tangential velocity v t =  vxex +  vyey. The colors represent the value of the 
normal velocity component vz.
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time = 135
x = 0.0

= 0.07 Velocity Vy/Vz
10.0

7.5
z

5.0

2.5

0.0
-12 -6 0

y
6 12

Figure 4.3. Velocity profile at the Earthward boundary. The velocity profile mapped to 
the Earthward boundary (x =  x max =  0) at t =  135 tA- The arrows represent the velocity 
v t =  v y Gy +  v ze z in this plane. The colors represent the value of vx, the velocity component 
that is normal to this plane.

is zero along y =  0. The flow is confined to a narrow annular channel. The width of this 
channel corresponds to the narrow downtail extent of the ‘magnetic flux reservoir.’ It is 
worthy that there is rather little flow from downtail of this flow channel. This confirms that 
such flow is greatly restricted by the conservation of specific entropy.

The velocity mapped to the Earthward boundary at that same time is shown in Fig

ure 4.3. Here the arrows represent the velocity v t =  vyey + vze z tangential to the Earthward 
boundary. The colors represent the value of vx, the component of the velocity normal to this 
boundary. One sees that the outflow is confined to two regions of the Earthward boundary 
lying near the equatorial plane. The flow along the Earthward boundary lies nearly entirely 
in the y-direction; that is, vz is quite small compared to vy in this plane. The magnitude of 
vx is comparable to vy. One sees that vx has two maxima corresponding to the two ‘edges’ 
of the outflow seen near the Earthward boundary in Figure 4.2.

Note that the characteristic magnitude vq =  0.222991 that is used here (as given in 
Table 4.1) is over four times the value used, in Section 1.5 in Chapter 1 and Appendix E, 
to estimate the time needed to evacuate the magnetic flux reservoir. Accordingly, I expect
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that the time needed to evacuate the flux reservoir, using these flow parameters, should be 
reduced by a corresponding factor of four from that estimated earlier. Given the character
istic Alfven time of the simulation is =  14.6 s, the estimate of 30 minutes given earlier 
corresponds to approximately 123 tA- Since I am using a characteristic outflow speed that 
is four times the expected physical value, I would expect to see appreciable evolution of the 

system in approximately 31 tA- The outflow was started at the end of the relaxation at 

130 tA and continued until 161 tA, where the code terminated due to numerical instability. 
The choice of this high value of no was motivated, in part, by a desire to keep the length of 
program runs practical. Given the large number of treatments of the Earthward boundary 
condition attempted through the study, this consideration is an important one.

This plasma outflow removes a considerable amount of magnetic flux from the near
Earth magnetotail, as evidenced in the plots of the magnetic field at the Earthward bound
ary shown in Figure 4.4. The change in bx seen in the vicinity of 2 =  2.5 results from 
the removal of magnetic flux from the region mapping to the location on the Earthward 
boundary. The effect of this flux removal can also be seen in the plots of the magnetic 
field in the equatorial plane shown in Figure 4.5. One can see that the region of lower bz 
(represented by purple and black) has encroached upon the near-Earth magnetotail. The 
magnetic flux in the rectangular region bounded by —5.2 < x < 2.1 and —5.9 < y < +5.9 
has been reduced to 82% of its initial value at t =  130tA by the time t — 161 tA, as shown 
in Figure 4.6. As the magnetic field evolves and becomes more tail-like, the distribution of 
specific entropy in the system will also change. Accordingly, the flow profile will itself evolve 
as time progresses. Figure 4.7 shows the specific entropy profile in the equatorial plane at 
times 130 and 161 tA- The tailward extension of contour lines at the later time is most 
pronounced in the vicinity of the noon-midnight meridian. I will now examine consequences 
of this transport of magnetic flux out of the near-Earth magnetotail for the distributions of 
current density and velocity in the system.

4.2.2 Development of Current Density and Velocity Features

Figure 4.8 illustrates the evolution of the current density in the noon-midnight meridian 
(y =  0) in the course of the simulation. In the top panel one sees the current density at 
t =  130tA- The maximum current density occurs near the equatorial plane, near x =  —5.
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=  11.1
10.0
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5.0

2.5

0.0
-12

Magn. Field By/Bz
x = 0.0

time = 130 
11.51 

8.63 
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= 10.9
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Magn. Field By/Bz time = 140

=  10.6
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Magn. Field By/Bz time = 161 
11.511

Figure 4.4. Evolution of the magnetic field at the Earthward boundary. The magnetic field 
at the Earthward boundary (x =  x max =  0) at 130, 140, and 161 t-A- The same convention 
used in Figure 3.8 is used here. Arrows show the direction of the tangential magnetic field 
bt = byey +  bze z, while colors give the value of the normal magnetic field component bx.
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Figure 4.5. Evolution of the magnetic field in the equatorial plane. The magnetic field in the 
near-Earth equatorial plane (z =  0) at 130 and 161 t^. Since bx and by are anti-symmetric 
across this plane, the magnetic field there is entirely in the z-direction. That is, b  =  bze z 
in the equatorial plane.
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Normalized Magnetic Flux

t im e  ( t A)

Figure 4.6. Magnetic flux reduction in the central equatorial plane. The normalized mag
netic flux in the region —5.2 < x  < -2.1 and -5 .9  < y < +5.9 in the equatorial plane 
(z =  0) as a function of time while the outflow boundary condition is applied. The values of 
the magnetic flux have been normalized to the value of the magnetic flux when the outflow 
was started at t — 130 t^.
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tim e = 161
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Figure 4.7. Evolution of the specific entropy in the equatorial plane. The specific entropy 
in the equatorial plane (z — 0) at 130 and 161 t&.

In the course of the simulation, the profile of the current density becomes more complex. 
The current maximum is no longer confined to the vicinity of the equatorial plane. Instead, 
one sees the development of a long, thin current structure—extending diagonally from near 
(x,z) =  (-3.8,2) to (x,z) =  (-8,0) in the second panel of Figure 4.8. This current feature is 
associated with the corresponding feature in the velocity that is shown in the third panel 
of Figure 4.8. This plot shows the velocity in the plane y — 0.06, immediately adjacent to 
the noon-midnight meridian. These structures are even more prominent further away from 
the noon-midnight meridian, as seen in Figure 4.9. The plasma is accelerated across this 
current feature, as one can see in the third panel of Figure 4.8.

