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Abstract

We present applications of some methods of control theory to problems of signal
processing and optimal quadrature problems.

The following problems are considered: construction of sampling and interpolating
sequences for multi-band signals; spectral estimation of signals modeled by a finite
sum of exponentials modulated by polynomials; construction of optimal quadrature
formulae for integrands determined by solutions of initial boundary value problems.

A multi-band signal is a function whose Fourier transform is supported on a
finite union of intervals. The approach used in Chapter I is based on connections
between the sampling and interpolation problem and the problem of the controllability
of a dynamical system. We prove that there exist infinitely many sampling and
interpolating sequences for signals whose spectra are supported on a union of two
disjoint intervals, and provide an algorithm for construction of such sequences.

There exist numerous methods for solving the spectral estimation problem. In
Chapter II we introduce a new approach to this problem based on the Boundary
Control method, which uses the connection between inverse problems of mathematical
physics and control theory for partial differential equations. Using samples of the
signal at integer moments of time we construct a convolution operator regarded as
an input-output map of a linear discrete dynamical system. This system can be
identified, and the exponents and amplitudes of the signal can be found from the
parameters of the system. We show that the coefficients of the signal can be recovered
by solving a generalized eigenvalue problem as in the Matrix Penéil method. Our
method allows to consider signals with polynomial amplitudes, and we obtain an
exact formula for these amplitudes.

In the third chapter we consider an optimal quadrature problem for solutions of
initial boundary value problems. The problem of optimization of an error functional
over the set of solutions and quadrature weights is a problem of optimal control
of partial differential equations. We obtain estimates for the error in quadrature

formulae and an optimality condition for quadrature weights.
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General Introduction

This thesis presents a collection of papers that have been published, accepted or
submitted for publishing. The overall theme of the thesis is the application of methods
of Control Theory to problems in Signal Processing and Numerical Integration. The
main analytical results are contained in Chapters 1 and 2. Chapter 3 completes the

manuscript. We demonstrate how control theoretical ideas can be applied to
e the problem of sampling and interpolation;
e the spectral estimation problem;

e non-standard approximation problems.

Sampling and interpolation
One of the fundamental topics in Signal Processing is Sampling Theory. Sampling
theory is concerned with the reconstruction of members of certain classes of functions,
usually classes of band-limited functions, from sampled data.

Let E C R be a bounded set. The Paley-Wiener space L% is the space of entire

functions of the form
s(\) = / eMo(t)dt, ¢ € LA(E),
E

with the L?(R) norm. If £ has two or more disjoint components, a member of L%
is called a multi-band function. A discrete set {\,} is a set of stable sampling for
L% if f € L% implies ||f||z2 < K||f(Au)||i2 for a constant K independent of f. If
for any sequence {a,} € [? there exists an f € L% such that f(\,) = a, for all n,
then {A,} is said to be a set of interpolation. Sequences that are both sampling and
interpolating are non-redundant sampling sequences: if we remove one element from
{An}, the resulting sequence is no longer sampling.

In the case of band-limited functions, or £ = [—o0, 0], the simplest sampling
and interpolating sequence is given by the Wittaker-Shannon-Kotel’nikov sampling

theorem.



Theorem 1. Let s be a function band-limited to [—o,0]:

s(A) = /_0 eMo(t)dt, ¢ € L*(—0,0).

[

Then the function s can be reconstructed from its sampled values at A\, = knw /o using

the formula
e sino(A — Ag)
s(A) = ZS(/\k)—Um—

This is an example of regular or uniform sampling.

The theory of non-uniform sampling for one interval is also well developed. Neces-
sary and sufficient conditions for a sequence {A,} to have a sampling and interpolating
property can be stated on the basis of the results of Pavlov [23]. Book by Avdonin
and Ivanov (5] and paper by Hruséev, Nikol’skii, and Pavlov [13] give a complete
characterization of such sequences.

In practice spectrum of the signal may have gaps. In this case, applying results
for single-band signals gives redundant sampling sequences — sequences which are
sampling, but not interpolating for L%. The question of whether there exists for every
finite union £ = [ U, U... U, of finite intervals a real sampling and interpolating
sequence does not have a complete answer. It is known that there exist such complex
sequences lying in horizontal strips. Works on this topic include [17; 12; 8; 9; 10],
which consider cases of intervals and gaps between intervals having commensurable
lengths. In paper [27] Seip constructs at least one real sampling and interpolating
sequence for an arbitrary union of two intervals.

There are several papers that have related construction of sampling and interpo-
lating sequences to the invertibility of certain convolution operators. Katsnelson [16]
connected a sampling and interpolating property to invertibility of a certain convo-
lution operator, and proved its invertibility in some cases, including the case when
F is a union of 2 intervals [a;, bj], [az, bs] for which the gap a; — b) is smaller than
the minimum of the lengths of two intervals. Lubaraskii and Spitkovsky [19] also

construct a convolution operator and prove existence of a sampling and interpolating



sequence in a strip {z : |Im(z)| < B} for any finite union of intervals. Lubarskii
and Seip [18] prove that there exists a sampling and interpolating sequence of real
numbers for the case of a finite union of interval of equal length; this work is based
on the results of Kohlenberg [17].

In Chapter 1 we consider a problem of construction of sampling and interpolating
sequences for a class of two-band signals. We construct sampling and interpolating
sequences in the Paley-Wiener space using control theoretic ideas. To solve this prob-
lem we use a connection with a problem of construction of a controllable dynamical
system with control supported on a union of two intervals. The original problem is
reduced to invertibility of the new system’s control operator. Our approach can be
extended to other classes of multi-band signals: signals with spectrum supported on
a union of n intervals with n > 2, where lengths of intervals and gaps are arbitrary.

The results of this chapter are published in Avdonin, Bulanova, and Moran [2].

Frequency estimation
Another important problem in signal processing is known as frequency estimation

problem. Let a signal 7(t) be modeled by

K
r(t) = Z an(t)er?t,

where a,(t) are polynomials and A, can be real or complex numbers. We need to
recover the number of poles K, the polynomial amplitudes {a,(t)} and the exponents
{\+} knowing the observations of the signal at discrete moments of time r(0), 7(1), ...
The classical spectral estimation problem is to recover the coefficients a;, A; of a
signal r(t) = Zfil a;e™t with constant amplitudes a;, by the given observations r(3),
7 =20,... This problem is very important in signal processing, there are applications
in wireless communications, antenna array design, bio-medical imaging, high-speed
circuit analysis and others (see [14; 25]).

There are many methods of solving spectral estimation problems. The first one

developed is the method of Prony [11; 20]. This method was developed by Baron



Gaspard Riche de Prony in 1795. It reduces the frequency estimation problem to
one of finding solutions of a polynomial equation. The Matrix Pencil method was
developed by Hua and Sarkar in late 1980-s [15; 14; 25]. In the Matrix Pencil method
the exponents A, are found by solving a generalized eigenvalue problem with matrices
constructed from observations of the signal. There are also iterative maximum like-
lihood methods (see, for example, [21]); MUSIC (Multiple Signal Classification) [26],
ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [24],
and many others.

