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Abstract

This thesis represents a collection of papers on numerical modeling of permafrost and sea-
sonally freezing ground dynamics.

An important problem in numerical modeling of temperature dynamics in permafrost
and seasonally freezing ground is related to parametrization of already existing models. In
this thesis, a variation data assimilation technique is presented to find soil properties by
minimizing the discrepancy between in-situ measured temperatures and those computed by
the models. The iterative minimization starts from an initial approximation of the soil prop-
erties that are found by solving a sequence of simple subproblems. In order to compute the
discrepancy, the temperature dynamics is simulated by a new implementation of the finite
element method applied to the heat equation with phase change. Despite simplifications
in soil physics, the presented technique was successfully applied to recover soil properties,
such as thermal conductivity, soil porosity, and the unfrozen water content, at several sites
in Alaska. The recovered properties are used in discussion on soil freezing/thawing and
permafrost dynamics in other parts of this thesis.

Another part of this thesis concerns development of a numerical thermo-mechanical
model of seasonal soil freezing on the lateral scale of several meters. The presented model
explains observed differential frost heave occurring in non-sorted circle ecosystems north of
the Brooks Range in the Alaskan tundra. The model takes into account conservation princi-
ples for energy, linear momentum and mass of three constituents: liquid water, ice and solid
particles. The conservation principles are reduced to a computationally convenient system
of coupled equations for temperature, liquid water pressure, porosity, and the velocity of
soil particles in a three-dimensional domain with cylindrical symmetry. Despite a simplified
rheology, the model simulates the ground surface motion, temperature, and water dynamics
in soil and explains dependence of the frost heave on specific environmental properties of
the ecosystem.

In the final part, simulation of the soil temperature dynamics on the global scale is
addressed. General Circulation Models are used to understand and predict future climate
change, but most of them do not simulate permafrost dynamics and its potentially critical
feedback on climate. In this part, a widely used climate model is evaluated and the simu-
lated temperatures are compared against observations. Based on this comparison, several
modifications to the Global Circulation Models are identified to improve the fidelity of per-

mafrost and soil temperature simulations. These modifications include increasing the total
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soil depth by adding new layers, incorporating a surface organic layer, and modifying the

numerical scheme to include unfrozen water dynamics.
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General Introduction

In this thesis, I present a collection of five articles (chapters) focused on the modeling of
seasonally freezing ground and permafrost. Three common threads weave through these five
papers. The first thread is modeling phase change of ground water trapped in the soil pores.
Freezing of water trapped in the ground material is a complicated physical process that is
still poorly understood. There are many models of freezing and thawing soil, some of them
are described Goodrich (1982); Nelson and Outcalt (1987); Kane et al. (1991); Zhuang et al.
(2001); Ling and Zhang (2003); Oleson et al. (2004); Sazonova et al. (2004) and Molders
and Romanovsky (2006). Typically the models are formulated in the language of partial
differential equations that include non-linearities. Due to the non-linearities, application
of the analytical methods to compute a solution of the partial differential equations is
limited. Hence, numerical methods are typically employed to predict the evolution of soil
temperature dynamics.

Another thread that weaves through the thesis is related to parametrization of the
permafrost models used to calculate the soil temperature dynamics. Key parameters in
the models are thermal and hydrological properties of the ground material. At present
time, these properties are known for a small portion of the land surface area. However,
the soil temperature data (Muhll et al., 1998; Brown et al., 2000; Oberman and Mazhitova,
2001; Romanovsky et al., 2001; Burgess et al., 2002; Clow and Urban, 2002; Paviov and
Moskalenko, 2002; Romanovsky et al., 2002; Nizon et al., 2003; Osterkamp, 2003; Marchenko
et al., 2007) collected in numerous locations across the pan-Arctic can be used in inverse
modeling techniques to find thermal and hydrological properties of the ground material.
In this thesis, I show that temperature records at several depths beneath the soil surface,
and instantaneous temperature profiles in relatively deep boreholes can be assimilated to
recover the unknown soil properties. Once the soil properties are found they can be used to
reconstruct soil temperature dynamics in the past and also to project its future evolution.

The third thread that interconnects the chapters is related to modeling soil freezing and
thawing on different spatial and temporal scales. I describe a detailed thermo-mechanical
model of freezing soil. The model addresses water, temperature, and soil particle dynamics
on the local scale - several meters. Since the presented thermo-mechanical model is compu-
tationally expensive, its execution by nowadays computers on the pan-Arctic scale requires

an enormous amount of time. After analyzing the temperature and water transport on
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the local scale, I propose suggestions to improve modeling of temperature dynamics by the
Global Circulation Models. The proposed suggestions lessen biases in the Global Circula-
tion Models and improve simulation of the temperature dynamics for the Arctic regions on
the Earth.

In Chapter 1, I and several colleagues propose a method to determine an initial approx-
imation to the soil properties using observed temperature time series at specified depths.
The described method is based on solution of simpler subproblems and is tested on field
data. To compute the temperature dynamics in the freezing and thawing ground, a novel
finite element method is proposed. In this chapter, a special emphasis is put on necessity
of good initial values of the thermal properties which can be used later in variational data
assimilation problems.

In Chapter 2, we describe a variational data assimilation to estimate the soil properties
using high-resolution-in-time temperature records at several depths beneath the soil surface,
and instantaneous temperature profiles in a deep borehole. We conduct a sensitivity analysis
which shows robustness and efficiency of the variational approach. We applied the developed
tool to estimate soil properties at several sites in Alaska.

In Chapter 3, we use the obtained knowledge on estimation of soil thermal proper-
ties, to investigate bio-geophysical processes causing differential frost heave in non-sorted
circles north of the Alaska’s Brooks Range. The main question addressed is “How does
heterogeneity in soil properties and ground surface conditions cause the differential frost
heave observed within the non-sorted circle?”” We address this question by developing a
numerical thermo-mechanical model of a non-sorted circle. The performed sensitivity study
of predicted differential frost heave with respect to soil physical properties and vegetation
characteristics shows that hydrological and thermal properties as well as the local hetero-
geneity in the distribution of the surface vegetation have a decisive role in formation of the
differential frost heave.

In Chapter 4, we describe an approach to improve global climate models which are
frequently used to understand and predict future climate change. In particular, we evaluate
the Community Land Model, which is a land-surface scheme, against observations and
identify potential modifications to this model that improve fidelity of permafrost and soil
temperature simulations

In Chapter 5, we examine the Community Land Model and its modifications. We

estimate the required thickness of soil layers to calculate temperature dynamics within
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certain errors. Our results show that to compute the annual cycle of temperature dynamics
for cold permafrost, the soil thickness should be at least 30 meters.

