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Abstract

The goal of this research was to investigate methods and techniques that enhance
mass transfer through the membranes. Two general types of fluids were investigated:
synthetic wastewater treated in a membrane bioreactor (MBR) and natural and
simulated river water. For both fluids, a wide range of solid concentrations (up to 18
g/L) were tested. The membranes investigated were all tubular modules at pilot scale
between 0.75 and 1.20 m length, with tubular diameters of 5.5-6.3 mm, 0.2 um pore
size, and membrane surface areas of 0.036-0.1 m2.

For flux enhancement, two techniques were applied: air sparging (AS), and
backflushing (BF). Both techniques were compared with the sponge ball cleaning
method. The experimental temperature ranged between 10 and 30°C, cross-flow
velocities (CFV) ranged between 0.5 and 5.2 m/s, and transmembrane pressure
(TMP) ranged between 30 and 350 kPa.

Research results showed, that AS was able to enhance the conventional flux over
weeks to months up to factor of 4.5 for river water and a factor of 3 for wastewater.
At modest CFV of 1.5- 2 m/s, AS was as successful as BF. If higher CFV (up to 5.2
m/s) were supplied for BF, this technique could enhance the wastewater flux by
factor 4.5. The supply of AS and BF combined was superior to the single application
even at moderate CFV. The major finding of this research was that cake thickness on
the membrane surface was decreased by AS, contrary to research by other authors.

AS can be used as substitute aeration in MBRs, without impairing the degradation
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performance. The combination of AS and BF generated the least filter cake, but the
lowest fouling was observed for AS. An empirical equation was proposed to calculate

the viscosity in a sidestream MBR depending on reactor temperature and mixed

liquor suspended solids (MLSS).
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Preface

According to the Water Supply & Sanitation Collaborative Council, more than 2
million people die every year from waterborne disease. Today’s water supplies are
limited by quantity and/or quality, particularly on a global perspective when
considering world population growth.

Water resources are unevenly distributed over land masses. In addition,
humankind has caused quality-based water scarcities by seriously polluting available
fresh water supplies.

In many areas of the world where water scarcity is prevalent, a reuse of
conventionally treated municipal wastewater for indirect potable use or direct
industrial reuse seems advantageous. Furthermore, internal industrial recycling has
become more attractive as a substitute for existing water supplies as water prices
increase worldwide. This is especially true in industrial countries where about 60% of
the water consumption is drawn for cooling purposes.

Membrane processes can play a key role in future water supply. They may be
used to treat wastewaters, recover materials from industrial processes, and treat
waters for drinking purposes.

However, membrane operation is limited by fouling, the major problem
associated with this technology. Therefore, the main intention of this work, was to

fight fouling in membrane filtration for water treatment with experimental methods.
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Objective of the work

Improve the performance of membrane filtration for water and wastewater

treatment.

The aim of this thesis was to investigate what options to overcome fouling are

available to enhance water and wastewater membrane filtration. The research was

empirical. It was assumed, that through providing certain features to the system and

combining/optimizing them higher fluxes were possible.

The following attempts were made toward the overall objective of the work:

1.

operate a membrane bioreactor (MBR) in the conventional way
investigate air sparging (AS) in the context of fouling prevention

investigate the combination of air sparging and backflushing (BF) for the

fouling prevention

compare AS and BF with each other and their overall impact on the fouling

process

investigate the potential of air sparged enhanced water filtration by example of

river water filtration
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Hypotheses

Based on literature study, the following hypotheses were postulated and provided the

basis for this work:

® It is possible to enhance the process membrane flux in the treatment of potable
water and wastewater with air sparging (AS) to maintain stable fluxes over

longer time frames.

m It is possible to substitute AS in a membrane bioreactor (MBR) for

conventional aeration.

m Degradation performance in a MBR is not affected adversely by substitution

of conventional aeration for AS

m The combination of AS with backflushing (BF) is even more successful than

just AS or BF alone.

m  AS can reduce cake layers as external fouling

® AS is particularly effective to increase flux for waters with a strong fouling

potential
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1 Introduction

1.1 Membrane filtration

1.1.1  General introduction and definitions

Today, membrane filtration is on the verge of becoming a mainstream filtration
process and is already competing with conventional techniques. Membranes are often
times the first choice because of their decreasing costs and superior performance for
improving a broad range of water qualities. Many new large capacity municipal water
and wastewater treatment facilities in North America implement membrane filtration
units.