I interpret this structure as a type of plasma discontinuity known as a slow shock. The 
properties of the plasma can change abruptly across such a discontinuity. Both the pressure 
p and the density p increase, while the magnetic field component tangential to the shock 
decreases, downstream of a slow shock. The downstream direction is defined as Earthward 
of the slow shock, whereas the upstream direction is defined as tailward of the slow shock. 
The changes in p, p, and b across the shock are superposed on other variations in these 
plasma properties that arise because of magnetospheric structure; accordingly, they are not 
readily apparent on visual inspection. On the other hand, the change in the velocity and
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Figure 4.8. Current density and velocity in the vicinity of the noon-midnight meridian 
(y =  0). The top panel shows the current density at t =  130tA- The next two panels 
show the current density and velocity at the time t — 145/a - The bottom panel shows the 
current density at f =  161 tA- As in earlier plots, arrows depict the tangential component 
of vector quantity (current density or velocity) in consideration. The colors give the value 
of the component normal to the plane shown. The plots of the current density correspond 
to the noon-midnight meridian (y =  0). The plot of the velocity corresponds to the plane 
y =  0.06, immediately adjacent to the noon-midnight meridian.
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Figure 4.9. Current density and velocity away from the noon-midnight meridian. The 
current density and velocity in the plane y — 3.5 at t =  145 tA- The same conventions in 
Figure 4.8 are used here.
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the intensification of the current associated with this feature (which carries ~ 6 % of the total 
cross-tail current) are readily apparent. Further analysis is needed to quantify the nature of 
this slow shock. I interpret this structure as the means through which the outflow boundary 
condition is communicated in the plasma. Plasma is accelerated across this structure to the 
velocities required to satisfy the imposed boundary condition.

Note that the maximum value of j y has increased by 13% from its value at t =  130f a 
by the time t =  145tA- Again, the region of maximum current density has moved from a 
location near the equatorial plane at t =  130 f a; at t =  145 Ia it lies along the upper edge 

of the slow shock. By t =  161 f a, the maximum of the current density again lies in the 
vicinity of the equatorial plane. But the value of this maximum has decreased slightly from 
the maximum value of j y at t =  145 tA, from 113% of the maximum value at t =  130 f a to 
1 1 1 % of that maximum value.

One must take care in interpreting these maximum values of the current density. The 
steady intensification of the current density in the vicinity of x  =  — 5 is masked, at time 
t =  145 t.A, by the strong current density along the slow shock. The intensification of the 
current density in that vicinity continues as long as magnetic flux is removed from the flux 
reservoir in the near-Earth magnetotail. This trend is illustrated in Figure 4.10, which shows 
j y in the equatorial plane in the region —1 2 < x < — 1 along the noon-midnight meridian 
(y =  0). The maximum of j y, initially near x =  —5 at t =  130Ia , lies near x  =  —8 . 
However, the profile of the current density has bifurcated; there is a local maximum near 
x =  — 5 only slightly smaller than the maximum at x =  —8 . By t =  16 I t  a , the profile of 
j y has returned to a form more akin to that at t =  130tA, with only a single ‘hump.’ But 
this maximum has moved slightly tailward, to the vicinity of x =  —6 . While j y decreases 
with time y >  — 5 (Earthward of the magnetic flux reservoir), it increases in time over much 
of the reservoir, in the range —12 < x <  —5. Note that while the increase in the global 
maximum of the current density is on the order to 11 to 13%, locally the current density 
can increase appreciably more. For instance, one sees that in the vicinity of x =  — 8  that 
the current density has increased by an amount on the order of 25 to 30% of its value at 
t =  1301 ,\- While a portion of that increase likely arises from the overall increase in the 
current density with time, a portion of the increased value of the current density arises from 
the local thinning of the current sheet in that vicinity.
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X

Figure 4.10. Current density along the noon-midnight meridian. The dominant component 
of the current density, j y, in the range — 1 2  < x < — 1 in the equatorial plane (z =  0 ) for 
the times 130, 145, and 161 tA-
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It is instructive to examine the behavior of the current density in the equatorial plane 
over time, as illustrated in Figure 4.11. This figure shows j y, the dominant component of 
the current density, in the equatorial plane at 130, 145, and 161 ta - One sees that the 
maximum of the current density at t =  130 tA lies near x =  —5 along the noon-midnight 
meridian. By t =  1451^, the maximum has moved to the vicinity of x =  —8 . The profile of 
the current density in the equatorial plane has changed at this time, reflecting the influence 
of the slow shock. Note, however, that the current density in the vicinity of x =  —5 has still 
increased. At t =  161 tA, one sees that the overall maximum of the current density once 
again lies near x =  —5. The influence of the slow shock is not readily seen in the equatorial 
plane at f =  1611&- However, examination of Figure 4.8 reveals its presence, even then, at 
larger values of z. In the end, I find that the current density in the flux reservoir increases 

by approximately 1 1 % in the course of the simulation.
The slow shock can still be seen in the bottom panel of Figure 4.8 (corresponding to 

t =  161 tji), although it is no longer coincident with the region of maximum current density. 
The current along the shock is still relatively strong. Its presence, along with the intense 
current density near the equatorial plane, can account for reports of bifurcated current 
sheets (as reported by Nakamura et al. [2002], Runov et al. [2003], and Sergeev et al. [2003]). 
However, this more complicated current sheet structure also complicates interpretations of 
the thickness of the current sheet.

4.3 Estimate of Current Sheet Thinning Time Scale

In Section 1.5 (also see Appendix E) I estimated the time needed to evacuate the magnetic 
flux reservoir to be roughly 30 minutes. However, this estimate did not directly address 
the current sheet thinning and assumes that our hypothesis for current sheeting thinning 
in fact applies. The actual dynamics of from our simulation results in this chapter provide 
a more direct measure of the typical time for current sheet thinning.

Consider the plots of the velocity at the time t =  161 t /1 in the planes 2  =  0.33, z =  0.55, 
and z =  0.98 shown in Figure 4.12. One sees extended regions of downward flow—roughly 
from —6.5 < x <  —3.8 and —9 < y <  +9—just tailward of the flow channel (blue and 
dark blue colors). This flow converges toward the equatorial plane. Consider the minimum 
values of vz in the Figure 4.12, given by the minimum value on the color bars. The minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Curr. Dens. Jy time *  161

x

Figure 4.11. Current density in the equatorial plane. The dominant current density com
ponent, j y, in the equatorial plane at 130, 145, and 161 t,4 -
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Figure 4.12. Velocity in planes above the equatorial plane. The velocity at t =  161 tA at 
three different values of z. The upper left plot shows the velocity in the plane z — 0.33. 
The upper right plot shows the velocity in the plane z =  0.55. The bottom plot shows the 
velocity in the plane z =  0.98 . The same conventions in Figure 4.2 are used here.
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values of vz produce the plot akin sketched in Figure 4.13. This implies for the motion of 
plasma elements that

yz =  ^  =  sz, (4.24)

where s is the slope in Figure 4.13. Introducing the constant tc =  — this equation becomes

£ - - ( £ ) * ■  ( i 2 5 )
with the solution

z(t) =  zq exp ' 4̂'26-*

Here zq is a constant of integration. Using the minimum values of vz in Figure 4.12, as 

well as the value of vz — 0  at 2  =  0  (required by the magnetotail symmetry discussed in 
Section ), and calculating a best fit for the slope, I obtained a characteristic time constant of 
tc ~  82 £4 , which corresponds to ~20 minutes. Thus tc can be interpreted as the e-folding 
time for current sheet thinning. Note that in t =  tc =  40 minutes the current sheet thins by 
a factor of e2 ~  7.4. If the current sheet originally has a thickness of 4 R e , it has a thickness 
of sirnO.M Re at the end of that time. This result is also a quantitative confirmation that 
the proposed mechanism indeed works and leads to a time scale for current sheet thinning 
compared to the one based on the magnetic flux transport. Note that this time scale is also 
comparable to the duration of the growth phase and the earlier estimate of the time needed 
to evacuate the magnetic flux reservoir (in Section 1.5 and Appendix E).