All five chapters were originally written as stand-alone manuscripts, which have been
published, submitted or are to be submitted for publication. The first paper is co-authored
with Drs. Vladimir Romanovsky and Gennadiy Tipenko. Dr. Vladimir Romanovsky is
also my co-author in the second paper, as well as Dr. Gleb Panteleev. The third paper
is co-authored with Drs. Vladimir Romanovsky, Gennadiy Tipenko and Donald Walker.
The forth paper is co-authored with Vladimir Romanovsky, Vladimir Alexeev and David
Lawrence. In the final fifth paper, Dr Vladimir Alexeev is the first author, however the
majority of numerical computations and parts of the synthesis was performed by the sec-
ond author, Dmitry Nicolsky. Additional co-authors in the fifth paper are Drs. Vladimir
Romanovsky and David Lawrence. In each case my co-authors helped me tremendously by
providing guidance, assisting with modeling, acquisition of field data, and editing. As the
first author I wrote the first four manuscripts and contributed an overwhelming portion of

the work in all five manuscripts.
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Chapter 1
Using in-situ temperature measurements to estimate saturated soil thermal

properties by solving a sequence of optimization problems!

1.1 Abstract

We describe an approach to find an initial approximation to the thermal properties of
soil horizons. This technique approximates thermal conductivity, porosity, unfrozen water
content curves in horizons where no direct temperature measurements are available. To
determine physical properties of ground material, optimization-based inverse techniques are
employed to fit the simulated temperatures to the measured ones. Two major ingredients
of these techniques are an algorithm to compute the soil temperature dynamics and a
procedure to find an initial approximation to the ground properties. In this article we
show how to determine the initial approximation to the physical properties and present a
new finite element discretization of the heat equation with phase change to calculate the
temperature dynamics in soil. We successfully apply the proposed algorithm to recover the
soil properties for the Happy Valley site in Alaska using one-year temperature dynamics.
The determined initial approximation is utilized to simulate the temperature dynamics over
several consecutive years; the difference between simulated and measured temperatures lies

within uncertainties of measurements.

1.2 Introduction

Recently, the Arctic Climate Impact Assessment report (ACIA, 2004) concluded that cli-
mate change is likely to significantly transform present natural environments, particularly
across extensive areas in the Arctic and sub-Arctic. Among the highlighted potential trans-
formations is soil warming which can potentially cause an increase in the active layer thick-
ness and degradation of permafrost as well as have broader impacts on soil hydrology,
northern ecosystems and infrastructure. Since permafrost is widely distributed and covers
approximately 25% of the land surface in the Northern Hemisphere (Brown et al., 1997), it
is important to understand the causes affecting the soil temperature regime. One approach
to studying soil temperature dynamics and their dependence on climate variability is to

employ mathematical modeling (Goodrich, 1982; Nelson and Ouitcalt, 1987; Kane et al.,

1D.J. Nicolsky, V.E. Romanovsky and G.S. Tipenko, 2007, “Using in-situ temperature measurements
to estimate saturated soil thermal properties by solving a sequence of optimization problems”, published in
The Cryosphere, 1: 41-58
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1991; Zhuang et al., 2001; Ling and Zhang, 2003; Oleson et al., 2004; Sazonova et al., 2004;
Milders and Romanovsky, 2006)

A mathematical model of soil freezing/thawing is based on finding a solution of a non-
linear heat equation over a specified domain, (see Andersland and Anderson, 1978; Yershov,
1998, and many references therein). The domain represents ground material and is divided
into several horizons (e.g. an organic matt, an organically enriched mineral soil layer, and
a mineral soil layer) each with its distinet properties characterized by mineral-chemical
composition, texture, porosity, heat capacity and thermal conductivity. By parameterizing
the coefficients in the heat equation within each horizon, it is possible to take into account
temperature-dependent latent heat effects occurring when ground freezes and thaws. This
approach yields a realistic model of temperature dynamics in soils. However, in order to
produce quantitatively reasonable results, it is necessary to prescribe physical properties of
each horizon.

Conventional Time Domain Reflectometry (Topp et al., 1980) and drying methods are
commonly used to estimate soil water content at shallow depths. The Time Domain Re-
flectometry method is based on measurements of the apparent dielectric constant around a
wave guide inserted into the soil. It has been demonstrated that there is a relationship be-
tween the apparent dielectric constant and liquid water content (Topp et al., 1980) enabling
robust estimations of water content in shallow soils with homogeneous composition. There
are some difficulties however in measuring unfrozen water content of coarsely textured, het-
erogeneous or organically enriched soils in Arctic tundra (Boike and Roth, 1997; Yoshikawa
et al., 2004). More accurate measurements of the total water content (ice and water to-
gether) can be acquired by thermalization of neutrons and gamma ray attenuation. This
is not always suitable for Arctic regions as it requires transportation of radioactive equip-
ment to remote locations (Boike and Roth, 1997). An alternative to the above-mentioned
methods and also to a number of others (Schmugge et al., 1980; Tice et al., 1982; Ulaby
et al., 1982; Stafford, 1988; Smith and Tice, 1988) is the use of inverse modeling techniques.
These techniques estimate the water content and other thermal properties of soil using
in-situ temperature measurements and by exploiting the mathematical model.

A variety of inverse modeling techniques that recover the thermal properties of soil are
known. Many of them rely on the commonly called source methods (Jaeger and Sass,
1964), in which temperature response due to heating is measured at a certain distance

from the heat source. The temperature response and geometry of the probe are used to
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compute the thermal properties by either direct or indirect methods. In the direct methods,
the temperature measurements are explicitly used to evaluate the thermal properties. In
the indirect methods, one minimizes a discrepancy between the measured and the synthetic
temperatures, the latter computed mathematically by exploiting the heat equation in which
the coefficients are parameterized according to the specified thermal properties.

Application of direct methods such as the Simple Fourier Methods (Carson, 1963), Per-
turbed Fourier Method (Hurley and Wiltshire, 1993), and the Graphical Finite Difference
Method (McGaw et al., 1978; Zhang and Osterkamp, 1995; Hinkel, 1997) yield accurate
results for the thermal diffusivity (the ratio of the thermal conductivity and the heat capac-
ity), only when water does not undergo the phase change. Despite the fact that the direct
methods are well established for the heat equation without the phase change, no universal
framework exists in the case of the soil freezing/thawing because the heat capacity and
thermal conductivity depend strongly on the temperature in this case.

A common implementation of the indirect methods uses an analytical or numerical
solution of the heat equation to evaluate the synthetic temperature. Due to strong non-
linearities, the analytical solution of the heat equation is known only for a limited number
of cases (Gupta, 2003), whereas numerical solutions are typically computable. Given a
numerical solution computed by finite difference (Samarskii and Vabishchevich, 1996) or
finite element (Zienkiewicz and Taylor, 1989) methods, one can minimize a cost function,
J, which measures a discrepancy between the measured T, and synthetic T, temperatures.
"The typical expression for the cost function, J, is given by

J(€) ~ /t'te (T (@i, £) — To(zs, 1 €))2dlt. (1.1)

Here, the quantity € is the control vector that is a set of parameters defining soil properties
of each soil horizon. The synthetic temperature, T, is computed by the mathematical model
parameterized by variables in C at some depths ; over the time interval [ts, te].