In Chapter 2 a new approach based on the Boundary Control method is intro-
duced. The Boundary Control method has been developed for solving dynamical and
spectral inverse problems for partial differential equations, and is based on connec-
tions between controllability and identification problems. We reduce the problem of
estimating frequencies and amplitudes of the signal to an identification problem for
a discrete time linear dynamical system, which can be solved using the BC method.
The results of this chapter are submitted for publication in Avdonin, Bulanova, and

Nicolsky [3] and Avdonin and Bulanova [1].

Approximate integration
In the last part we study an approximate integration problem for solutions of initial
boundary value problems. An integral is approximated by a linear combination of

the values of the integrand:

, N
/ y(z)dzr =~ chy(xk), zr € QA CR" ¢, €R.
Q k=1

Formulas of this type are usually called quadrature or cubature (when n > 1) for-
mulas. Optimal quadrature formulas are quadrature formulas that are the best in
some sense for a given class of functions. Usually formulas that minimize the error

are considered. Let the “error” functional have the form:

N
E(y, cx, 21) = / Vi) b >l




If, for a given class of functions Y, and for some {c;}, {z}},

sup E(y, c;,zx) = inf sup E(y, cx, k),
yeyY {ck,xi} yeY

then ZkN=1 ciy(zy) is called an optimal quadrature formula for the class Y, and
sup,ey E(y, ¢, ;) is an optimal quadrature error.

We consider parts of this problem that consist of finding sup,cy £(y, c, zx) for
fixed {cx}, {z+} and min(,)sup,cy E(y, ck,zx) with fixed {zx}, where Y is a class
of solutions of a parabolic initial boundary value problem with nonzero boundary or
initial condition. In this situation an optimal quadrature problem naturally becomes
a problem of optimal control governed by a partial differential equation. The results
of this chapter are published in Avdonin, Bulanova, and Ovsyannikov [4].

The optimal quadrature problem is a classical problem in approximate integration
theory. It is covered in extensive literature and numerous papers. However, there are

no results concerning the problem we are considering in this thesis.

Statement of contributions
Chapter 1 is a continuation of joint research by Avdonin and Moran (see [6]). In pa-
per [6] Avdonin and Moran derived the convolution operator W (see formula (1.11)),
invertibility of which is equivalent to sampling and interpolating property of a cor-
responding real sequence. My advisor Prof. S. Avdonin stated the goal of proving
invertibility of W for small enough values of parameter u, by reducing the problem
to a problem of invertibility of a simpler operator. Introduction was written by S.
Avdonin and W. Moran, and later edited by me and S. Avdonin. The results by
Avdonin and Moran are stated in the introduction without proofs. The rest of the
results and proofs in this chapter are obtained by me. Prof. S. Avdonin pointed
out possible ways of proving Theorem 5 in Section 1.3.2 (invertibility conditions for
operator K in irrational case).

In Chapter 2 we present a control theoretic approach to the spectral estimation

problem. Prof. S. Avdonin suggested that the Boundary Control method is appli-



cable to the spectral estimation problem for signals modeled by sums of complex
exponentials with polynomial coefficients, and demonstrated the scheme of such ap-
plication for the case of constant coefficients. I have developed his idea by proving all
the necessary facts from realization theory, and extended it to the polynomial case.
I have performed all the research and writing in Chapter 2.

Chapter 3 extends joint work of S. Avdonin and D. Ovsyannikov [7; 22]. The
original results by Avdonin and Ovsyannikov are presented in sections 3.2.1, 3.4,
and the first part of section 3.3.1. The additional results obtained by me are in
section 3.3.1 starting with the subheading “A wider class of sets U”, sections 3.2.2,
3.3.2, 3.5; these include a more general class of initial conditions for the minimax
problem in section 3.3.1, maximization and minimax problems for initial boundary
value problem with nonzero boundary condition, and a numerical example. 1 was
responsible for writing, formatting and editing of this chapter.

The main results of the thesis were presented at Joint Mathematics Meetings,
Washington, DC, January 5-8, 2009; Joint Mathematics Meetings, San Diego, Jan-
uary 6-9, 2008; Joint Mathematics Meetings, San Antonio, January 12-15, 2006;
Colloquium, Department of Mathematical Sciences, University of Alaska, Fairbanks,
April 7, 2005; Colloquium, Department of Mathematical Sciences, University of
Alaska, Fairbanks, Spring, 2004, and are published or submitted for publishing in
[1; 2; 3; 4].
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Chapter 1
Construction of sampling and interpolating sequences for multi-band

signals. The two-band case!

Abstract

Recently several papers have related the production of sampling and interpolating
sequences for multi-band signals to the solution of certain kinds of Wiener-Hopf equa-
tions. Our approach is based on connections between exponential Riesz bases and
the controllability of distributed parameter systems. For the case of two-band signals
we derive an operator whose invertibility is equivalent to the existence of a sampling
and interpolating sequence, and prove the invertibility of this operator.

Keywords: sampling and interpolation, multi-band signals, Riesz bases, families of exponentials,

Wiener—Hopf equations, control, observation

1.1 Introduction

Let F be a finite union of disjoint intervals:
N
E=JL, L=la;b], 0=a1<bh<ay<by<.. <ay<by.
j=1

Several papers [Avdonin and Moran, 1999; Bezuglaya and Katsnelson, 1993; Kat-
snelson, 1996; Lyubarskii and Seip, 1997; Lyubarskii and Spitkovsky, 1996; Moran
and Avdonin, 1999; Seip, 1995] have recently appeared that discuss Riesz bases of
exponentials in L?(FE). All of them emphasize the importance of this problem in
communication theory: if {e**!} forms a Riesz basis in L2(E) then A = {\;} is a
sampling and interpolating set for corresponding multi-band signals. In other words,

the interpolation problem

S()\k) = g, /\k € A, s € L2E’

1S.A. Avdonin, A.S. Bulanova, and W. Moran, Construction of sampling and interpolating se-
quences for multi-band signals. The two-band case, International Journal of Applied Mathematics
and Computer Science, vol. 17, (2007), no. 2, 143-156.
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has a unique solution for each {ay} € 2. Here L% is the space of entire functions of
E

the form
s(\) = / eMo(t) dt, ¢ € L*(E),
E

endowed with the L?(IR) norm. The equivalence of these two problems is well known;
it follows from standard duality arguments [see, for example, Hruséev et al., 1981;
Lyubarskii and Seip, 1997].

It is interesting to note that papers [Avdonin and Moran, 1999; Katsnelson, 1996;
Lyubarskii and Spitkovsky, 1996] have related the production of Riesz bases to the
invertibility of certain convolution integral operators. The method of Katsnelson
[1996] is based on the mean periodic continuation of a function with respect to a
finite measure. The convolution operator in [Lyubarskii and Spitkovsky, 1996] is
constructed on a union of intervals connected with the entire function generating the
set A.

Another approach to the problem was proposed in paper [Avdonin and Moran,
1999]. It is based on connections between the controllability of a dynamical system
described by a linear PDE and the Riesz basis property of a corresponding exponential
family. These connections are well known and widely exploited in control theory; see,
for example, an excellent survey paper [Russell, 1978] and the book [Avdonin and
Ivanov, 1995]. The problem of constructing an exponential basis on several intervals
gives rise to a new type of control problem with boundary control supported on these
intervals of time.