4.4 Discussion and Summary

This chapter concerned the outflow boundary condition applied to the Earthward boundary 
of the simulation described in Chapter 3 and the resulting dynamics of the system. It began 
with a discussion of the outflow boundary condition itself, addressing in turn

• the specification of an azimuthal velocity profile in the equatorial plane, and

• the mapping of that profile to the Earthward boundary along magnetic field lines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

Vz

1 . 0
z

/ / / / /
./ / /

0 . 0 1 1
/ /

•/ / / / / / / / 
.»

Figure 4.13. Minimum vz versus z. A sketch of the dependence of the minimum value of vz 
as a function of z for the planes shown in Figure 4.12.

I then examined the velocity profile and found that it had the characteristics that we would 
expect to model the evacuation of magnetic flux from a limited region in the near-Earth 
magnetotail. I found that, indeed, the magnetic flux decreased appreciably in the expected 
location of our ‘magnetic flux reservoir.’ An unexpected consequence of the evacuation of 
this flux reservoir was the establishment of a feature, especially apparent in the current 
density and velocity, that I interpret as a slow shock.

This structure can carry ~ 6 % of the total cross-tail current. Note also that the width of 
this structure is only a few grid points, i.e., limited in the simulation by the resolution. In 
reality, although this structure carries only a fraction of the cross-tail current its thickness 
could be much smaller (on the order of ~600 km) with a correspondingly higher current 
density, with possible implications for the onset of micro-instabilities and/or magnetic re
connection. This feature can also mask, at intermediate times, the intensification of the 
current density in the equatorial plane that we would expect from current sheet thinning. 
The intense current density associated with this slow shock, coupled with the intensified 
current density in the equatorial plane, might serve as an explanation of observations of
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bifurcated current sheets in the growth phase, when I expect the treatment of the magne
tosphere using ideal MHD to still be useful.

The maximum global intensification is about 20%, with values of over 30% for the local 
current increase. This actually corresponds to a significantly more pronounced thinning 
than apparent at first glance. Note that the simulation does not contain the typical increase 
of the lobe magnetic field of 1 0  to 2 0 % (caused by accumulation of magnetic flux from the 
dayside). Vice versa, the removal of flux through outflow actually lowers the lobe magnetic 
field in the near-Earth tail by ~5 to 10%. Thus the current density increase in the simulation 
underestimates the actual increase by probably 1 0  to 2 0 %.

Consideration of the minima values of vz as a function of z allows the estimate of a 
time scale of current sheet thinning, tc ~  82 t,A — 2 0  minutes, that is comparable to growth 
phase time scales.

The duration of the case discussed here was limited because of numerical instability. 
I did generate cases which ran longer. Figure 4.14, Figure 4.14, and Figure 4.15 show, 
respectively, the magnetic field at the Earthward boundary, the velocity just above the 
equatorial plane, and the current density in the noon-midnight meridian for a case that ran 
for about 20 t.A longer than the case discussed earlier. One sees that in Figure 4.14 that the 
depletion of magnetic flux is even more pronounced than it was in Figure 4.4. Figure 4.15 
shows us that there is a small amount of flow from further tailward—still small, but not zero 
as was the case in Figure 4.2. Figure 4.16 demonstrates that the current density continues 
to increase as the code is run longer. But this extra time came at a price. In order to 
increase the stability of the code, I added a localized distribution of viscosity. Although the 
code ran longer, the viscosity masks the dynamics of the slow shock structure, which is not 
evident at all in Figure 4.16. The importance of the slow shock to the dynamics leads me 
to believe that this cost of increased stability may be too high.
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Figure 4.14. Magnetic field at the Earthward boundary for an especially long-running case. 
The magnetic field at the Earthward boundary at t =  180 tA for a case that ran for especially 
long time. The same convention used in Figure 3.8 is used here. Arrows show the direction 
of the tangential magnetic field b t =  byey +  bze z, while colors give the value of the normal 
magnetic field component bx.
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time = 180 Velocity Vx/Vy

Figure 4.15. Velocity profile immediately above equatorial plane for an especially long- 
running case. The imposed velocity profile in the plane 2  =  0.03, just above the equatorial 
plane, at t =  180 tA for the case corresponding to Figure 4.14. The arrows represent the 
tangential velocity vt =  vxex +  vyey. The colors represent the value of the normal velocity 
component vz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

-1.0 -3.8 -6.5 -9.2 -12.0

<— = o.oo Curr. Dens. Jz/Jx time =130

X

Figure 4.16. Comparison of the current density in the noon-midnight meridian. The top 
panel shows the current density for the case shown in Figure 4.14 and Figure 4.15. The 
bottom panel shows the current density at the end of the relaxation for the case discussed 
earlier in the chapter for comparison. The same conventions in Figure 4.8 are used here.
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Chapter 5 
Summary and Conclusions

5.1 Proposed Model for Current Sheet Thinning During the Growth Phase of 
Magnetospheric Substorms

Current sheet thinning is recognized (McPherron et al. [1987], Sergeev et al. [1990], Sanny 
et al. [1994], Thompson et al. [2005]) as a critical process in the dynamics of the mag
netospheric substorm. It is a characteristic property of the slow, steady evolution of the 
magnetosphere during the growth phase, during which a portion of the bulk kinetic energy 
of the solar wind is transformed into and stored as magnetic field energy in the magneto
tail lobes. Current sheet thinning establishes the conditions for the onset of the expansion 
phase, and an explanation for current sheet thinning is fundamentally important for the 
understanding of the physical mechanism responsible for the onset of the expansion phase 

with its rapid evolution during which the stored energy is released.
This dissertation has examined a mechanism for current sheet thinning. I propose that 

current sheet thinning occurs because of the evacuation of the near-Earth flux 
reservoir by convection to replace magnetic flux that is eroded on the dayside. 
Unlike two other possible mechanisms (Schindler and Bim  [1993] and Lee et al. [1998]), my 
hypothesis is able to predict basic properties of current sheet thinning, such as the location, 
temporal evolution, and dynamics of this process. The slow, quasi-static convection of 

the plasma during the growth phase constrains the location and downtail extent of this 
‘magnetic flux reservoir.’ As magnetic flux is removed from this region, the magnetic field 
becomes increasingly tail-like. This evolution of the magnetic field leads to the development 
and thinning of the current sheet in the near-Earth magnetotail.