In this article, we deal with optimization techniques that find soil properties by min-
imizing the cost function (1.1). Commonly, the cost function J is minimized iteratively
starting from an initial approximation €y to the paramecters € (Thacker and Long, 1988).
Since the heat equation is non-linear, in general there are several local minima. Hence, it is
important that the initial approximation lies in the basin of attraction of a proper minimum
(Awvriel, 2003).

We present a semi-heuristic algorithm to determine an initial approximation €y, for

use as the starting point in multivariate minimization of cost functions such as (1.1). In
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this article, we use in-situ measured temperature T, to formulate the cost function J. We
construct the initial approximation by minimizing cost functions over specifically selected
time intervals [ts,t.] in a certain order. For example, first, we propose to find thermal
conductivity of the frozen soil using the temperature collected during winter, and then use
these values to find properties of the thawed soil. In order to minimize the cost function it is
necessary to compute the temperature dynamics multiple times for various control vectors
€. Since an analytical solution of the non-linear heat equation is not generally available, we
use a finite element method to find its solution. To compute latent heat effects, we propose
a new fixed grid technique to evaluate the latent heat terms in the mass (compliance) matrix
using enthalpy formulation. Our techniques do not rely on temporal or spatial averaging of
enthalpy, but rather evaluate integrals directly by employing a certain change of variables.
An advantage of this approach is that it reduces the numerical oscillation of the temperature
dynamics at locations near 0°C isotherm.

The structure of this chapter is organized as follows. In Section 1.3, we describe a
commonly used mathematical model of temperature changes in the active layer and near
surface permafrost. In Section 1.4, we outline a finite element discretization of the heat
equation with phase change. In Section 1.5, we introduce main definitions, notations and
state the variational approach to find the thermal properties. In Section 1.6, we provide an
algorithm to construct an initial approximation to thermal properties. In Section 1.7, we
apply our method to estimate the thermal properties and the coefficients determining the
unfrozen water coutent at a site located in Alaska. In Section 1.8, we state limitations and
shortcomings of the proposed algorithm. Finally, in Section 1.9, we provide conclusions and

describe main results.

1.3 Modeling of soil freezing and thawing
For many practical applications, heat conduction is the dominant process, and hence the soil
temperature T, [°C] can be simulated by a 1-D heat equation with phase change (Carslaw
and Jaeger, 1959):

7] 7] 8,0

C@T(.’E,t) -+ Lael(T, .’L) = ‘a—m")\%T(‘L’,t), (1.2)

where 2€[0,1], t€[0,7]; the quantities C=C(T,z) [Jm3K~!] and A=\(T,z) [Wm™1K~!]
stand for the volumetric heat capacity and thermal conductivity of soil, respectively; L
[Jm™3] is the volumetric latent heat of fusion of water, and 6; is the volumetric liquid water

content. We note that this equation is applicable when migration of water is negligible,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

there are no internal sources or sinks of heat, frost heave is insignificant, and there are no
changes in topography and soil properties in lateral directions. Typically, the heat equation
(1.2) is supplemented by Dirichlet, Neumann, or Robin boundary conditions specified at
the ground surface, =0, and at the depth { (Carslow and Jaeger, 1959). In geothermal
studies, a Neumann boundary condition is typically set at the depth I. In this study
we use the measured temperatures T, and 7T} to set the Dirichlet boundary conditions at
depths 2=0 and x=I[, respectively, i.e. T(0,t)=T,(¢), T(l,t)=T(t). In order to calculate
the temperature dynamics T'(x,t) at any time ¢ € [0, 7], equation (1.2) is supplemented by
an initial condition, i.e. T'(z,0)=Ty(z), where Tp(x) is the temperature at x € [0,!] at time
t=0.

In certain conditions such as waterlogged Arctic lowlands, soil can be considered a
porous media fully saturated with water. The fully saturated soil is a multi-component
system consisting of soil particles, liquid water, and ice. It is known that the energy of
the multi-component system is minimized when a thin film of liquid water (at temperature
below 0°C) separates ice from the soil particles (Hobbs, 1974). A film thickness depends
on soil temperature, pressure, mineralogy, solute concentration and other factors (Hobbs,
1974). One of the commonly used measures of liquid water below freezing temperature is
the volumetric unfrozen water content ( Williams, 1967; Anderson and Morgenstern, 1973;
Osterkamp and Romanouvsky, 1997; Watanabe and Mizoguchi, 2002). It is defined as the
ratio of liquid water volume in a representative soil domain at temperature 7' to the volume
of this representative domain and is denoted by 6,(T). There are many approximations
to §; in the fully saturated soil (Lunardini, 1987; Galushkin, 1997). The most common
approximations are associated with power or exponential functions. Based on our positive
experience in Romanovsky and Osterkamp (2000), we parameterize §; by a power function
6,(T)=a|T| 7% a,b>0 for T<T,<0°C (Lovell, 1957). The constant T} is called the freezing
point depression (Hobbs, 1974), and from the physical point of view it means that ice does
not exist in the soil if T'>T. In thawed soils (T>T}), the amount of water in the saturated
soil is equal to the soil porosity 7, and hence the function 6;(T") can be extended to T>T,

as 0;(1)=n. Therefore, we assume that

1 T>T,
6,(T, z)= T,z), ¢= ’ - , 1.3
(ED=n@T ), 0=4 0 n s g (13)

where ¢=¢(T, x) represents the liquid pore water fraction, and T is in °C, see the curve

marked by triangles in Figure 1.1. Note that the constants T, and b are the only parameters
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that specify dependence of the unfrozen liquid water content on temperature. For example,
small values of b describe the liquid water content in some fine-grained soils, whereas large
values of b are related to coarse-grained materials in which almost all water freezes at the
temperature 7,. The limiting case in which all water freezes at the temperature T is
associated with phase change between water and ice (no soil particles). This limiting case is
commonly called the classical Stefan problem and is represented by extremely large values
of bin (1.3).

We use the following notation and definitions. We abbreviate by letters ¢, [ and s, ice,
liquid water, and the soil particles, respectively. We express thermal conductivity A of the
soil and its apparent volumetric heat capacity Cqpp according to (de Vries, 1963; Sass et al.,

1971) as
d6,(T)
dr

C(T) = 0;(T)C; + 6,(T)C; + 6,C, (1.5)

AT)=NENEDND) | o (T)=C(T)+L

(1.4)

where C' is called the volumetric heat capacity of the soil. Here, the constants Cg, Ag,
ke{i,l, s} are the volumetric heat capacity and thermal conductivity of the k-th constituent
at 0°C, respectively. The quantity 0y, k€{%,l, s} is the volume fraction of each constituent.
Exploiting the relations 8,=1—n and 6;=n—0;, we introduce notation for the effective volu-
metric heat capacities Cy and Cy, and the effective thermal conductivities Ay and A; of soil
for frozen and thawed states, respectively. Therefore formulae (1.4) and (1.5) yield

do,

Cupp=C+L—,

C=Ci(1-¢)+Crp, A=A} *){, (1.6)
where
A=A M=ATN)L Cp=Cs(1-n)+Cin,  Cy=Cs(1~n)+Cim.