More precisely, Avdonin and Moran [1999] introduced an auxiliary dynamical

system described by the string equation with boundary control u:
P (D)yu(r, t) = yeu(z,t), 2(0,8) =u(t), v.(l,t)=0, O0<z<l!l, teR, (L1)

where p(z) is a positive function on [0, [] which will be determined later. Usually in
control theory the function w is taken from L?(0,T") for some positive T, but for our

purposes we take u from L2 (IR) with support restricted to E and consider the initial



12

conditions
y(z,a1) = y(z), vi(z,01) = (). (1.2)
Eigen-frequencies A,,n € IN, of this system can be found from the boundary value
problem
¢"(z) + \2p*(z)p(z) =0, 0<z <, ¢(0)=¢'(l)=0. (1.3)
System (1.1) is called ezactly controllable if for any initial conditions (yo,v;) €
L*(0,1) x H71(0,1) there is a unique control u € L?(F) which brings the system to
the origin at ¢t = by:
y(-,bn) = %(, bn) = 0.
Here H~1(0,1) is the space dual to H,(0,) := {¢ € H!(0,1) : ¥(0) = 0}.
The following statement plays a key role in this approach to construction of sam-

pling and interpolating sequences .

Theorem 1. [Avdonin and Moran, 1999]. System (1.1) is exactly controllable if and
only if the family {eX**~'} forms a Riesz basis in L*(E).

In other words, the exact controllability of (1.1) is equivalent to the fact that A =
{£A.} is a sampling and interpolating sequence for LZ. Note that all A2 — eigenval-
ues of boundary value problem (1.3) — are positive and we may therefore choose A,
to be positive.

Our problem then becomes that of constructing the function p(z) in such a way
that system (1.1) is exactly controllable. If the set E consists only of the interval
[a, b] and control u acts from ¢ = a to t = b then, as is well known [see, e.g., Russell,
1978; Avdonin and Ivanov, 1995], system (1.1) is exactly controllable if and only if
the length of the interval is equal to two optical lengths of the string:

!
b—a=2/ plz)dzx.
0
Choosing p = const (homogeneous string), we obtain the uniform sampling and

interpolating sequence for Lfa’b]:

2m 1
A=  — = , : .
:!:b_a<n 2), n €N (1.4)
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Taking p as a smooth (from C?[a, b]) non-constant function, we obtain a non-uniform
sampling and interpolating sequence asymptotically close to (1.4).

In the multi-band case, we cannot (in a general situation) produce a sampling and
interpolating sequence taking p as a constant or smooth function from C?{a, b]. This
fact can be understood by taking into account a necessary “geometric” condition of
controllability of system (1.1): if system (1.1) is exactly controllable, then for every
zo € [0,1] both characteristics starting at the point = zo, t = 0 and lying in the
strip [0,1] x {t > 0} of (z,t)-plane have nonempty intersection with {x = 0} x E.
We suppose that the characteristics “reflect” from the boundaries subjecting to the
geometric optics laws.

For example, if E = [0,1] U [2,3], none of the smooth functions p satisfies the
“geometric” condition. Using Theorem 1 it can also be proved that uniform sampling
and interpolation of multi-band signals is possible only when very special relations
exist between lengths of intervals and gaps between them. More precisely, the special
case is when F is an ezplosion of an interval [Higgins, 1996, Sec. 13.1].

To satisfy the “geometric” controllability condition in the multi-band case, we
should consider piecewise smooth functions p. More exactly, we take points 0 = xo <

z1 < ... < zy = 1! and a piecewise constant function p(z) such that
p(z) =p;j, for z;o) <z <zj; 0<p; <00, p;F# pPjt1, (1.5)
pj(xj—xj_1)=(bj—aj)/2, _]=]., 2, ey N. (16)
Due to the condition p; # p,4; there are additional reflections of the waves from
the boundaries z = z; of the “layers” which improve controllability of system (1.1).
Notice that additional compatibility conditions are required for systems (1.1), (1.3)

at points ;, ¢ = 1,2,..., N of discontinuity of function p(z) [see Avdonin and Moran,

1999; Avdonin and Ivanov, 2008]. For system (1.1) these conditions are:
y(z; — 0,t) = y(z; + 0,%), yo(zi —0,t) =y (x; +0,t), e =1,2,...,N; (1.7)
for system (1.3):
d(xs —0) = ¢(z; +0), ¢z(x; —0) = ¢p(z; +0), e =1,2,...,N. (1.8)
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Analysis of the obtained control problem leads us to the following conjecture.
Conjecture 1. Let E be a multi-band set described above. Then, for all functions

p(x) satisfying (1.5), (1.6), system (1.1) is exactly controllable.

This conjecture was conﬁrmed in some particular cases in [Avdonin and Moran, 1999,
and we are working on its complete proof using PDE techniques.

Conjecture 1 implies that the exponential family {e***»

*},.cIN forms a Riesz basis
in L?(E) where A2 are the eigenvalues of boundary value problem (1.3) and p(r)
satisfies conditions (1.5), (1.6). It is important for applications that the sampling
and interpolating set {+\,} is real.

Boundary value problem (1.3), (1.5), (1.6) represents an important example of an
eigenvalue problem whose spectrum generates a sampling and interpolation sequence
for a multi-band signal.

In Avdonin and Moran [1999] the sampling and interpolation problem is reduced
to the solution of linear functional equations, specifically, Wiener—Hopf equations of
a special form. The solution of problem (1.1), (1.2) with p(z) satisfying conditions
(1.5), (1.6) can be written in an explicit although rather complicated form. Analysis
of that formula leads to invertibility problems for operators connected with linear
functional equations. While this method appears to extend to handle arbitrary finite
unions of intervals, we illustrate it in the case of two intervals.

Only a few results concerning sampling and interpolating sequences for the case
when the set E is a union of two intervals are known. Kohlenberg [1953] constructed
a sampling and interpolating sequence for signals whose spectrum is restricted to the
union of two intervals of the same length (band-pass signals). The later great impact to
this field was due to Dodson and Silva [1989] and Beaty and Dodson [1989, 1993] and
due to Bezuglaya and Katsnelson [1993]. In these papers the lengths of the intervals
and the gaps were supposed to have special structure such as commensurability of
the lengths of the intervals and the gaps. Lyubarskii and Seip [1997] remark that
the method of Kohlenberg [1953] can be extended to the case when the intervals

comprising £ have commensurable lengths. The results of Seip [1995] are free of
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arithmetic restrictions on lengths of intervals comprising the set F; in particular,
starting from the “1/4 in the mean” theorem [Avdonin, 1979] he gives a construction
of at least one real sampling and interpolating sequence for an arbitrary E consisting

of two intervals.

The main results

This chapter is devoted to the investigation of the convolution operator proposed
in Avdonin and Moran [1999] for the cases of F being a union of two arbitrary
intervals. We prove that this operator is invertible if a parameter u = (p2 — p1)/(p2 +
p1) is small enough. This is a new result in theory of linear functional equations
and convolution operators. It proves existence of infinitely many real sampling and
interpolating sequences for signals with the spectrum supported on two arbitrary
intervals. We also give an algorithm for construction of such sequences. The former
are results in sampling and interpolation theory. Also, the result on controllability
of the corresponding dynamical system (1.1) follows from the invertibility of the

convolution operator.