5.2 Three-Dimensional Magnetic Field and Plasma Constraints for Adiabatic 
Convection

The slow, quasi-static convection of plasma during the growth phase justifies the assumption 
that this convection is adiabatic. Accordingly, the plasma moves largely along contours of 
the specific entropy. For prescribed models of the magnetic field and the plasma pressure, 
I calculated the distribution of the specific entropy for magnetic flux tubes passing through 
the equatorial plane. Using such maps, one can determine the region in the magnetotail
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that maps to the dayside magnetopause. Only from that region in the magnetotail can 
magnetic flux tubes convect adiabatically to replace magnetic flux that is eroded on the 
dayside magnetopause due to magnetic reconnection there. Using the Tsyganenko [1996] 
semi-empirical magnetic field model, I confirmed that the magnetopause maps to a region in 
the near-Earth magnetotail that coincides with the region in which current sheet thinning 
is indeed observed. I varied the input parameters of our model— that serve as input to the 
Tsyganenko-96 model on which our model is based—to study the effect of these variations 
on our mapping. I found, for a considerable range of the input parameters (the solar wind 
dynamic pressure Pdyn, IMF By and Bz, and the activity index D st) considered (appropriate 
for a quiet magnetosphere), that the specific entropy at a given distance downtail varied 
by no more than about a factor of two and the variation in the input parameters does not 
significantly alter the location of the region in which I expect the magnetic flux depletion 

and the corresponding current sheet thinning.
I concluded the second chapter by considering the constraints on adiabatic convection. 

In particular, I considered the loss of particles out of the ionospheric end of magnetic flux 
tubes during adiabatic convection. I found that the resulting energy flux is inconsistent with 
auroral observations. Accordingly, the magnetic flux eroded from the dayside magnetopause 
cannot be replaced by magnetic flux from the middle and far magnetotail. It can only be 
replaced by magnetic flux from a limited region of the near-Earth magnetotail.

5.3 3D M HD Model— Properties

A model of the mechanism for current sheet thinning should take into account the evolution 

of the system as the ‘magnetic flux reservoir’ is depleted. I introduced such a time-dependent 
MHD model in Chapter 3, describing the simulation domain, the governing equations, their 
numerical discretization, and the boundary conditions of our simulation.

My model was formed through the combination of the 3D MHD code of Otto [1990] with 
the semi-empirical magnetic field model of Tsyganenko [1996]. Although this approach 
allows me to start with a realistic magnetic field, the resulting configuration is not an 
equilibrium configuration. I used the ‘ballistic relaxation’ technique of Hesse and Bim

[1993] to obtain an equilibrium configuration from which I could start the model of our 
mechanism for current sheet thinning. This relaxation process resulted in the reduction of
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the force norm, an integral measure of the unbalanced forces in the system, of several orders 

of magnitude.
I concluded the chapter by examining the configuration of the initial equilibrium state to 

which I would apply a boundary condition to model the removal of magnetic flux from the 
near-Earth magnetotail. The resulting configuration does indeed exhibit the characteristics 
of a magnetosphere. In particular, the current layer structure is realistic, with a well-defined 
edge. Its intensity and thickness as functions of downtail distance look realistic. I can use 
the available tools to examine field-aligned currents. However, I found that the distribution 
of field-aligned currents depends sensitively on the pressure distribution.

5.4 3D MHD Model— Outflow Boundary Condition and Results

The fourth chapter began with a description of the outflow boundary condition applied 
at the Earthward boundary. This boundary condition resulted from the imposition of a 
divergent flow from the near-Earth magnetotail. I found it insufficient to just prescribe 
an arbitrary outflow profile at this boundary. Rather, the flow profile needed to be chosen 

carefully by taking into account how the magnetic field maps from the Earthward boundary 
into the equatorial plane. By implementing such a map assuming a rigid angular motion of 
magnetic field lines, I was able to prescribe the outflow in a much more stable way.

I then turned to consideration of the resulting evolution of the system. I chose to discuss 
in detail the features of a representative run. I found that the velocity profile near the 
equatorial plane was consistent with the outflow profile that I had hypothesized would be 
established in the equatorial plane, even though the boundary condition was only applied to 
the Earthward boundary. I found that this outflow resulted in the removal of a considerable 
amount of magnetic flux in the near-Earth magnetotail.

I observed a global increase of the current density to 111 to 113% of its maximum value 
at the start of the outflow. Although the global maximum of the current density reached its 
maximum at an intermediate time in the simulation and then began to decrease, I continued 
to observe the local increase of the current density in the region of the flux reservoir.

A more surprising development was the evolution of a structure, readily visible in the 
current density and velocity, that I interpreted as a slow shock. This feature resulted in a 
concentration of the current that, at times, was more intense than the increasing current
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near the equatorial plane. I interpret the slow shock as the mechanism through which the 
outflow boundary condition is communicated in the plasma. I argue that the current as
sociated with this slow shock may explain observation of bifurcated current sheets during 
the growth phase, without requiring magnetic reconnection or other non-ideal MHD pro
cesses. Furthermore, it masked the continued local increase in the current density along the 
equatorial plane in the vicinity of the magnetic flux reservoir. This feature also complicates 
considerations of the thickness of the current sheet. For example, fitting a simple Harris 
sheet model to a current sheet with such complicated structure may prove to be misleading.

Consideration of the minima values of vz as a function of 2  allows the estimate of a 
time scale of current sheet thinning, tc ~  82 ~  2 0  minutes, that is comparable to growth
phase time scales.

5.5 Discussion of Main Results

I have proposed a new mechanism for current sheet thinning during the late growth phase 
of magnetospheric substorms. By this mechanism, current sheet thinning occurs because of 
the evacuation of the near-Earth flux reservoir by convection to replace magnetic flux that is 
eroded on the dayside. In contrast to other mechanisms (Schindler and Bim  [1993] and Lee 
et al. [1998]), this mechanism provides a causal explanation for the observed current sheet 
thinning and magnetic reconnection at the dayside magnetopause. The new mechanism 
provides predictions on the location, duration, and dynamical evolution of current sheet 
thinning.

I examined this new mechanism both conceptually and quantitatively. My conceptual 
considerations enabled the prediction of the location of current sheet thinning. This location 
is largely independent of the detailed state of the magnetosphere. I was able to predict the 
duration of the growth phase to within a factor of two simply by considering the amount of 
time needed to deplete the proposed ‘magnetic flux reservoir’ in the near-Earth magnetotail. 
I examined this mechanism quantitatively through the use of a three-dimensional ideal MHD 
simulation. I did not observe the drastic reduction in the thickness of the current sheet; 
numerical instabilities terminated my simulation too soon. But the results demonstrate the 
global increase of the current density in the magnetic flux reservoir, despite the removal of 
magnetic flux—which one would otherwise expect to lead to a decrease of current—as well
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as even greater local increases in current. The increase in current density and thinning are 
found to be consistent with the amount of flux that we removed from the system. Since 
I did not incorporate the observed increase in the magnetotail lobe flux in my simulation, 
I would expect that the results underestimate the increase in the current density by 2 0  to 
30%. For that reason, the increase in the current that I see in my simulation is even more 
significant. I have also examined the detailed dynamics of current sheet thinning. In doing 
so, I have found a new explanation for the very thin bifurcated current sheets that have 
been reported in recent publications (Nakamura et al. [2002], Runov et al. [2003], Sergeev 
et al. [2003]). This sheds light on the evolution of the current sheet thinning.