For most soils, seasonal deformation of the soil skeleton is negligible, and hence temporal
variations in the total soil porosity n for each layer are insignificant. Therefore, the thawed

and frozen thermal conductivities for the fully saturated soil satisfy

i [ﬁ]n. (1.7)

PYRRNDY
It is important to emphasize that evaporation from the ground surface and from within
the upper organic layer can cause partial saturation of upper soil horizons (Hinzman et al.,

1991; Kane et al., 2001). Therefore, formula (1.7) need not hold within live vegetation and
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organic soil layers, and possibly within organically enriched mineral soil (Romanovsky and
Osterkamp, 1997).

‘We approximate the coeflicients Copp, A according to (1.6), where the thermal properties
Afy Aty Cf, Gy and parameters 7, Ty, b are constants within each soil horizon. Table 1.1
lists typical soil horizon geometry, commonly occurring ranges for the porosity 7, thermal

conductivity A¢ and the values of b parameterizing the unfrozen water content.

1.4 Solution of the heat equation with phase change

1.4.1 A review of numerical methods

In order to solve the inverse problem one needs to compute a series of direct problems, i.e.
to obtain the temperature fields for various combinations of thermal properties. A number
of numerical methods (Javierre et al., 2006) exist to compute temperature that satisfies
the heat equation with phase change (1.2). These methods vary from the simplest ones
which yield inaccurate results to sophisticated ones which produce accurate temperature
distributions. The highly sophisticated methods explicitly track a region where the phase
change occurs and produce a grid refinement in its vicinity, and therefore take significantly
more computational time to obtain temperature dynamics. Implementing such complicated
methods is not always necessary, since an extremely accurate solution is not particularly
important when the mathematical model describing nature is significantly simplified.

In this subsection, we briefly review several fixed grid techniques ( Voller and Swami-
nathan, 1990) that accurately estimate soil temperature dynamics and easily extend to
multi-dimensional versions of the heat equation (1.2). These methods provide the solution
for arbitrary temperature-dependent thermal properties of the soil and do not explicitly
track the area where the phase change occurs. Recall that in soils the phase change occurs
at almost all sub-zero temperatures. A cornerstone of the fixed grid techniques is a nu-
merical approximation of the apparent heat capacity Cypp. A variety of the approximation
techniques can be found in (Voller and Swaminathan, 1990; Pham, 1995) and references
therein. In general, two classes of them can be identified. The first class is based on tem-
perature/coordinate averaging (Comini et al., 1974; Lemmon, 1979) of the phase change.

Here, the apparent heat capacity is approximated by

(1.8)

Copp = OH (8T>—1’

Oz \ bz
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where
T
H = / CoppdT,
0

is the enthalpy. The second class of methods is based on temperature/time averaging

(Morgan et al., 1978). In this approach,

Cap _ Heyrrent — I{previous (1'9)

)

Tcurrent — T;m"evious
where subscripts mark time steps at which the values of H and 7" are calculated. Although
these methods have been presented in the context of large values of b in (1.3), it is noted
that they work best in the case of a naturally occurring wide phase change interval. Also, it
is important to note that the approximation (1.8) is not accurate for near zero temperature
gradients. In the case when the boundary conditions are given by natural variability (several
seasonal freezing/thawing cycles), near zero gradients at some depths may occur for some
time intervals. Hence, the temperature dynamics calculated by using (1.8) can have large
computational errors.

An alternative fixed grid technique can be developed by rewriting the heat equation

(1.2) in a new form:
O0H 9. 0

Bt o2 a
resulting in the enthalpy diffusion method (Mundim and Fortes, 1979). Advantages of dis-

T = T(H), (1.10)

cretizing (1.10) is that the temperature T = T(H) is a smooth function of enthalpy H and
hence one can compute all partial derivatives. However, for soils with a sharp boundary
between thawed and completely frozen states, the enthalpy H becomes a multivariate func-
tion when temperature T nears Ty. Therefore, solution of (1.10) results in that the front
becomes artificially stretched over at least one or even several finite elements.
In this chapter, we propose a fixed grid technique that applies the basic finite element
method (Zienkiewicz and Taylor, 1989) to equation (1.2). Finite element discretization of
90 _ p 60T
ot dT ot
in the left hand side of (1.2) results in

(/ " @y @) L (1 (e, ) ) (111)

where ¢;(2) and 1;(x) are two piecewise linear basis functions at nodes ¢ and j, respectively,

T;(t) is the value of temperature at the j-th node at time ¢, and T'(z,t) = >, ¥i(2)T;(2).
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We propose to evaluate this type of integrals using the unfrozen liquid water content 6; as
the integration variable, i.e.

61
/ " da‘ (T (e, t)de = L / W (T, 1)) 6y, (1.12)

o
where ¢=1;1;, and 6o=0;(T(x0,t)) and 6;=6;(T(x1,t)). This substitution allows precise
computation of the latent-heat effect for arbitrary grid cells, since it is parameterized by the
limits of integration 6y, 6;, instead of being calculated using the rapidly varying function
%(T) on the element [zg,21] by a quadrature rule. As a consequence of the proposed
substitution, evaluation of the integral in (1.11) may not to yield the right result unless the
function T'(6;) must be monotonically increasing for all 6;<n, and T'(z,t) be monotonous
on [zg,z1] at time ¢t. Figure 1.1 shows two instances of the unfrozen water content curves
frequently occurring in nature. The curve marked by circles is associated with soils in which
free water freezes prior to freezing of the bound liquid water in soil pores. The free water is
associated with a vertical line at T'=T, whereas the bound water is represented by a smooth
curve at T'<T,. The curve marked by triangles reflects soil in which all water is bounded

in soil pores and can be parameterized by (1.3) used in our modeling.

1.4.2 Finite element formulation

Let us consider a triangulation of the interval [0,{] by a set of nodes {x;}IL,. With each
node x;, we associate a continuous function ;(z) such that ¢;(x;) = &;;. We will refer
to {#;}7-; as the basis functions on the interval [0,]. Hence, the temperature T'(z,t) on
[0,1] is approximated by a linear combination: T'(x,t)=> 7, T;i(t)¢s(z), where T;=T;(t) is
the temperature at the node x; at the time ¢. Substituting this linear combination into
(1.2), multiplying it by ¢; and then integrating over the interval [0,], we obtain a system
of differential equations (Zienkiewicz and Taylor, 1989):

M(T)(—%T(t) = —K(T)T(%), (1.13)

where T=T(¢)=[T1(t) Tx(t) ... Tn(t)]" is the vector of temperatures at nodes {z;}I* ; at time
t. Here, the nxn matrices M(T)={m;}7;_, and K(T)={ki;}};_, are mass and stiffness

matrices, respectively. Entry-wise they are defined as

l

myj= / C(T, z)hipda+L d"l%%dw (1.14)
0
! di; d

kijzfo T, )dw ;bjd (1.15)
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The fully implicit scheme is utilized to discretize (1.13) with respect to time. Denoting by

dt;, the time increment at the k-th moment of time ¢j, one has
[M* + dtp K¥] TF = MFT*, k> 1 (1.16)

where T* = T(t), K*=K(T*), M*=M(T*). We impose boundary conditions at =0 and
some depth z=I by specifying T1 (¢ )=T,(tx) and Ty, (tx)=T}(tx).