Increasingly stringent disinfection and disinfection by-product standards support
the use of membrane filtration. Many state and federal regulatory agencies opt for
membrane application based on their high credits for pathogen removal as éompared
to conventional treatment. An additional benefit is the subsequent use of less
disinfection chemicals and hence smaller storage tanks and feed facilities.

The effluent from a membrane filtration process is relatively constant and not
very susceptible to changes in feedwater quality.

Finally, membrane filtration plants are easier to operate and monitor, and require

less supervision than conventional plants, making remote control possible [1].
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Before discussing published results on improved membrane filtration, it is
reasonable to define a few of the terms used in this thesis more closely. If the

definitions remain ambiguous, please refer to the context (topic) of this work.

1.1.1.1 Filtration

Filtration can be defined as a process to separate dispersed immiscible particles
from a dispersing fluid by means of porous media based on size differences. The
dispersing medium can be either a gas or a liquid. Under phenomenological aspects,
the filtration process can be characterized by several parameters such as the pressure

drop over the filter. This is defined below by eq. 1.1.

Ap =p,-p, (eq- 1.1

In this case p; represents the pressure before the filter and p; the pressure behind
the filter. The difference in pressure depends on the properties of the fluid and on the
properties of the porous medium, which serves as the filter. This statement is only
valid at time zero of the filtration process; for any time thereafter, particle deposition
on the surface of the filtration material has to be taken into consideration [2-3].

Filtration is one of the principal methods for the treatment of potable water and
wastewater. Nowadays, filtration is extensively used for supplemental removal of
suspended solids (including particulate BOD = Biochemical Oxygen Demand,
measured as the dissolved oxygen used by microorganisms in the biochemical

oxidation of organic matter) from wastewater treatment plant effluents [4].
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1.1.1.2 Membrane

A membrane [Lat. membrana, skin] is a selective barrier between two fluid
phases. An artificial or synthetic membrane is a structure formed by a process not
occurring in nature. It has lateral dimensions much greater than the thickness of the
structure through which mass transfer occurs.

Membrane processes are driven by differences in some driving force such as the

pressure, concentration, or voltage of the individual components across the membrane

[5].

1.1.1.3 Ideal membranes and membrane materials

An ideal membrane is an impermeable barrier to one or more components to be
separated from a fluid mixture.

Ideal membranes should have A) high flux; B) high selectivity (rejection); C)
mechanical stability; D) tolerance to all feed stream components, including high
fouling resistance; E) tolerance to temperature variations; F) manufacturing
reproducibility; G) low manufacturing costs and H) ability to be packed into high
surface area modules [S].

Membrane materials used for industrial membrane filtration can be made out of a
steady increasing number of components such as: cellulose acetate, polysulfone,

polyamide and ceramics.
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1.1.1.4 Membrane filiration

Membrane filtration is the extension of the filtration term to applications that
include the separation of dissolved solutes in liquid streams and separation of gaseous
mixtures [2].

The membrane is the heart of every membrane process and can be understood as
a semiselective barrier between two phases. In Fig. 1.1 a schematic expression is
shown for a two component system. The feed side (phase 1) represents the random
distribution of particles before the separation process and the permeate side (phase 2)
shows the result of the separation process realized by a driving force. The membrane
is ideally only permeable for one of the two components. The level of permeability is
limited by a number of factors such as pore size. The driving force is often times a

pressure gradient between both phases.

phase 1 membrane phase 2

permeate

driving force

Fig. 1.1. Schematic principle of a two phase system separated by a membrane [6]
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Figure 1.2 shows the basic membrane filtration processes, their pore and particle

size ranges, range of method deployments, as well as comparison to common

particles.
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Fig. 1.2. Separation processes, specific and general particles in scale context

As evident from the logarithmic depiction in Fig. 1.2, membrane filtration
spreads over a wide range of pore sizes, resulting in applications in all fields of

science and industry. The most common way to define membrane filtration is by pore
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size or by what components can be separated from the fluid. Hence, a short overview
about the pressure driven membrane processes should be given.