There remain avenues along which this research can continue. I believe that I will be 
able to observe drastic current sheet thinning if I can extend the duration of the simulations 
run for another five to ten minutes—twenty to forty more Alfven times. I hope that further 
work will soon yield this additional time. The detailed implementation of the outflow 
boundary condition on the Earthward boundary (for example, the frequency with which that 
boundary condition is updated) may yield better performance. In addition, the parameter 
space associated with this model lends itself to a more detailed study. Recent modifications 
featuring improved pressure distributions may also prove to be more successful. Another 
important extension of the current work would be the inclusion of Hall physics. This 
addition becomes particularly important for thin current sheets where gradients occur on 
the ion inertial scale, which is ~ 1 0 0  km in the central plasma sheet.

In summary, while I was unable to demonstrate drastic thinning for the stated reasons, 
the observed results are fully consistent with the proposed physical mechanism. In addition, 
the detailed dynamics of current sheet splitting (or bifurcation) may prove to be highly 
relevant for the expansion phase onset. The great promise of this research suggests that it 
should be continued.
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Appendix A  
Local Conservation of Entropy

This appendix provides two derivations of the local conservation of entropy.

A .l Derivation utilizing the first law of thermodynamics and the ideal gas law

Consider a plasma parcel. The first law of thermodynamics can be expressed in the form 

(Marion and Homyak [1982])

dQ =  dU +  PdV, (A .l)

where dQ is the differential heat added to the parcel, dU is the differential change in the 

internal energy of the parcel, and P  dV is the differential work done by the parcel. The
thermal pressure is represented by P , as elsewhere in the text; but here V  is the volume of
the parcel.

Let us consider what happens if heat is added to the parcel while the volume of the 
parcel is held fixed. In that case the second term of Equation A .l vanishes (since dV =  0), 
and the added heat is used solely to change the internal energy of the system. In that case 
I can write

dQ =  nCv dT =  dU, (A.2)

where

(A.3)
v

is the molar specific heat at constant volume. The subscript V in the expression above indi
cates that the derivative ^  is evaluated at constant volume V . I can then use Equation A.2 

to write Equation A .l in the form

dQ =  nCv dT +  P  dV. (A.4)

I next turn to the ideal gas law, which can be expressed in the form (Marion and 

Homyak [1982])
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P V  =  nRT, (A.5)

where n is the number of moles in the parcel, R is the universal gas constant [R =  8.3144 J ■ 
{mole ■ AT)-1], and T  is the temperature. (Note that n is serving in a role analogous to 
mass here.) Presuming that I can treat n as fixed, I can rewrite the ideal gas law in the 

differential form

(A.6 )n d T =  ( -  ) (P d V  +  V d P ).

I can use Equation A .6  and much algebraic manipulation to recast Equation A.4 in the 

form

dQ =  nCv T dP (d V  X  
P  + 7 ( y  )

The quantity 7  is defined as

7
Cp
Cv

where

c P =  -' n
dQ
dT

(A.7)

(A.8 )

(A.9)

is the molar specific heat at constant pressure. The subscript P in the expression above 
indicates that the derivative ^  is evaluated at constant pressure P. Note that 7 , the ratio 
of specific heats, is also called the adiabatic index or the polytropic index. I can write

dQ =  nCv T {d [In (P)] +  d [In (F7)]} (A-10)

or

dQ =  nCv T d [In (P V 1)} (A .ll)

The entropy is defined as

dQ
ds =  ——. 

T
(A.12)
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I have, then

d s^ n C vd lin iP V 1)] (A. 13)

and

s =  Cv In (PV 7) . (A. 14)

I will work in terms of the more convenient quantity

s ' - ^ { ^ k ) = p y J - (A -15)

For adiabatic changes, ds =  0 and I can write

nCv {d [In (PV 7)] •} =  0 (A.16)

Since nCv is generally non-zero, I find that P V 1 is constant. I can express the conservation 
of this quantity under adiabatic changes by writing

j t (PV*) =  ^  (P V 7) +  u • V (PV 7) =  0. (A.17)

With the realization that the volume V  is inversely proportional to the mass density p,

V < x - ,  (A.18)
P

I can express the local conservation of entropy in the following form:

Jt (P P~-y) =  0. (A.19)

A.2 Derivation utilizing the continuity equation and the pressure equation

Let us begin by considering the quantity

S =  P apP. (A.20)

For what values of a and (3 is the full time derivative of this quantity equal to zero? That 

is, for what values of a and (3 does the following hold?
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! ( P V ) = °  (A.2 1 )

I can expand this full time derivative and write this condition as

-  ( > V )  +  V  • V (p V )  =  0. (A.22)

I can use the chain rule to write

I  ( ' V ) = ( I ) + ( w)  ■ (A-23)
Similarly,

V (P Q/ )  =  pP af/)- 1S7p +  aP a~lpPVP. (A.24)

Substituting these expressions into Equation A.22, I obtain

/1 P V ' 1 +  v • v p ) +  a P Q- V  +  v • VP^ =  0. (A.25)

To proceed further, I shall make use of the mass continuity equation

^  +  v  • (pv) =  0 (A.26)

and the pressure equation

^  +  V • (Pv) =  (1 -  7) P  (V • v ) . (A.27)

(Equation A.26 is simply Equation 1.1 recast in a slightly different form, whereas Equa
tion A.27 is Equation 1.4, recast in a slightly different form, with r/ =  0.) Expanding the
second term on the left-hand side of Equation A.26, I rewrite it as

^  + v V p = - p ( V - v ) .  (A.28)

Similarly, I can rewrite Equation A.27 in the form

BP + v - V P =  —y P ( V - v ) .  (A.29)
ot
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Substituting these expressions into Equation A.25, I obtain

(0 +  0 7 ) -P V 3 (V • v) =  0. (A.30)

Since P ap>3 (V • v) is generally non-zero, I must have

(3 +  a 7  =  0 . (A.31)

Therefore

/3 =  — 0 7 . (A.32)

This expression constrains the ratio of (3 and a, if not their actual values. However, I appeal 
to simplicity and chose to set a  =  1. In that case,

(3 =  - 7 - (A.33)

In this case, then, I find that the conserved quantity is

S =  Pp"T  (A.34)

Again, this quantity is conserved:

j t (P p -t)  =  0. (A.35)
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Appendix B 
The differential magnetic flux tube volume

Now let us consider the magnetic flux tube depicted in Figure B.l. I can calculate its 

volume V  by evaluating the expression

Here dtl is a differential element of length along the magnetic field; l\ and £2 denote the 
positions of the ionospheric footpoints of the flux tube. (This equation has practical utility 
only if one defines this volume for closed magnetic flux tubes.) A c is the cross-sectional 
area of the flux tube, whereas dA is a differential element of that area. With this notation, 
one would write the magnetic flux corresponding to the flux tube as

*0 =  J  J ^ B - e n d A ,  (B.2)

where B is the magnetic induction and e n is the unit normal to the cross-sectional area. If
the flux tube is small enough that the magnetic field can be considered to be reasonably
constant over the cross-sectional area of the flux tube, one can write

$ 0  ~  AqBq, (B.3)

where Aq and Bq are, respectively, the cross-sectional area of the flux tube and the mag
nitude of the magnetic field at some reference location—for these purposes, at one of the 
ionospheric footpoints.