Given T*!  we find the solution T* of (1.16) by Picard iteration (Kolmogorov and
Fomin, 1975). The iteration process starts from the initial guess T’g = Th=1 that is used
to compute temperature T¥ at the first iteration. At iteration s, we compute T% and
terminate iterations at s, when a certain convergence condition is met. The value of TF is
used to evaluate the matrices M*,=M(T¥), and K*¥,=K(T¥). In turn, these are utilized

to compute the s + 1 iteration TX 11 by equating
[MF, + dt, KF T — MF TR = 0, (1.17)

At each iteration the convergence condition maxy [T+ (ty) — T (tx)| < € is checked. If it
hold, the iterations are terminated at s,=s~+ 1. If the number of iterations exceeds a certain
predefined number, the time increment dty is halved and the iterations start again. Please,

note that the convergence is guaranteed if the time increment dt;, is small enough.

1.4.3 Computation of the mass matrix

One of the obstacles to obtain a finite dimensional approximation that accurately captures
the temperature dynamics is related to evaluation of the mass matrix M. Since the basis
function %; does not vanish only on the interval [z;—1,2;+1], the matrix M is tri-diagonal.

Therefore, to compute its i-th row we evaluate

1
B @ ps(a)de =i Lii+1, (1.18)
o dT

where j stands for the column index. For the sake of brevity, we consider the first integral
(j=i—1) in (1.18). This restricts us only to the grid element [z;_1,2;], yielding

1 -
A %¢1-1(m)¢z(x)dm = - %¢z~1(9¢)%(w)dw (1.19)

We recall that in the standard finite element method, the temperature on the interval

[z;—12;] is approximated by

T(z, t)=tpi-1(2)Tim1 () +ehi(2) T3 (1), (1.20)
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for any 2 € [z;-1,2;] and fixed moment time ¢. Here, ¢; and ¥;—1 are piece-wise linear
functions satisfying v;_1=1—1; on [z;_1,2;]. For all z € [2;-1,;], we can compute the
temperature T from (1.20) and values of T}, T;..;. Note that in the case of AT;=0, we can
compute (1.19) directly since d6;/dT is constant over [z;—12;]. However, if AT,=T;~T;_1 #

0, then we can consider an inverse function, that is, z is taken as a function of T' to obtain

T4 P T
/ DBty s = L= / Bror oy -1 )ar
Z X

i dT (AT;)3 - dTl’
Therefore
"t dg z;—xiq [0
;1Y S er—eu-a — ] i i—1 — T N 1.2

where 0;.1=60,(T(z;-1,t)) and 6;=6;(T(x;,t)). Note that in (1.21) the temperature T is
a function of the liquid water content 6, ie. T = 0{“1(91). Therefore, returning back to
(1.18), we have that each of the integrals in (1.18) is a linear combination of the type
BaAs + 1A1 + BoAo, where

0;
Ay = / 67N ) dz, k=0,1,2,
7]

i1

The constants {0k} are easily computable if 6;(T) is given by (1.3).

1.4.4 Evaluation of the proposed method

To test the proposed method, we compare temperature dynamics computed by the proposed
method with an analytical solution of the heat equation (1.2) in which b — oo. This
analytical solution is called Neumann solution (Gupta, 2003) and is typically used to verify
numerical schemes. In the proposed numerical scheme the mass matrix M is tri-diagonal,
and hence this scheme is called consistent. Other commonly utilized numerical schemes are
called mass lumped (Zienkiewicz and Taylor, 1989) since they employ the diagonal mass

matrix: . .
M=diag(0app,1/0 wldx,...,Capp,n/ PYnpdz). (1.22)
0

Here, Coppi is the value of the apparent heat capacity C,p, at the i—th node computed
either by spatial (1.8) or temporal (1.9) averaging of latent heat effects.

In Figure 1.2, we compare temperature dynamics computed by the proposed consistent
and a typical mass lumped scheme. We plot a location of the 0°C isotherm for several

spatial discretizations, i.e. the distance Az; between two neighboring nodes z; and x;_1 is
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0.1 or 0.01 meter. In this figure we see that the location of the 0°C isotherm calculated
by numerical schemes lies within Az; bound near the analytical solution. However, tem-
poral dynamics of the location of the 0°C isotherm differ among methods. In the solution
(squares) computed by the mass lumped approach with temporal enthalpy averaging (TA),
dynamics of the 0°C isotherm has some irregularities, i.e the freezing front either advancing
too fast or too slow. In average, however this algorithm produces good results. Our pro-
posed consistent method (circles) gives a better solution and smoother rate of advancing of
the 0°C' isotherm, see Figure 1.2, left.

In Figure 1.3, we compare temperature dynamics computed by two mass lumped ap-
proaches exploiting spatial (1.8) and temporal (1.9) enthalpy averaging. A warm bias in
the temperature computed by the spatial averaging of the enthalpy is due to computational
errors occurring when the temperature gradient is approximately zero at some depth. Our
experience shows that this difference appears regardless of decreasing the tolerance € be-
tween iterations in (1.17). We note that in all above numerical experiments a finite element
computer code is the same except for a part associated with computation of mass matrix,
i.e. consistent (1.18) or mass lumped (1.22). These numerical experiments show that the
straight-forward mass lumped schemes are typically inferior to consistent ones.

Since our method (1.14) is based on the consistent approach (the mass matrix M is
the tri-diagonal one), the numerical solution oscillates if the time steps dt; are too small
(Pinder and Gray, 1977). For a fixed time step dty, the oscillations disappear if the spatial
discretization becomes fine, i.e. the inequality m;;+dtyk;;<0 holds when iz£j (Ciarlet, 1978;
Dalhuijsen and Segal, 1986). It is shown that these oscillations occur due to violation of
the discrete maximum principle (Rank et al., 1983). Therefore, to avoid the oscillations in
the numerical solution (Dalhuijsen and Segal, 1986), we propose either to use sufficiently
large time steps (for which the formula can be found in the above citéd references) or to
exploit the following regularization. We construct a lumped version M= {mi;} of the mass

matrix M given by

’I’hii = Zmij (123)
J

and substitute M for M in (1.16). Comparison of temperature dynamics computed em-
ploying the proposed consistent M defined by (1.16) and its mass lumped modification M
defined by (1.23) is shown in Figure 1.4. The numerical oscillations near 0°C' disappear in
the temperature dynamics computed by the proposed mass lumped approach (see Figure

1.4). In Figure 1.5, we compare the proposed mass lumped approach (stars), and the one
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based on temporal enthalpy averaging (squares) by (1.8). This figure shows that the numer-
ical scheme using temporal averaging of the enthalpy produces larger oscillation than our
solution. This comparison reveals that the proposed mass lumped approach (1.23) reduces
some numerical oscillations and follows the “exact” solution (computed by the consistent
approach with a fine spatial discretization) more closely than the solution computed by the
lumped approach exploiting (1.8).