1.2 The Operators W, V and K
Let
E=0LJL, ILi=[a b, |L|:=0b—0a;=0; j=12, (1.9)
atar=q, a—b =d. (1.10)
Note that, without loss of generality, we can assume that «, is less than or equal to
ag.
In Avdonin and Moran [1999] it was proved that the problem of construction of
sampling and interpolating sequence for L% can be reduced to study of the invertibility

of the operator

W L%(0,a;) — L%, 0’ 4+ ).
oo oo k
(W) = Xewaraa )30 D0 O Al k) f(—wlr k), (111)
r=0 k=0 ¢g=0
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where w(r, k,q) = ar + a1(k — q) + a2q,

Ar,k,q) = (—1)”"#"%, be (~1,0)U(0,1),

1, if t € [a,b],
Xl (t) = {

0, otherwise.
Here u = ﬁﬁz—i, where p;, ps are values of a piecewise constant density function
of an associated string equation (1.1) satisfying controllability conditions (1.5), (1.6).
Once we find a parameter u for which the operator W is invertible, a sampling and
interpolating sequence for signals with the spectrum supported on F can be found

using the following scheme.

Algorithm 1. (a) Pick any two different values py > 0, po > 0 such that p =
(o2 = p1)/ (P2 + p1)-

(b) Find the numbers | and x, from the equations

o
MmT = 5
o
pa(l — 1) = “QZ

(c) Define the density function

p1, when 0 < z < 1,
p(z) =
P2, whenz, <z <.
(d) Find the eigenvalues N2 of boundary value system (1.8), (1.8) with the function
p(x) and the number | found on steps (b) and (c). The sequence A = {£\,} is

a sampling and interpolating sequence for L%.

In formula (1.11) and in what follows it is convenient to assume that f is defined
on the real axis with support in [0,03]. One can see that in this case for each
t € [@,a’ + ;] the number of terms in the sum is finite, since only the terms with

t —w(r, k,q) € [0, ] are not equal to zero.
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Our goal is to reduce the problem of the invertibility of the operator W to a
problem of the invertibility of a simpler operator. We are going to break the sum
corresponding to the operator W into two sums, W = U + U , so that the operator
U is invertible and its invertibility implies the invertibility of W. We show that it is
possible to make U contain no more than four terms. The invertibility of the operator

U is proven in Theorems 7, 8.

Theorem 2. For any a; and b;, there exists a nonnegative integer number k such

that the operator W can be written in the form
W=U+U,

where the operator U is comprised of at most four terms whose coefficients each involve
the parameter u to a power not exceeding k+1, and all terms of the operator U contain

a factor u at a power at least equal to k + 2. The operator U has the following form:

(Uf)(t) = X[a’,a’—l—al](t)[clf(t - wl) + C2f(t —w — al)
+ caf(t — w2 + a1) + caf(t — w2)],

where one or more of the coefficients ¢; may be zero, and w, and ws have the form

w(7, k,§) with 7, k, § depending on relative position and lengths of the intervals.

Note that the operator U/ may contain 2, 3 or 4 terms depending on the locations
and the lengths of the intervals. There are many cases and sub-cases of the position
of the intervals, so the proof is postponed to Appendix 1.A. Exact formulas for the
operator U, which are important for the proof of the invertibility of U and W, are
derived in the process of the proof.

We prove that for sufficiently small x4 the invertibility of the operator U implies
the invertibility of the operator W. This statement is based on the following lemma

which is proved in Appendix 1.B.

Lemma 1. If the operator U is invertible then ||U™!|| < |u|~**VC for small enough
||, where C > 0 does not depend on p.
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Theorem 3. If the operator U is invertible, then for small enough i, the operator W

15 also invertible.

Proof. Theorem 2 states that the operator W can be represented as a sum of two
other operators W = U + U. The operator U is made up of no more than 4 terms of
W with powers smaller or equal to k£ + 1, and the operator U contains the rest of the
terms of W.

We have noticed that the operator W has a finite number of terms. Therefore
U also has a finite number of terms. Since U contains only powers of u higher than

k + 1, then for small enough u,
10| < |u*+*D,

where D does not depend on .

Then from Lemma 1 it follows that for small enough u,

W=l < 1.
Note that
W=U+U=U(I+U"D).
Thus for small enough sz the operator W is invertible O

It is convenient to scale so that a; = 1. After a change of variable the operator

U is reduced to the operator V in L?(0,1):

(V) =
Xo(t) leaf(t+a) +eaf(t+a—1)+csf(t+b) +eaf(t+b—1)] . (1.12)

Here
0<b<ax<l

and ¢; are the corresponding coefficients A(r, k, g) or 0.
To prove that the operator V is invertible, we introduce a new operator K which

has the same form as the operator V, but coefficients ¢; are arbitrary real numbers.
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We consider two cases: the case when a — b is a rational number and the case of
irrational a — b. The case of a — b € Q corresponds to the situation of a;/a; € Q and
the irrational case occurs if a;/a; € R\ Q, where a; and o, are the lengths of the
intervals I, I as in (1.9). First we find the invertibility condition for the operator

K, and then we show that the coeflicients ¢; of the operator V satisfy this condition.

1.3 The invertibility of the Operator K.
Consider the operator K in L?[0, 1]:

(KAH)(#t) = [aftt+a)+caf(t+a—1)+caf(t+b) +caf(t+b—1)], (1.13)

where t € [0,1]; a,b € [0,1]; b < a; ¢ # 0orcg # 0. Our goal is a sufficient
condition for the invertibility of K. We do not consider the case of ¢; = ¢4 = 0: the
invertibility conditions for K in this case are different from the invertibility conditions
in all other cases, and we do not need the case of ¢; = ¢4 = 0 to prove the invertibility
of the operator V. '

From (1.13) one can easily see that the invertibility of the operator K is equivalent

to solvability for f of the following system of equations:

af(t+a)+caf(t+b) =g(t), tel0,1—a),
caf(t+b)+caf(t+a—1)=g(t), te(1—a,1-0), (1.14)
cof(t+a—1)+caf(t+b—1)=g(t), te(1-11),

where g(t) is in L2[0, 1].

Let us find the conditions for the invertibility of the operator K in special cases:
cp =c3 =0,c0 =c3 =0, cg =cg = 0. The following lemma is a particular case
of Theorems 4 and 5 which are proved in subsections 1.3.1, 1.3.2 respectively. We
formulate it as a separate lemma because its proof is different from the proofs of the

theorems.

Lemma 2. Suppose that ¢y = ¢c3 = 0, or cg = ¢c3 = 0, orcg = ¢4 = 0. If

a ~ b is a rational number, The operator K is invertible in L*0,1] if and only if
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(1)t £ R and (—1)eR TR £ R, wherea —b =2
(= is an irreducible fraction), ky is the integer part of bn, and ky is the smallest in-
teger such that ky > bn. If a — b is an irrational number, the operator K 1is invertible

of and only +f |03|1_b|04|b # 'C2|a‘01|1_a-

Proof. Assume that ¢; = c3 = 0. If a # 1, the first equation of the system (1.14)

becomes
0=g(t), te[0,1—a).

So, the operator K is not invertible.