Since the magnetic flux is constant along the magnetic flux tube, I can write

AB =  A0B0, (B.4)

where A and B  are, respectively, the cross-sectional area of the flux tube and the magnetic 
field magnitude in the flux tube in the equatorial plane. One can then write

A =  ^  (B.5)

or

I ,
dA. (B.l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Figure B.l. Magnetotail flux tube. A closed magnetotail flux tube. The positions of the 
ionospheric ends of the flux tube are denoted by l\ and ( 2- The cross section of the flux 
tube in the equatorial plane is denoted by A c.
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A o c ^  (B.6 )

Now let us consider the limit as the cross-sectional area Ac of the flux tube becomes very 
small—essentially infinitesimal—so that the magnetic flux tube has essentially infinitesimal 
cross-sectional area. The flux tube now corresponds to a single magnetic field line. The 
area integral over Ac reduces to a quantity proportional to ^ . So one can write

ft 2 r (• t'f-2

( a 7 )

Now I can identify

v = C ( i > ) *  ( a s )

as the volume of the flux tube per unit magnetic flux. As its name suggests, this quantity
is simply related to the actual volume V  of the flux tube:

v = k  <BJ»
Since it depends only on the magnitude of the magnetic field along the flux tube, the 

volume per unit magnetic flux, V, is a very convenient quantity—sometimes more convenient 
than the actual volume V  of the flux tube.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

Appendix C

Derivation of the time rate of change of the particle number N  on a magnetic

flux tube

In considering the calculation of the ionospheric energy flux discussed in Chapter 2 and 
Appendix D, I find it useful to derive an expression for the time rate of change of the 
particle number N  on magnetic flux tubes. This derivation results in an expression that 
can be applied to any quantity that is defined on a magnetic flux tube in the same manner 
as N. The number of particles N  can be defined in terms of the number density n in the 

following manner:

I have expressed A  as an integral of its (volume) density n along the length of the flux tube
(given by the coordinate £, with the ends of the flux tube specified as £\ and £2) and over

the cross-sectional area Ac of the flux tube.
This expression for N  holds at any particular point in time. I now consider AN , the 

change in N  from time t to time t +  At. In doing so, I must consider

• changes in the positions of the endpoints £\ and £2 of the flux tube;

• changes in the cross-sectional area A c of the flux tube; and

• changes in the integrand n.

I begin by writing

A A  =  T i +  T 2 +  T 3. (C.2 )

The three terms Yi, Y 2, and T 3 correspond to the three contributions to A N  described 
above.

The first contribution arises from changes in the position of the endpoints (and, there
fore, of the length of the flux tube). It is given by

ri2,t+At r r r r
Tj =  /  de ndA  — di ndA • (C -3)

L
n dA. (C .l)
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Here £\j and £2,1 denote the positions of the ends of the flux tube at time t,whereas £\,t+At

and l2,t+At denote the positions of the ends at time t +  At. Since the area integral remains
unchanged, I can write

( r̂ 2,t+At r̂ 2,t \ r r
d £ -  d£) ndA • ( ° -4)

j  ̂ l,t+At J&l,t J  J j  Ac
The limits of the integrals over the length of the flux tube can be re-arranged to yield

(rh,t+At rh,t+At \ r r
d£~ M ) ndA■ (C-5)

Ji2,t ,t J  J JAc
The velocity v of one of the ends of the flux tube can be written as

( a 6 )

So

d£ =  vdt, (C.7)

and I can write

rt+ A t r t+ A t( /•t+At t r t+ A t \ r r
V2 J  dt J  dt j  ■ J J  n dA, (C.8 )

where Vi and V2 are, respectively, the velocities of the endpoints denoted by £\ and £2, and 
the vector area element

dA — en dA (C-9)

is defined in terms of its magnitude dA and the unit normal e n to the flux tube surface. 
Since this contribution to A N  occurs only at these endpoints, I can bring the area integral 
inside the parentheses (after evaluating the integrals in time) and write

T i = ( / / . , 1 " v i < i A )  A t + ( l  L  nv2 • dA^j At. (C.10)

Atx and Ai2 are the areas at the ends of the flux tube located, respectively, at l\ and £2.
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Now let turn our attention to Y 2 , the contribution to A N  arising from the change in
the cross-sectional area A c of the flux tube from time t to time t +  At. I can write

rt-2 r r r̂ 2 r r
T 2 =  /  d£ n d A -  dt ndA, (C .ll)

Jt \  J  J J J  J Ac,t
where Ac t and AC)t+At denote the cross-sectional area of the flux tube at times t and t +  At, 
respectively. I write

Y 2 =  f 2 dt (  [  [  n d A -  f  [  n d i 'j  . (C.12)
Ji \  yJ JAc t+&t J JAc,t J

I shall restrict my attention, for a short while, to the area integrals. I define

Ai =  f  f  ndA  (C.13)
J JAc,t

and

A2 = /  f  ndA. (C.14)
J  J  A c , t + A t

I also define their difference

AA =  A2 - A i  (C.15)

AA =  f f n d A — f j  ndA. (C.16)
J  d A Cit+ & t  J  J  A c,t

This difference is equal to the integral over the ‘ribbon’ R joining the surfaces A cj  and
Ac,t+At- (Please refer to Figure C.l.) Accordingly, I could write

AA = J J ndA. (C.17)

Keeping in mind that the surface Ac,t+At represents the evolution of the surface Ac t as 
the flux tube surface moves with velocity v over the time interval At, I define the vector 

differential area element over the surface R as

dA =  d£x dC, (C.18)
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c,t+dt
Figure C.l. The frozen-in flux condition. Depiction of the surfaces A C}t and ACjt+At- The 
magnetic field B, velocity v, and vector length element dC are shown. The ribbon R joining 
the surfaces Ac t and Acj +At is defined by Equation C.20.
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where dt is the vector length element along the flux tube and dC is the vector length 
element along the edge of R. Using Equation C.7, I can write

dA =  vdt x dC (C.19)

dA =  (v x dC) dt. (C.20)

I can write the magnitude of dA as

dA =  vn dC dt (C.21)

if I define vn as the component of v normal to the contour C bounding the surface R. I can 
now write

AA =  dC j  Tivnd t . (C.22)

For a small enough time interval At, I can write

A A = ( i  nvndC ) At. (C.23)

Now let us return to the expression for T 2 . I have

rt 2
=  f  2 (AA) dt (C.24)

JU
T 2

lei

T 2 =  a :  dt j> nvndC'j At. (C.25)

Finally, let us consider T 3 , the contribution to A N  resulting in the change in the 

integrand n over the time interval At. It is given by

T 3 =  f  dt [  f  m + A td A - [  d£ [  [  nt+At dA. (C.26)
Jti J JAc Jii J JAc

Since both the integral along I and the area integral over A c remain unchanged in this term, 

I can write
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/2 d£ [  [  (m+At ~ nt) dA (C.27)
i J Jac

or

T 3 =  d£ f  f  (An) dA, (C.28)
Jti J J Ac

where I have defined

An =  nt+At ~ nt. (C.29)