In conclusion, we state that if a spatial discretization is fine and time steps are suffi-
ciently large (Pinder and Gray, 1977) then the consistent schemes do not show numerical
oscillations, and hence they should be utilized. In the case of a coarse spatial discretization,
consistent schemes can violate the discrete maximum principle, and hence the mass lumped
schemes are more attractive. In this work, we construct a fine spatial discretization and use

the proposed consistent approach, while restricting the time step ¢; from below.

1.5 Variational approach to find the soil properties
In this section, we provide definitions and describe main components of the indirect method
used to find the soil properties by minimizing the cost function outlined in (1.1).

We define the control € as a set consisting of thermal conductivities /\Ei),)\gf), heat
capacities Ct(i), Cj(f) and parameters n(i), T*(i),b(i) describing the unfrozen water content for

each soil horizon i = 1,...,n, or
e={c}, e A0 AP, T b0y, (1.24)

where n is the total number of horizons. We say that a solution of the direct problem for
the control € is T'(x,t; €) and is defined by the set

T(z,8:€) = {T(zi,t) ;i =1,...,m:t € [0,7]}, (1.25)

where {z;}2, is a set of m fixed distinct points on [0,{]. In (1.25), the T'(z;,t) are point-
wise values of temperature distributions satisfying (1.2) in which thermal properties of each
horizon are given according to €.

The counterpart of T'(x,¢; C) is the data Tn(x,t) defined by a set of measured temper-
ature at the same depths {x;}/2, and the same time interval [0,7]. Since the data Tp(z,t)
and its model counterpart T'(z,t; C) are given on the same set of depths and time interval,

we can easily compute a discrepancy between them, usually measured by the cost function

m te
J(e):m—};—@;gg /t (Tp (i, t)~T (@i, t; C))2dt. (1.26)
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Here, ts,t. € [0,7] and o; stands for an uncertainty in measurements by the é-th sensor.
In our measurements all temperature sensors assume the same precision, so all of {o;} are
equal. Given a way to measure this discrepancy as in (1.26) we can finally formulate an
inverse problem.

For the given data Tp(x,t), we say that the control C,. is a solution to an inverse
problem if discrepancy between the data and its model counterpart evaluated at C, is
minimal (Alifanov, 1995; Alifanov et al., 1996; Tikhonov et ol., 1996). That is,

J(C,) = mén J(C).

To illustrate steps which are necessary to solve this inverse problem and find an optimal €,
we provide the following example. To formulate the inverse problem one has to have the
measured temperatures T'p(z,t). For the sake of this example, we replace the data Tp(z,t)
by a synthetic temperature Tg(x,t) = T(z,t; €') (a numerical solution of the heat equation

(1.2) for the known combination € of the thermal properties):

cV=1.610°, c{V=2.1.10°, AV=0.55, A(V=0.14, n"=0.30, V=09, T{"=-0.03
C'=4 ¢P=1710° C{P=2310°, AP'=0.90, A\{¥=0.66, 7(?=0.30, b®P=0.6, T\¥=—0.03
cP=18106, C{V=2.610°, A\=1.90, \{V=1.25, ®=0.25, b®=0.8, T{¥=-0.03

The initial and boundary conditions in all calculations are fixed and given by in-situ tem-
perature measurements in 2001 and 2002 at the Happy Valley site located in the Alaskan
Arctic. We compute the temperature dynamics for a soil slab with dimensions [0.02, 1.06]
between 21 July 2001 and 6 May 2002, and evaluate the cost function at {z;};={0.10, 0.17,
0.25, 0.32, 0.40, 0.48, 0.55, 0.70, 0.86} meters. Uniformly distributed noise on [—0.04, 0.04]
was added to Tgs(z,t), to simulate noisy temperature data recorded by sensors (precision
of the sensor is 0.04°C). The boundaries between the horizons lie at 0.10 and 0.20 meter
depth.

We find a control €’ that minimizes the cost function J defined by (1.26) in which
Tp(z,t) = Ts(z,t). For the sake of simplicity, we assume that all variables in €’ are known
except for the pair A§c2) 73 Therefore, the problem of finding this pair can be solved by
minimizing the cost function J on (/\;2) 73 plane as follows. We compute temperature
dynamics for various combinations of /\(f2),n(3) and plot isolines of J, see Figure 1.6. The
point on ()\;2),77(3)) plane where the cost function is minimal gives the sought values of )\;2)
and 7®. The location of the minimum coincides with values )\ch)z().Q, 73 =0.25, which

were used to generate the synthetic data.
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In the above example, the control had only two unknown variables )\;2),77(3) and we
minimized the corresponding cost function. Usually, a majority of variables in the control
€ is unknown, and hence multivariate minimization is required. Since computation of the
cost function for all possible realizations of the control on the discrete grid is extremely
time-consuming, various iterative techniques are used (Fletcher, 2000).

We note that if the cost function has several minima due to non-linearities of the heat
equation (1.2) and if the initial approximation Cq is arbitrary then the iterative algorithm
can converge to an improper minimum. Nevertheless, with the initial approximation Cgy
within the basin of attraction of the global minimum, the iterative optimization method
should converge to the proper minimum even if the model is nonlinear (Thacker, 1989).
Consequently, proper determination of an initial approximation Cg is important.

After selection of the initial approximation €y, the next step is to minimize the cost
function J(C) with respect to all parameters in €. There is a great variety of iterative
methods that minimize J(C). The majority of them rely on computation of the gradient
VJ(C) of the cost function. The computation of VJ(C) is a complicated problem and
is out of the scope of this chapter. An interested reader is referred to (Alifanov et al.,
1996; Permyakov, 2004) and to references therein. Since we are primarily concerned with
evaluation of the initial approximation to the thermal properties, we use the following
universal algorithm to minimize the cost function.

We look for the minimum of the cost function by the simplex search method described
in (Lagarias et al., 1998), which is a direct search method (Bazaraa et al., 1993). In a two
and three dimensional spaces, the simplex is a triangle or a pyramid, respectively. At each
iteration the value of the function computed at the point, being in or near the current sim-
plex, is compared with the function’s values at the vertices of the simplex and, usually, one
of the vertices is replaced by the new point, giving a new simplex. The iteration processes
is continued until the simplex sizes are less than an a priori specified tolerance. At the final
iteration, we obtain the set C of parameters that determine the thermal properties, porosity
and coefficients specifying the unfrozen water content for each soil horizon. However, we
note that this algorithm typically converges to the minimum slower than other algorithms

that require calculations of the gradient (Dennis and Schnabel, 1987).
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1.6 Selection of an initial approximation

Selection of a proper initial approximation Gy is an important problem, since the proper
choice of €y ensures that the minimization procedure converges to a global minimum. In
this section, we describe how to select a proper initial approximation by considering several

simpler subproblems.