The nature of the membrane itself determines which components permeate the
filter and which are retained on the filter. An ideal example is reverse osmosis (pore
size = 0.1-1 nm) which retains all components other than the solvent, which is mostly
water. Thus, reverse osmosis (RO) can be considered as a dewatering technology.
Nanofiltration is a comparably new process, which uses charged membranes with
larger pore sizes than in RO, to retain sugars, divalent salts, and dissociated acids.
However, unlike RO, nanofiltration allows the permeation of monovalent salts and
undissociated acids. Ultrafiltration cannot retain any of the before mentioned
compounds but is able to retain macromolecules or particles larger than about 10-200
Angstroms (depending on the shape of the particle). Microfiltration is deployed to
separate particles in the range of 0.1 — 5 pm. Larger particles are better separated with
conventional granular filtration technology.

Membrane technology is the call for the future. According to Prof. Enrico Drioli
in his keynote lecture at the Water Environment Membrane Technology Conference
2004 in Seoul, South Korea: “. . . in 30 years, 50% of all separation processes will be

accomplished by membranes.”
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1.1.2 Membrane filtration principles
1.1.2.1 Dead-End filtration

Dead-end flow is the conventional filtration process in liquid filtration. It is the
familiar filtration principle used for instance in filtering coffee through filter paper or
straining spaghetti. The flow is normal to the filter surface as shown in Fig. 1.3.
Permeate and feed flow (bulk stream) directions are parallel to each other. The
process is usually characterized by a thick filter cake (generated by separated
particles on top of the membrane), which takes over a substantial part of the filtration
itself and causes increasingly higher pressure drops across the continuously growing
filter, made of filter material and cake. All of the fluid entering the filter is either

retained or emerges on the permeate side. The conversion can reach 100% [7].
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Fig. 1.3. Conventional or dead-end filtration

1.1.2.2 Cross-Flow filtration

In cross-flow filtration, the main flow directions, i. e. feed flow and permeate
flow, stand perpendicular to each other. By maintaining the cross-flow velocity above
the membrane material, the components which are retained by the membrane are
swept off its surface. Thus, there is less accumulation on top of the membrane, which
results in a lower filter cake thickness than in the dead-end filtration. This is

illustrated by the differences in Fig. 1.4 compared to Fig. 1.3. With a thinner filter
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cake, there is less tendency to “blind” (clog) the membrane. This helps to maintain
the output of cross-flow filtration at higher levels than for dead-end filtration.

In cross-flow filtration, far more of the feed stream passes along the membrane
than passes through it. Even if many membranes are operated in series, a mass less
than 20% of the fluid passes through the membrane per passage. This output can be
improved toward higher conversion rates via recirculation of the stream (stream

recycling).

Permeate

Fig. 1.4. Cross-flow filtration
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1.1.3 Wastewater treatment via membrane filtration
1.1.3.1 General wastewater freatment

Wastewater treatment is grouped into primary, secondary, and advanced
treatment. Primary treatment comprises physical operations such as screening and
sedimentation to remove floatable and settleable solids from the water. Secondary
treatment uses biological and chemical processes to reduce the load of organic matter
in the water. Advanced (tertiary) treatment further aims to remove other constituents
like nitrogen and phosphorus [4].

The conventional activated sludge process, commercialized in 1920 as a
continuous process, is the most common biological process able to handle secondary
and advanced treatment [8]. Although well understood and mathematically modeled,
the use of the activated sludge process is constrained by several factors. Those factors
are a relatively large area for the process setup, large volumes for the aeration and
sedimentation tanks, further treatment of excess sludge, required adaptation to
fluctuations in the loading rate, and frequent problems with sludge separation

problems due to bulking and foaming [9].

1.1.3.2 Membrane bioreactors (MBR)

As an alternative technology to the activated sludge process, researchers became
interested about 35 years ago in combining membranes with biological processes.

MBR consists of a bioreactor and a membrane filtration unit, which replaces the step
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of the secondary clarification for biomass separation. Fig. 1.5 and 1.6 show two
possible configurations.

MBR for wastewater treatment are one of the fastest growing technologies in
municipal and industrial wastewater treatment, especially for effluent reuse. If space
restrictions apply, as in densely populated areas and on-board ships, MBR are a
superior alternative due to small footprints [10].

The advantages of MBR compared to the conventional activated sludge process are a
complete solid removal, quicker startup, the possibility of modular plant extension,

and higher loading rates [11].

— !
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Aeration tank

Fig. 1.5. Sidestream MBR as used in this work.
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