The subscripts i and t +  At have again been used to denote the values of quantities at those 

times.
I am now ready to combine the expressions for T i (Equation C.10), T 2 (Equation C.25), 

and Y3 (Equation C.28). I obtain

T’ = i

nv 1 dA ĵ At +   ̂J J  nv 2 dA  ̂At

+  d£ j> nvnd C ) At (C.30)

[  2 d£ f  [  (An) dA.
Jti J JAc

Dividing through by At yields the expression

JC
ft2

+

=  nv 1 d A +  nv2 dA
J J ̂ 1̂ "̂ 2̂

+ f d£ J) nvndC (C.31)
Jti Jc

l > ' I L* ( > / / . .  ( S ' “
Taking the limit as At approaches zero results in the expression
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(£L = [ f nvxd A +  f  f  nv2 dA
dt J JAtx J JAi2

+ C M J L ( % ) d A  ( & 3 2 )

f  2 dt <£
Jil JC

rt'i
+  dl (p nvndC. 

h i Jc

To proceed further, invoke local continuity of particle number and write the corresponding 

continuity equation

c)ti + v  • (nu) = 0. (C.33)(/C
Note that u is the bulk velocity of the plasma. Solving for the partial time derivative of 

the number density, I obtain

^  =  - V - ( n u ) .  (C.34)

Consider the term in Equation C.32 resulting from the change in the integrand n over the
time interval At. (This term results from manipulation of Equation C.28.) It is given by

F’ = C M ! L { % ) i A - (C35)
If I can replace the full time derivative ^  with the partial time derivative ^ , then I can 
use Equation C.34 to write

F3 =  -  f 2 [  f  [V • (nu)] dAdi. (C.36)
Jti J JAc

Since

d?x — dA d£ (C.37)

is a volume element within the magnetic flux tube, I can write

F3 =  — /  [V • (nu)] d3x , (C.38)
Jvjt
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where Vft indicates that the integral is to be evaluated throughout the entire volume of the
flux tube. Invoking Gauss’s theorem, I can write

F3 =  -  J L  nu ■ dA. (C.39)

Here Ae is the surface enclosing the entirety of the flux tube. It is defined as the union of 
the cylindrical open surface OFT of the flux tube with the end areas and A(2. With 

these definitions, I can write

[  f nu • dA =  f f nu- dA +  [  [  nu • dA + [  [  nu - dA. (C.40)
J JAe J JAil J Ja(2 J Joft

Substituting Equation C.40 into Equation C.39, substituting the resulting expression into 
Equation C.32, and re-arranging terms, I obtain

=  J J n (vi -  u) ■ dA +  J J n (v2 — u) • dA

+  f  d£ (j) nvndC (C-41)
Je i  Jc

— n u •dA.
■ J Joft

Noting that vn, the component of flux tube velocity normal to the flux tube surface, is given 

generally by

vn =  v • en, (C.42)

I write the third term in the above expression for ^  as

f dt (f nvfndC =  f f nv • dA. (C.43)
Jti Jc J Joft

Accordingly, I can write

dN
=  n (vi — u) • dA +  n (v2 — u) • dA

J J Ap, “ J Afrtd t  ■/ J A t , J  J  A t2

+  /  n (v — u) ■ dA.
J Joft
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V2 =  0 . (C.46)

The expression for the time rate of change of the particle number then reduces to

If the ionospheric ends of the flux tube are fixed, then

vi =  0 (C.45)

=  -  [  [  nu- dA — [  [  nu - dA +  f  f  n (v — u) • dA. (C.47)
dt J JAh J Ja(2 J J o f t

Since the magnetic field is frozen into the plasma, I must have

v \o f t  ~  u \o f t  • (C.48)

Accordingly, the third term in the expression above must vanish:

f  f  n (v — u) • dA  =  0. (C.49)
J J o f t

I am left with the following expression for the time rate of change of the particle number 

on a flux tube:

=  — f  [  nu • dA — f  [  nu • dA. (C.50)
dt J JAei J Ja12

If the plasma velocity u has no component across the ends of the flux tube, then

u • dA\At  ̂ =  0 (C.51)

u-dA\At = 0 , (C.52)

and

dN =  0. (C.53)

That is, the number of particles on a magnetic flux tube is constant.
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Appendix D 
Derivation of the ionospheric energy flux

The energy flux out of the ionospheric end of a magnetic flux tube is given by the product 
of the instantaneous plasma energy density e and the instantaneous plasma speed u:

f  =  eu. (D.l)

If the energy density e is identified as that corresponding to the internal energy of this 

system, then I can write

e =  ( | )  P  (D.2)

where P  is identified as the thermal pressure as before. Accordingly,

/  =  ( 0  uP. (D.3)

My challenge lies in determining an expression for the plasma speed u in terms of readily- 

available quantities.
Although the derivation in Appendix C applies to the particle number A , it is possible 

to recast much of its formulation in terms of any other quantity defined in a form like
Equation C .l—that is, in terms of the integration of a density-like function along a magnetic

flux tube.
In order to obtain the speed u, I begin by considering the integration of the locally

. ± * . . . conserved quantity P i  (where 7  =  | is the ratio of specific heats) over the volume of the
flux tube. Substituting P i  for N  in Equation C.l, I obtain the following definition for the

quantity H:

H — f  2 d£ [  f  P i dA. (D.4)
J t i  J JAc

It will be shown shortly that H  is related to the specific entropy S. The local conservation 
1

of P i  is expressed by the following equation:

= 0 . (D.5)
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As shown above (starting with Equation C.33 and continuing through Equation C.44), this 

property allows me to write

^  =  [  [  P^ (vi -  u) • dA +  f  f  P 7 (v2 -  u) • dA
J JAlx J Jac2 (D.6 )

+  1 1  P^ (v — u) • dA.
J Joft

If I maintain that the frozen-in condition

v /  • dA\0prp =  u • dA\OFT (D-7)

holds along the outer surface OFT of the flux tube, then I obtain

=  j  j  P7 (Vl -  u) • dA +  J J P7 (v2 -  u) • dA. (D.8 )

Assuming that the ends of the flux tube remain fixed (so that vi =  v 2 =  0), I can write

^  = - / V  P u ' d A — f  f  P u - d A .  (D.9)
dt J JAil J

I shall take the limit that the cross-sectional area of the magnetic flux tube becomes 
infinitesimal and invoke the conservation of magnetic flux (dA ~  in the manner of 
Equation B.6 ). Then the flux tube essentially corresponds to a single magnetic field line 
and I can write

l [  [  P ^ u - d A  ~  P-yun AA c\a . (D.10)
0 J Ja, Ae

lim
A c—*0 j

Here A£ can apply to either Afl or A i2. Note that uy is the component of the velocity that 
is parallel to the magnetic field at At- (The end caps A^ and Af2 are, on the other hand, 
perpendicular to the magnetic field.) Invoking conservation of magnetic flux to relate the 
area A A c\ Af at the ionospheric end of the flux tube to the magnetic field Blsp there, I write

lim

Now I can write

f  [  F m  • dA oc P~<u\\ ( —— ) .  (D-ll)
Ac-^0 J JA( A( V Bisp J
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—r- =  — F~tuii . „dt 11 \Blsp
dH  i — P'TUw

1.