1.6.1 General methodology

We begin by noting that in the natural environment, the thermal properties and the wa-
ter content are confined within a certain range depending on soil texture and mineralogy.
Therefore, the coefficients in (1.2) and hence their initial approximations lie within certain
limits. To ensure better determination of the initial approximation Cg, we employ an algo-
rithm similar to coordinate-wise searching method (Bazaraa et al., 1993). In this method,
one looks for a minimum along one coordinate, keeping other coordinates fixed, and then
looks for the minimum along another coordinate keeping others fixed and so on.

We propose to look for a minimum with respect to some subset of parameters in C,
followed by a search along other parameters in € and so on. In details, our approach is

formulated in five steps:
1. Select several time intervals {Ag} in the period of observations [0, 7]

2. Associate a certain subset C; of parameters C with each A;. The subset C; is such
that the temperature dynamics over the period A; is primarily determined by €; and

depend much less on changes in any other parameters in C.

3. Select a certain pair {A;,C;}, and look for a location of the minimum of the cost

function J(C) keeping all parameters in € except for €; fixed.
4. Update values of C; in the control € by the results obtained at Step 3.

5. Select another pair {A;, €;} that is different from the pair {A;,€;} at the previous
step. Go to Step 3 and repeat for the pair {A;, C;}.

We continue this iterative processes until the difference between the previous and current
values of parameters in € is below a critical tolerance.
The selected periods Ay do not have to coincide with traditional subdivision of a year.

The choice of Ay, is naturally dictated by seasons in the hydrological year, which starts at the
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end of summer and consists several seasons. If the period of observations is one year, typical
intervals Ay are “winter”, “summer and fall”, “fall” and “extended summer and fall”, see
Table 1.2. We note that the intervals Ay can overlap each other, and quantities t; and ¢
determining lower and upper limits of integration in (1.26) are equal to the beginning and
end of the time interval Ag. For different geographical regions, the timing for the “winter”,
“summer and fall” and “fall” can be different. Typical timing of periods {A} for the North

Slope of Alaska is shown in Table 1.2, and are now discussed.

1.6.2 Description of subproblems

Aq : The “winter” period corresponds to the time when the rate of change of the unfrozen
liquid water content 6; is negligibly small; the heat equation (1.2) models the transient
heat conduction with thermal properties A=A, C=CY, and % ~ (. During the “winter”,
temperature dynamics depend only on the thermal diffusivity C¢/As of the frozen soil, and
hence the simultaneous determination of both parameters Cy and A is an ill-conditioned
problem. Assuming that the heat capacity {C;f)} is known (depending on the soil texture
and moisture content we can approximate it using published data), we evaluate the thermal
conductivity { )\Sf)} and use these values during minimization at other intervals.

As : During the “summer and fall” time interval, active phase change of soil moisture
occurs. Hence, at this time, see Table 1.2, a contribution of the heat capacity C into
the apparent heat capacity Cypp is negligibly small comparing to the contribution of the
latent-heat term Ld@;/dT. Therefore, the rate of freezing/thawing primarily depends on the
soil porosity 7 and the thermal conductivity A ( Tikhonov and Samarskii, 1963). Thus we
approximate {lei) } using published data by analyzing the soil texture and moisture content.
Note that temperature-dependent latent-heat effects due to the existence of unfrozen water
6 at this period have a second order of magnitude effect (see discussion below). Therefore, if
no prior information about the coefficients b, T, parameterizing the unfrozen water content
is available then they can be prescribed by taking into account the soil texture and analyzing
measured temperature dynamics at the beginning of freeze-up (see Figure 1.7). We seek
better estimates of b, Ty at the next steps, namely during the “fall” period.

Since, during the “summer and fall” interval, the temperature dynamics primarily de-
pend on the porosity n and thermal conductivity A, we have to find only {Agj ), n@W}, since
{A(fj)} are already found at the previous step, i.e. the “winter” interval. Taking into account

the relationship (1.7) between the thermal conductivities for completely frozen and thawed
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soil, we approximate

A AT nld) '
)\gj) = )\gf) [)\—J ,  J=2,...,n. (1.27)

The water content §; in the upper soil horizon changes during the year due to moisture
evaporation and precipitation and is not always equal to 7. Hence formula (1.27) does
not hold for j=1. Hence, during the “summer and fall” period our goal is to estimate
{n®}2_, and /\gl), and then determine thermal conductivity )\gj ) for the rest of soil layers
j=2,...,n using (1.27).

Asz : Recall that while evaluating the thermal properties {)\gi), )\gf)} and the soil porosity
{n}, we assumed that the coefficients {b(i),T*(i) } are known. However they also have to
be determined. We remind that the coefficients {b("),T*(i)} cannot be computed prior to
calculation of {)\gi) , /\gf) } and {n®}, since {b(?, Tyfi)} are related to the second order effects
in temperature dynamics during “summer and fall” and “winter” intervals. Once an initial
approximation to {/\ﬁ“,Agf)} and {7} is established, we consider the “fall” period (see
Table 1.2) during which the temperature dynamics strongly depend on {b(9), T*(i)} and allow
capturing the second order effects in temperature dynamics (Osterkamp and Romanovsky,
1997). |

Ay ¢ In the previous three periods, we obtained approximations to all variables {/\z(f),
)\gf), Céi), C’J(f), 7@, ), T,Si)}. However, we can improve the approximation by considering
the “extended summer and fall” period, see Table 1.2. This period is associated with a time
interval when the soil first thaws and then later becomes completely frozen. Since previously,
we minimized the cost function depending separately on the porosity {n(i)} (“summer and
fall”) and on {T*(i)} (“fall”), we minimize the cost function depending simultaneously on
{n®} and {Tfi)} during “extended summer and fall”, while other parameters are fixed.

We list in Table 1.2 all steps and time periods A which are necessary to find the initial

approximation. One of the sequences of minimization steps is
“winter” — “summer and fall” — “fall” — “extended summer and fall”

From our experience with this algorithm, we conclude that in some circumstances it is

necessary to repeat minimization over some time periods several times, e.g.