If a = 1, then the first equation of (1.14) is defined on an interval of length zero.
We get a system of two equations; this system is solvable when ¢, # 0 if b # 1, and
when ¢; + ¢4 # 0 if b = 1. We can find the invertibility conditions for the cases of
co = cg = 0 and ¢; = ¢4 = 0 using the same reasoning. We summarize all the cases in

Table 1.1.

Table 1.1: Summary of invertibility conditions for different combinations of coeffi-

cients

Coeflicients Invertibility condition
ca=c=0 a#1l not invertible
cg=c3=0 a=10+#1 co#£0
ca=c3=0 a=b=1 ca+cg#0
co=c3=0 az#b not invertible
ca=c3=0 a=ba#1l,a#0|c1#*0andes #0
co=c3=0 a=b=0 ¢ #0
ca=c3=0 a=b=1 c4 #0
co=c4=0 b#0 not invertible
co=c4=0 b=0,a#0 c3#0
ca=c3=0 a=b=0 c1+c3#0

All the cases in the table 1.1 can be generalized by the two conditions given in

the statement of this lemma. Observing this table we can see that under conditions
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of this lemma operator K may be invertible only if b = 0, a = 1, or a = b. In the
rational case these conditions correspond to ky = ko =n—m, k1 = k; =0,and n = 1,

m = 0,0 < k1 < k2 <1, so that zero coefficients get raised to the zero power. O

In what follows we will need to divide the equations of system (1.14) by ¢; and
cp or c3 and c4. By proving Lemma 2, we exclude the cases when ¢; = ¢z = 0,

c2 =c3 =0, ¢ = ¢4 = 0 from consideration. Thus we can assume that (¢; # 0 and

c2 #0) or (c3 # 0 and ¢4 # 0).
Let A=a—b, A=1-A.
If ¢35 # 0 and ¢4 # 0, then system (1.14) is equivalent to

f)+ Sf+A) = Sgt—b), te[nA),
C3 C3
f(t)+z—zf(t+A——1)=cl39(t~b), te (A1),

FO+LfE+A) = 2gt+1-8), te(08],

C4 C4

which is equivalent to the equation
ft)+ o) f((t+ A)mod 1) = h(t), te]0,1], (1.15)
where
02/04, t € (O, b),
¢(t) = c1/cs, te (b A), (1.16)
cafcs, t€ (A1)
When ¢, # 0 and ¢, # 0, system (1.14) is equivalent to

f@&)+ @) f((t+ A) mod 1) = k(t), te]0,1], (1.17)

where
cz/ca, t€(0,A),
Y(t) = cafca, te€ (A a), (1.18)

cz/c1, t€ (a,l).
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Equations of type (1.15) were investigated in [Antonevich, 1996, Th. 2.1, pp. 29-
32] for the case of continuous ¢(t). In the course of proof of Theorems 4, 5 we will
obtain solvability conditions for equations (1.15), (1.17) for piecewise continuous ¢(t)
and () as defined in (1.16), (1.18).

1.3.1 Thecaseofa—beQ

Theorem 4. Let a — b =" be an irreducible fraction. The operator K is invertible
in L*[0,1] if and only if (~1)*cs ™™k £ Rk gnd (—1)rcrmerTm R £
cg—’%f;a where a — b = T, ky is the integer part of bn, and k, is the smallest integer

such that ko > bn.

The results equivalent to Theorem 4 were independently obtained by I. Spitkovsky
[2006). Theory of convolution operators in spaces of matrix valued functions can be
found in the book [Bottcher et al., 2002].

Proof. From Lemma 2 it follows that this theorem holds for the cases ¢; = ¢3 = 0,
cg =c3 =0, cg = ¢4 =0. Thus we do not need to consider these cases in the proof of
Theorem 4, and we can assume that (¢; # 0 and ¢; # 0) or (c3 # 0 and ¢4 # 0). We
defined the operator K so that ¢, # 0 or ¢4 # 0.

As we have already noted, when both c¢; and ¢4 are not equal to zero, the invert-
ibility of the operator K is equivalent to solvability of equation (1.15). If ¢c3 = 0 or
cg = 0 then ¢; # 0 and ¢; # 0, and in this case the invertibility of K is equivalent
to solvability of (1.17). In the first case the problem will be reduced to solvability of

two algebraic systems with determinants
1+ (=1)"Heg ™™y /(5 TReg?) and 1+ (=1)M e TR /(TR ).

In the second case the problem reduces to solvability of two systems with determinants
T (— D)™l (™) and 1+ (<1 Rl (),

The proofs of the last two facts are analogous, so we will only show the derivation of

the first of them.
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Suppose that c3 # 0 and ¢4 # 0.

Let us rewrite equation (1.15) as a family of equations defined on disjoint subin-
tervals of the interval [0, 1], choosing subintervals so that in each of those equations
the function ¢(t) is constant.

First we divide the interval into n pieces of the length 1: {(=1,%)}~,. The
number of such subintervals that are entirely inside of the interval [0,b] is equal to
the integer part of bn. Let us denote this number by k. Let us also introduce d — the
length of the interval [£,b): d =b — kL.

Now we divide each subinterval of the length % into two smaller subintervals with

the lengths of d and £ — d and consider two sets of subintervals:

1—1 1—1 7—1
Jr = {( , +d)tim, J2={(

n n

)
d,—)}" .
+ Tl) i=1

The set J; contains all intervals of the length d, and J; has all intervals of the length
1y

Note that ¢(t) is constant on each of these subintervals (¢(t) is piecewise constant
and it changes its values at points b = £ + d and A = 2-2).

Now we can rewrite equation (1.15) as the following family of equations:
f(t) +cacg ' f(t+ D) =h(t)  te€(0,d)
F) + e e+ A) = h(t)  te(d)
(1.19)

f&) + ey fE+ D) =h(t) te(

ft)+eci' fE+A)=h(t) te(
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f(&) +cics ' f(t+ A) = h(t) t e (S +d, %) = (b, "k:—l)
O +aceray=ny te(LEMLLg)
O+ eqi e+ A) =h)  te(tmmlnomol g

fU)+ e [+ 8)=ht) e ("TET 4 a,A)

fit) +ecstft+A-1)=h(t) te (4,

f@)+ees ' ft+A~-1)=h(t) te( +d, )

n—1n-1

ft)+ecs' fE+A-1)=h(t) te( + d)

)
n n

f(t) 4+ cocs ' f(t+ A —1) = h(t) te (n_1+d,1),

Note that this family has three groups of equations: the first group contains 2k + 1
equations defined on subintervals of (0, b), and the coefficient of f(t+ A) is cp/cq; the
second group contains 2n — 2m — 2k — 1 equations with the coefficient of f(t + A)

equal to ¢;/cs; in the third group there are 2m equations, and the coefficient is cy/c3.