Alx \BiSp
. (D.12)

A i  2

I shall also assume that the contributions from the two ends of the flux tube are equal to 
one another. Simplifying the notation by dropping the parallel subscript on u, I write

( d - i 3 )

where, again, Bisp is the magnitude of the magnetic field at one of the ionospheric footpoints. 
All other quantities on the right-hand side of the equation are also to be evaluated at one 
of the ionospheric footpoints of the magnetic flux tube.

Invoke the chain rule to write

dH ( d x \ ( d H \  ( dH\  m i _.
i r  =  U A * ) = ” ‘ U r ) '  (  1

where x is the standard GSM coordinate of the flux tube intersection with the equatorial 

plane and

E
*  (D.15)

B m sp

is the E x B drift velocity. (E  is the magnitude of the convection electric field, and B msp 
is the magnitude of the magnetic field at the aforementioned intersection of the magnetic 
flux tube with the equatorial plane.) Solving for u , I obtain

- V ) ( f ) -  <D-M>2 /  V Bmsp j  \p~

Substituting this expression into Equation D.3, I obtain

/  =  - ( i )  ( £ ; )  O f )  ■ ( D - 1 7 )
This expression is the result that I have been seeking: an expression for the ionospheric 
energy flux in terms of quantities that are readily available from the specific entropy model 

described in Section 2.3.
As mentioned earlier, the quantity H is simply related to the specific entropy S. Refer 

again to the definition of H  in Equation D.4. As I did in writing Equations D.10 and
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D .ll, I take the limit as the cross-sectional area A c becomes infinitesimal and the flux tube
shrinks to a single magnetic field line. Since the pressure P  is constant along a magnetic

I . .field line, the factor P~< can be taken outside the integrals. Taking all these considerations
into account, I write

rh r r ! ! rt2
lim d£ P^ dAot P i  (AAC) di. (D.18)

A c-> 0 J h  J J  Ac Jil

As before, I invoke conservation of magnetic flux to reduce the area integral to a quantity 
proportional to (Again refer to Equation B .6  and the discussion immediately preceding 
it.) So the above limit becomes

( D ' i 9 )

a result similar to Equation B.7. Accordingly, I can write

H =  p W , (D.20)

where

v .=£(!)■«
is the usual definition of the magnetic flux tube volume per unit magnetic flux (as given 
by Equation B .8  of Appendix B). Referring to the global definition of the specific entropy 
given by Equation 1.11 in Chapter 1, I see that

H =  S^. (D.22)

So the quantity H  (defined in Equation D.4) is indeed simply related to the specific entropy 

S, as stated earlier.
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Appendix E

Estimate of the time required to deplete the “magnetic flux reservoir”

I can estimate the time that is required to deplete a “magnetic flux reservoir” of magnetic
flux. Figure E.l depicts the magnetic flux reservoir and the corresponding flow channel as

seen from above the equatorial plane.
Let us consider the magnetic flux in the “magnetic flux reservoir.”

f  B dA  (E.l)
Js

This integral is evaluated over the surface S. The unit normal of the surface is en, and

dA =  en dA. (E.2)

Now consider the (full) time derivative of this magnetic flux.

d<&B
= U s B d A  ( E ' 3 )dt

I will take the time derivative inside the integral sign.

^  =  / s f ' d A + T 2  < E -4>
The term Y2 takes into account any variation in the surface S with time. I will assure that 

this surface does not vary in time, so that

T 2 =  0 , (E.5)

and I can write

d$B
i di - d A - ( E 6 )dt j S

If I presume that I can replace the full time derivative of B with its partial time derivative 
(as would be appropriate since the surface S is stationary), then I can use Faraday’s law

ar>
V x E = - -  (E.7)

to write
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Figure E.l. Magnetic flux reservoir. A sketch of the magnetic flux reservoir, as seen from 
above the equatorial plane. The reservoir itself is the region within the dotted lines. The 
angular region (bounded by thick lines) surrounding the reservoir is the contour C discussed 
in this appendix. It has radial ‘arms’ of length L and (linear) azimuthal extent s. The 
(divergent) outflow velocity is denoted by v.
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d$s
dt

= - f  (V x E) • dA. (E.8 )
Js

Invoking Stokes’ theorem, I write

= -  y  e  ■ m - (e -9)
d&B 

dt jc

I will use the frozen-in flux condition

E +  v x B =  0 (E.10)

E =  —v x B. (E .ll)

=  £  (v x B) • dt. (E.12)

Now I obtain

d$B 
dt

The expression on the right-hand side of the equation is simply the cross-polar cap (electric) 

potential 4>e :

$E =  j  (v x B) • dJt. (E.13)

I can then write

d$B &E. (E.14)
dt

I will evaluate Equation E.13 around the contour C enclosing the flux reservoir. The 
contributions along the arms of length L are non-zero. I can argue that the contributions 
along the other two legs can be neglected, in part because v x B will be largely perpendicular 
to d£. (This point can certainly be argued.) With this arguments, I can write

— —2uo BqL, (E.15)

where no is the characteristic speed of the plasma outflow, Bo is the characteristic strength 
of the magnetic field in the flux reservoir region, and L is the width of the outflow region.
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The negative sign in the expression above arises sinces v x B is pointed in the direction 
opposite to dt, where the direction of dt is consistent with the normal e „  of the surface S 

and en is aligned in the direction of B in the equatorial plane.

Solving for v q , I obtain

=  (E.16) 
0 2 B0L V ’

If I use the value L =  4 Re and a characteristic value of the cross polar cap potential of 

50 kV, then I obtain vo — 19.6 km/s.

Combining Equation E.14 with Equation E.15, I obtain

d$B =  - 2  vqB qL .  (E.17)
dt

Integrating this expression over the time interval At, I obtain

=  —‘IvqBqLvq At (E.18)

The magnetic flux originally in the ‘flux reservoir’ can be estimated to be

$ 0  ^  B0Ls, (E.19)

where s is a characteristic azimuthal extent of the ‘flux reservoir.’
The magnetic flux in the reservoir after the elapse of the time At is given by

$ i =  $o +  A (E.20)

=  B0Ls -  2B0Lv0 At (E.21)

=  B0L (s -  2v0 A t ) . (E.22)

The corresponding characteristic magnetic field (in the flux reservoir after the time At has 

elapsed) is given by

Bx ~  ^  (E.23)
Ls
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B1 ~ B o ( l -  ■ (E.24)

The flux reservoir will be depleted when B\ — 0. That happens once

1 -  =  0. (E.25)
s

Solving for At, I find

At =  (E.26)
2 uo

Again, s corresponds to the azimuthal extent of the reservoir. It is comparable to the radial 
distance to the reservoir. Using the value s ~  10 Re and the earlier value of vq, I obtain

At =  1627 s ~  27 min. (E.27)

Since times in the simulation are normalized to the Alfven time t.A =  14.6 s, I find that

At ~  111 tA. (E.28)
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