“winter” — “summer and fall” — “fall” — “extended summer and fall”

— “f]]” — “extended summer and fall”

until the consecutive iterations modify the thermal properties insignificantly.
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1.7 Application. Happy Valley site
1.7.1 Short site description

The temperature measurements were taken in the tussock tundra site located at the Happy
Valley (69°8' N ,148°50'W) in the northern foothills of the Brooks Range in Alaska from
22 July 2001 until 22 February 2005. We used data from 22 July 2001 until 15 May 2002
to estimate soil properties, and from 15 May 2002 until 22 February 2005 to validate the
estimated properties. The site was instrumented by eleven thermistors arranged vertically
at depths of 0.02, 0.10, 0.17, 0.25, 0.32, 0.40, 0.48, 0.55, 0.70, 0.86 and 1.06 meter. The
temperature sensors were embedded into a plastic pipe (the MRC probe), that was inserted
into a small diameter hole drilled into the ground. The empty space between the MRC
and the ground was filled with a slurry of similar material to diminish an impact of the
probe to the thermal regime of soil. Our frost heave measurements show that the vertical
displacement of the ground versus the MRC probe is negligibly small at this particular
installation site. Prior to the installation, all sensors were referenced to 0°C in an ice slush
bath and have the precision of 0.04°C. An automatic reading of temperature were taken
every five minutes, then averaged hourly and stored in a data logger memory.

During the installation, soil horizons were described and their thicknesses were measured.
The soil has three distinct horizons: organic cover, organically enriched mineral soil, and
mineral soil. The boundaries between the horizons lie at 0.10 and 0.20 meter depth.

In the all following numerical simulations we consider a slab of ground representing the
Happy Valley soil between 0.02 and 1.06 meter depth. For the computational purposes, the
upper and lower boundary conditions are given by the observed temperatures at depth of
0.02 and 1.06 meter. Also in all computations, the temperatures are compared with the set
of measured temperatures at the depths {z;}={0.10, 0.17, 0.25, 0.32, 0.40, 0.48, 0.55, 0.70,
0.86} meter.

1.7.2 Selection of an initial approximation

The “winter” period is associated to the ground temperature below —5°C, occurring on 15
January 2002 through 15 May 2002 at the Happy Valley site. The heat capacity Cy for
each layer is evaluated based on the soil type, texture and is taken from (Hinzman et al.,
1991; Romanovsky and Osterkamp, 1995; Osterkamp and Romanovsky, 1996).

We estimate Ay for each layer by looking for a minimum of the cost function J in the 3-D

space {}\S}), )\&2), )\(f‘o’)}. The minimization problem in this space can be simplified by looking
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for a minimum in the following series of 2-D problems. For example, for several physically
(1

acceptable values of the thermal conductivity A 7 » we compute temperature dynamics for

various values of )\5(2), )\(fs) and plot isolines of the cost function J. In the series of plots in

Figure 1.8, we notice that a location of the minimum on the {A§c2), )\;3)) plane shifts as /\;1)
changes. The minimum of the cost function at each cross section is almost the same, and
the problem of selecting the right combination of parameters arises. Here, knowledge of the
soil structure becomes relevant. It is known that the soil type of the third layer is silt highly
enriched with ice, so from Table 1.1 1.6</\§(3) <2.0. Therefore, we select )\;1) =0.55, A§2)=1.O
and /\gcg)zl.& and use them in all other consecutive steps (see Table 1.3, columns 6,7 and
8). More precise results could be obtained if a sensor measuring the thermal conductivity
was placed in at least one of the horizons, see discussion in Section 1.8.

The “summer and fall” period is selected to capture the maximal depth of active
layer occurring between 28 August 2001 and 6 December 2001. We take values of the
heat capacity C; from (Hinzman et al., 1991; Romanovsky and Osterkamp, 1995; Os-
terkamp and Romanowsky, 1996). Comparing measured temperatures to the ones com-
puted for ,\§1) , {n® 3_, varying within a range of their natural variability, we found that
AP e[0.09,0.15), nVe[0.3,0.9], n@€[0.3,0.9] and 7®e[0.15,0.45]. Once the variability of
these parameters is found, we search for a minimum of the cost function in the 4-D space
{)\El),n(l),n(z),n@)}, where each parameter varies within the found boundaries. We note
that during minimization of J in this 4-D space, other variables in € are fixed and their
values are listed in 1% “Summer and Fall” row in Table 1.3. For example, values of the
thermal conductivity A§1)=0.55, Agcz):l.() and A}3)=1.8 are obtained at the previous step
after minimization over the “winter” interval. Also, an approximation to the coefficients
b(")=0.7,T£i) =-0.03,7=1,2,3 in (1.3) is obtained by analyzing soil texture and type, and
dynamics of the measured temperatures near 0°C, see Figure 1.7. We emphasize that the
approximation to the parameters b and 7, is tentative and is going to be improved during
the consequent steps.

We note that it is not necessary to find a minimum in the four dimensional space
accurately but rather only to estimate its location as significant uncertainties in other
parameters still exist. Therefore, we look for the minimum by evaluating the cost function
on (Agl),n(l)), (D, n®) and (n®,n3) planes as follows.

First, we set 7(V=0.6, n¥=0.6, n(®=0.3 and A§1)=0.12, which correspond to the middle

of their variability ranges. Then, we evaluate the cost function J on the ()\ED, 7)Y plane,
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by varying /\El), n) in the control, while all other variables in € are fixed. In the left plot in
Figure 1.9, we plot isolines of J on all three planes (Agl),n(l)), (n(l),n@)), and (n<2),77(3)).

At the ()\,(51),7)(1)) plane, the cost function attains its minimal value on a boundary of
this plane, see Figure 1.9, upper left, and is minimal in the center of the planes (77(1), 7](2)),
(n®,7®3). The last two planes allows us to find that 7V=0.6, n»=0.55 and 7(®=0.27,
whereas contours at the first plane show that the value of Agl) lies between 0.11 and 0.13,
see Figure 1.9, left column. We suppose that )\gl) is 0.12 and proceed further. After
updating the control with the computed values, we evaluate the cost function on the same
set of planes one more time; parameters in the control before minimization are shown in
Table 1.3 the “Summer and Fall” 2" row. After computing the cost function, we draw its
isolines and show them in Figure 1.9, right. Note that at this step the cost function attains
its minima located in the center of the computational grid. We update the control with
nV=0.6, n®=0.55, n®=0.27, \"=0.12. Note that the location of the minimum did not
change significantly. Our experience shows that changes of soil properties by 5%-10% or
less are insignificant, since the corresponding difference in soil temperatures is comparable
with uncertainties of measurements. Therefore, we do not have to do additional iterations
on the same set of planes, and we proceed to the next step and reduce uncertainties in
coefficients 7 and b.

For the sake of brevity, we omit details in consequent steps associated with “fall” and
“extended summer and fall” intervals, since the search of parameters is completed similar
to as described in the “summer and fall” step. We emphasize that we are just interested in
calculation of an initial approximation to the control which could serve as a starting point
in the global minimization of the cost function. By no means, do we try to substitute the
global minimization by this heuristic procedure. However, a good starting point can save

computational time and improve accuracy of a final result.

1.7.3 Global minimization and sensitivity analysis

While evaluating an initial approximation, we sought minima of the cost functions J(C)
measuring discrepancy over periods {Ag}. In this subsection, we perform global mini-
mization of the cost function with respect to all parameters in € over the entire period
of measgurements 22 July 2001 until 15 May 2002 used for calibration. Also, we analyze
sensitivity of an initial approximation derived from minimizing the cost function globally

with respect to all parameters.
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