Let us introduce f;, g; € L,(0, %) forl1 <i:<mn:
i—1
fi(t) = f(t+ )
n
i—1
0 =he+" 1)

Substituting f(t) and h(t) by f;(t) and h;(¢) into each of the equations of family



(1.19), the latter can be transformed into two systems:

p

\

fi(t) + caci frnaa () = Ia(2)

Jeqa(t) + Czcz:lfk+m+1(t) = hg41(t)
feva(t) + 165" frymya(t) = higa(t)

25

ont € (0,d) (1.20)
frm(t) + clc:z_lfn(t) = hn-m(t)
fn——m+1(t) + c2c:;lfl(t) = hn—m+l(t)
fa(t) + 0203_1fm(t) = hn(t)
fi(t) + cacy fma (t) = ha(2)
fe(®) + cocy ! form(t) = hi(t)
Jer1(t) + c165 frgmer(t) = b (t)
ont e (d, 1) (1.21)

fn—m(t) + clc:s_lfn(t) = hn—m(t)
fremi1(t) + cacg fi(t) = Bnemi (t)

Falt) + cacs fu(t) = ha(t)

Let z:(t) = fa1+(i-1)m) mod n(t)-

Since m and n are co-prime, this substitution maps the set { f;(t)

{z:(t) }ieh-

Systems (1.20) and (1.21) take the form:

Ii(t) + '(/)i-T(H-I) mod n(t) - h’i(t)

1
Ii(t) + §i-r(i—+-1) mod n(t) = hi(t) onte¢ (d’ —

n

~_, into the set

onte€ (0,d), 1<i<mn, (1.22)

), 1<i<n, (1.23)
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where
Co C1 C2

wivgz {__—} 1<'L<n

Cs C3 C3
In system (1.22), {¢;}?, has k + 1 occurrences of ¢z /cq, n — m — k — 1 occurrences of

c1/cs, and m occurrences of ¢a/c3. System (1.23) has k occurrences of ¢ca/cy, n—m —k
occurrences of ¢;/c3, and m occurrences of ¢y/c3. Therefore, determinant of the first

system is equal to

il | L R Gy o e G

Cy Cs Cs3
k+m+1 n-m—k—1
nt1C c :
1+ ()" 2—— P —e—, (1.24)
C3 Cy
determinant of the second system is:
n Ck+mcn m—k
)" & =1+ (-1 T (1.25)
» C3 ¢4

If bn is an integer, bn = k, then d = 0, and the first system lives on an empty
interval. In this case the invertibility of the operator K is equivalent to solvability of
system (1.23) with determinant 1 + (—1)"*'cit™ci=™% /(cB~*ck) (k = bn). So K is
invertible if and only if 1 + (=1)"*!cst™c}~™7% /(cB=*ck) # 0.

Let bn # k. In this case both intervals (0,d) and (d, ) are nonempty. There-
fore the invertibility of K is equivalent to inequality to zero of determinants 1 +
(—1)PHIghtm L gnmm=k=1 j(n—k=1 k1) and
1+ (=1)"icktmep=m=k/(c2=%ck), Here k is the integer part of bn, and k 4 1 is
the least integer greater than or equal to bn.

In the formulation of Theorem 4 we defined k, as the integer part of bn, and ko
as the smallest integer such that k» > bn. Now we can see that the determinants

(1.24),(1.25) are equal to
L4 (1)l e R () and 1+ (— 1) TR (),
correspondingly, and they are not equal to zero when

(=1)rehtmepmok oL iRk and (—1)rcketmepTmTRe o Bk ke
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This proves the theorem for the case of c3 # 0 and ¢4 # 0.
We have discussed in the beginning of the proof that in the case of ¢c; = 0 or

¢4 = 0, the invertibility of K is equivalent to
1+ (=1 g7 g /(g ™y ™) # Oand 1+ (= 1)" M /(5 e ™) £ 0.

Theorem 4 is proved. O

1.3.2 Thecaseof a—becR\Q

Theorem 5. When a — b is irrational, the operator K is invertible if
leal' ™ lea|® # lea|*len '

Notice that following the scheme of the proof in [Antonevich, 1996, Th. 2.1, pp.
29-32] it is possible to show that the above condition is necessary and sufficient for
the invertibility of the operator K. We omit the proof of the “necessary” part since

we do not use it in the application to sampling and interpolation problems.

Proof. From Lemma 2 it follows that this theorem holds for the cases ¢, = ¢3 = 0,
co =c3 =0, cg =c4 = 0. Thus we do not need to consider these cases to prove this
theorem. This means that we can assume that (¢; # 0 and ¢; # 0) or (c3 # 0 and
cs #0).

We know that when c3 # 0 and ¢4 # 0 the operator K is invertible if equation
(1.15) has a unique solution. If c3 = 0 or ¢; = 0, we can assume that ¢; # 0 and
c2 # 0, and in this case K is invertible when (1.17) has a unique solution. In this
proof we first consider the case of c3 # 0, ¢4 # 0 and |ca|®|c; | ®|e3]®~Hea| ™8 < 1.
Next we turn to the proof for ¢; # 0, c; # 0, and |cp|®|cy|*~%e3|*Yea|™® > 1 (or
equivalently |c4|®|cs|'™t|c1|®7|ez|™® < 1 ); it has almost no differences from the first
one and leads to the same result.

Notice that the cases of (c; = 0 and b # 1) and (¢4 = 0 and b # 0) are covered by
the second part of the proof, and the cases of (¢; = 0 and a # 1), (c2 = 0 and a # 0)
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correspond to the first part. When c3 = 0, b = 1, ¢4 # 0 (and in all other similar
cases) the expression |ca|®|c;|'®|c3]°7!|cs| ~® has no zero factors, and this case falls in
one of the two categories depending on the values of ¢, ¢3, ¢4.
Suppose that c3 # 0, ¢4 # 0 and [c2|%|e1} % |ea|®Yes|® < 1.
In this case the invertibility of the operator K is equivalent to solvability of equa-
tion (1.15):
f(t) + o) f((t+A)mod 1) =h(t), tel0,1],
where
c2/cs, t€(0,0),
¢(t) =S er/cs, te(dA),

cafcs, te€ (A1)

To solve equation (1.15) we can apply successive approximations

folt) = h(t), fasr(t) = =) fal(t+ A) mod 1) + h(t), n=0,1,....

Then
fanr(t) — fn(t) =
= (]i[[ é((t + jA) mod 1)]) [fi((t +nA) mod 1) — fo((t +nA) mod 1)]. (1.26)
=0

If ¢y = 0 or c; = 0, then there is [ such that

fasi(t) = fult) =0 for any n > L.

Thus, f(l) is a solution of equation (1.15). Therefore, the operator K is invertible
when ¢, or ¢, is equal to zero, and c¢3 and ¢4 both are not equal to zero.

Now, let us assume that ¢, # 0 and ¢y # 0.

Since In |¢(t)] is Riemann integrable, for any irrational A

N—-

Z ((t + kA) mod 1)|——>/ In |p(t)|dt =
k:
=bn| 2|+ (1-a)ln|2|+(a—b)In|2|,
Cq 3 C3
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uniformly in ¢ € [0, 1] (see, e.g., Peterson [1983], p. 156). Then,

N-1 /N
lim max (H lo((t + 7A) mod l)l) =

N—-oo
=0
] N1
= exp]\}l_{r;o MAx kz—;lnkb((t + kA) mod 1)| =
c c c P e o L
=exp<bln—2+(1—a)ln—1+(a—b)ln —2)=—2 -1 2
Cy C3 C3 cy| |cs C3
Note that R e b o s
G| |G C2 _ |02| |c1]
1l = T ogen <b
Ca| |C3 Cs |03| ,C4f

Then, for any € such that |2[7|2|'7%|2|*"* < ¢ < 1, there exist such M that

N-1 1/N
max (H lo((t + jA) mod 1)|> <e€ (1.27)

7=0
for any N > M.
Then, from (1.26), (1.27) we obtain that for large enough n

P n+k-2

| farp = Fal <D T 16t +jA) mod 1)]

k=1 ;=0

lfi(t+(n+k—1)A)mod 1) — fo((t + (n+ k — 1)A) mod 1)|

and o
2 n+k 1 2 2e%" 2
[ fatp = fallzz < Z ||f1 = follz = T_?”fl — follzz -

k=1
Thus,
| faip — fullzz < \/‘i

The norm || fu4p — full2 can be done arbitrary small for all p taking large enough

1f1 = follze-

n. Therefore, the sequence {f;}I-, converges to a function f, and f(¢) is the solution
of equation (1.15).

Let now ¢; # 0, c; # 0 and |cy|®|es| ler|* e 7 < 1.
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When ¢, # 0 and ¢y # 0, the invertibility of the operator K is equivalent to
solvability of equation (1.17):

f@®) +v@) f((t+A) mod 1) = k(t), te]0,1],

where
03/02, t € (O,Z&),

Y(t) = cafc2, t€(A a),
cs/c1, t€(a,1).

This time we use the same kind of successive approximations to prove solvability

of second equation (1.17). We use the fact that

b l1-a a—b
Cq C3

8]

C3
C2

n—oo

Ca

N-1 1/N
lim max (H [$((t+ jA) mod 1)1) -

=0

to prove that the new sequence {f;} converges to the solution of equation (1.17).

Therefore, the operator K is invertible when |c3|!™®|cy|® # |ca|*|e1]! 2. O

1.4 The invertibility of the Operator V.
In this section we use Theorems 4 and 5 to show that the operator V (see (1.12)) is
invertible.

From formulas (1.37)-(1.46) (see Appendix 1.A), we know that there are three
kinds of the operator V: 1) with ¢; # 0, co # 0, and ¢3 = ¢4 = 0 (or ¢z # O,
cs # 0, and ¢; = ¢; = 0); 2) with only one of the coefficients ¢; equal to zero; 3) with
ci #0forl <i<4.

In case 1 the conditions of Theorems 4 and 5 hold, so, the operator V is invertible.

Let us prove that if only one of the coefficients c; is equal to zero, the operator V'

is invertible.

Theorem 6. When exactly one of the coefficients c; is equal to zero, the operator V

is invertible in L?[0,1] for small enough p.
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Proof. The conditions of Theorems 4 and 5 hold if the zero coefficient is raised to
a nonzero power. For example if @ — b is an irrational number, ¢ = 0, and b # 1,
then the condition of Theorem 5 becomes [0]'~°|cy|® # |cz|®|c1|* 72, or |eg]?|er] ™ # O,
which is obviously true.

We will have to separately handle the cases when the zero coefficient is raised to
a zero power. In the case a —b € R\ Q, ¢; = 0, a = 1 the condition of Theorem 5
becomes

lea'~Pleal® # lea- (1.28)

In the case a —b € R\ Q, ¢4 = 0, b = 0 the condition of Theorem 5 becomes
|ea] # |co]®ler]' 2. (1.29)

From the formulas for the coefficients ¢; (1.38),(1.39),(1.42),(1.43),(1.45) derived in
the proof of Theorem 2 in Appendix 1.A, it follows that the left-hand side and the
right-hand side of the inequalities (1.28),(1.29) involve different powers of . Thus for
small enough p the inequalities (1.28),(1.29) hold, and the operator V is invertible.
In the case a—b € Q, ¢; = 0the condition of Theorem 4 is true unless n—m—=%k; = 0

orn—m — ky =0. When n — m — k; = 0, the condition of Theorem 4 is
(—1)"ch # cFcp™™. (1.30)
In the case a — b € Q, ¢y = 0, k; + m = 0, the condition of Theorem 4 is
(=1Der # c. (1.31)
In the case a — b € Q, c3 = 0, n = k;, the condition of Theorem 4 is
(—=1)ca # 4. (1.32)
In the case a — b € Q, ¢4 = 0, k; = 0, the condition of Theorem 4 is

(=)™l ™™ # cf. (1.33)
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One can check that if m # 0, the conditions (1.30),(1.33) hold for small enough ,
since the left-hand sides and the right-hand sides of the inequalities involve different
powers of p. Therefore the operator V is invertible in these cases.

If m = 0 then n = 1, since = is an irreducible fraction. Inequalities (1.30),(1.33)
take the form of inequalities (1.32),(1.31) correspondingly. To show that the inequal-
ities (1.31),(1.32) hold, we use the fact that

|A(r, k,0)| > |A(r — k+ 1,k, k)| for k > 1. (1.34)

From the formulas for the coefficients ¢; (1.38),(1.39),(1.42),(1.43),(1.45) and the re-
lation (1.34) it follows that one of the coefficients c;, c3 (or cg, c4) is larger than the
other one by absolute value, or both coefficients are positive or negative. Thus, the

inequalities (1.31),(1.32) hold. 0

Let us consider the case of ¢; # 0 for 1 < i < 4. In this case the operator U is

given by the following formula:

(Uf)(t) = X[a’,a’+a1](t) [A(T'lv ki, O)f(t - ’LU(T‘l, k1, O))
+ A(ry, k1 + 1,0)f(t — w(ry, ky + 1,0))
-+ A(T] - k‘l + 1, k‘l, kl)f(t - w(rl —_ kl + 1, kl, kl))
=+ A(T] —_ k‘l, k‘l + 1, k‘l —+ 1)f(t —_ 'lU(T'l —_ kl, k‘l + 1, kl + 1))]
(see the proof of Theorem 2 in Appendix 1.A).

Depending on the relations between the shifts w(r, k,q) in the above formula,

coefficients ¢; may have two forms:

¢ = A(r, k,0) _ (__1)r+k k(’"r%]!f)_!,

¢y = A(r,k+ 1,0) = (—1)+k+ kﬂ(_:!j(LTk_:%!)!’
cs=A(r—kk+1,k+1) =04yﬁwﬂﬁ_%&?inr (1.35)
ca=A(r—k+1,kk) = (—1) 1k (r+ 1!

(r—k+1)&"
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and ( y
+ 1)!
=Alr—k k+1,k+1) = (=1t~ T
C1 (T yk+ 1Lk + ) ( ) H (T—k)'(k+1)',
!
co=A(r —k+ 1,k k) — (—1)T+1,uk_(r_i__’
(r—k+1)lk!
(1 k)" (1.36)
r !
o= AnRO = (-1t
- _ ayseeen R L)

with some » > 0 and & > 1 (we do not have to consider cases with k = 0, because

when k = 0, at least one of the coeflicients ¢; is zero).

Theorem 7. When a — b is rational and ¢; # 0 for 1 < ¢ < 4, the operator V is

invertible in L%[0,1] for small enough p.

Proof. By Theorem 4 the operator V is invertible if and only if

(—1)nefrtmepmeh o cnmkigkt gnd (—1)ncketmen ™R £ (rkecke yhere a — b = =

ky is the integer part of bn, and k, is the smallest integer such that k; > bn.

From formulas (1.35) and (1.36) we see that when k; # 2™, terms c5!t™c[ ™" m

nk1

and c3 ! have different powers of u. Therefore, in this case ;2 can be made small

n—m

nekrtmen= =, for small

enough, to make (—1)rtmepmTR oL Rk Similarly, when ky #

enough s, (—1)*cmcpmR 75 ey Rk,

(i3 n—-m n—m

ntm
form (—1)"cy 2 ¢; 2 # c 4 2 . Now we cannot achieve the condition of Theorem

4 by making u small, because the powers of u are the same on both sides of inequality.
So, we have to consider the specific forms of the coefficients ¢; (see (1.35), (1.36)).
Since k > 1, |A(r,k,0)| > lA(r—k+1 k,k)| and |A(r, k + 1,0)| > |A(r—k k +

ngm a-m
1,k + 1)|. Then |cp| = # |cs| "8 |cs|"2", and therefore (—1)c, 2 c1 7 #

n+m

2 2
cg? ey ? .
a

Theorem 8. When a — b is irrational and c; # 0 for 1 < i < 4, the operator V is

invertible in L*(0, 1] for small enough p.
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Proof. From Theorem 5 we know that the operator V is invertible if
leal'*leal” # [eal®lea]' 72

Using formulas (1.35) and (1.36) we see that if 1 — b # a, then terms [c3]'%|cy/
and |cz|?|c1|!~® involve different powers of . We can choose p such that |cs|'=%|cy|® #
lea|lea [T

If 1—-b = a, then the expression above will have the form: |c;|'7%|cp|* #
|cs|%|ca|'™®. We will again have to look at the concrete forms of ¢;. As we know,
fork> 1, |A(r—k,k+1,k+1)| < |A(r,k+1,0)| and |A(r —k+1, k, k)| < |A(r, k,0)].
Sincea —b = A € Jand 1 —b = a, then a # 0 and a # 1. Thus, either
1'% ea|® < es|®feal' 74, or |er|' T eal® > [es]*feal '

Therefore, [c3|'7°|cs|® # [cal®|ca|* 2.

This completes the proof of the invertibility of the operator V for irrational A.

O

Appendix 1.A. The proof of Theorem 2

Now we prove Theorem 2 from Section 1.2. We single out several terms of sum (1.11)
that have smallest powers of x. Sum of those terms form the operator U. We choose
the number of terms so that later it will be possible to prove the invertibility of U.
In the course of this proof we show that this number of terms does not need to be

greater than four.

Theorem 2. For any a; and b;, there exists a nonnegative integer number k such

that the operator W can be written in the form
W=U+U,

where the operator U is comprised of at most four terms whose coefficients each involve

the parameter p to a power not exceeding k+1, and all terms of the operator U contain
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a factor p at a power at least equal to k + 2. The operator U has the following form:

(UNt) = X w+a)Oer f(t = wr) + o f(t — wy — )
+esf(t —we + 01) + caf (t — wy)],

where one or more of coefficients ¢; may be zero, w; and wy have the form w(7, k,q)
with 7, k, § depending on relative position and lengths of the intervals.
Proof. 1. We are looking for 7, k,q with the smallest possible k£ such that t —
w(r, k,q) € [0, ;] for some ¢t € [/, ' + a1].
2. Suppose that o' — w(r,0,0) € [0, a;] or & + 3 — w(r,0,0) € [0, o] for some 7.
2.1. Let & —w(r,0,0) € [0,x]. Then, &’ +a;—w(r,1,0) = o’ —w(r,0,0) € [0, o]
Also may or may not be o/ + a3 — w(r,1,1) € [0, o).
21.1. f &' + an —w(r,1,1) € [0, 1], then

(Uf)(t) = X[a’,a’+a1](t) [A(T’ 0, O)f(t - w(r, 0, 0))
+ A(r, 1,0)f(t — w(r,1,0)) + A(r, 1, 1) f(t — w(r,1,1))]. (1.37)
212 f o' + oy —w(r,1,1) ¢ [0, ], then
(Uf)(t) = X[a’,a’+a1](t) [A(T’ 0, O)f(t - w(r, 0, 0))
+ A(r,1,0)f(t — w(r,1,0))]. (1.38)

2.2. Let &/ +a3—w(r,0,0) € [0,1). Sincea’ > 0,7 > 0. Theno'—w(r—1,1,1) =
o +a; —w(r,0,0) € [0,a;). Also, & —w(r —1,1,0) € [0, @;] may hold.
221 If o/ —w(r —1,1,0) € [0, ], then

(Uf)(t) = X[a’,a’+a1](t) [A(T’ 0, O)f(t - w(r, 0, O))
+A(r—-1L,1L,0)f(t~w(r—1,1,0))+ A(r —= 1,1, 1) f(t —w(r — 1,1,1))]. (1.39)
222 If o —w(r—1,1,0) ¢ [0,1]), then

(UN) = X',0r+aq) () [A(7, 0,0) f (¢ — w(r, 0,0))
+ A(r—1,1,1)f(t —w(r —1,1,1))]. (1.40)
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3. Now we can assume that t — w(r,0,0) ¢ [0,04] for any ¢t € [&/,& + a;] and
r>0.
Note,
w(r,k,q) = w(r +q,k —2q,0) for k> 2q

and
w(r,k,q) =w(r+k—q,29—k,29~ k) for2q>k.

Therefore, (7, k,¢) with minimal & such that ¢t — w(r, k,q) € [0, 1] for some t €
[/, &' + o] will have form (r, k,0) or (r, k, k) where k > 1.

4. Let us find 7, k; such that o/ — w(ry,k1,0) € [0, ] and k; is the smallest
possible.

The answer is: r; = [%’J, ki = [a';:w‘J, where |z ]| denotes the integer part of z.
Also, o' + a3 — w(ry, k1 +1,0) € [0, o]

Note that k; +1 is the smallest k; such that o'+ a; —w(rs, k2,0) € [0, y]. If there

is ky < k1 + 1 with o + a1 — w(ry, k2,0) € [0, 1], then o + w(rg, k2 — 1,0) € [0, a4]

and k; — 1 < k; — a contradiction.

5. Let us find 73, ks, 74, k4 such that o’ + a; — w(rs, ks, k3s) € [0,;] and o' —
w(ry, ka, ks) € [0, 1] with the smallest k3, k4.

It is kg = [(”—Jr%""—alj and r3 =1 + 1 — ks;

k4=k3+1, 7'4:7'3—‘1.
6.1. Let r3 < Oor k3 > k; + 1. Then

(Uf)(t) = X[a’,a’+a1](t) [A(Tl’ ki, O)f(t - ’LU(T‘l, k1, O))
+ A(re ks 4 1,0)f(t — w(rs, ky +1,0))]. (1.41)

6.2. Let Ty = O, k3 S kl + 1.

(UF)(O) = Xiot,ar+aa] () [A(r1, k1, 0)f( = w(ry, k1, 0))
+ A(Tl, kl + 1, O)f(t — w(rl, k] + 1, O))) + A(O, k3, k3)f(t - ’LU(O, k3, k3))] . (142)
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6.3. Let r3 > 0 and k3 = k; + 1. Then r3 =r, — k.

(Uf)(t) = X[a’,a’+a1](t) [A(Tla kh O)f(t - ’U)(’r‘l, kl, 0))
+ A(ry, ky + 1,0) f(t — w(ry, k1 + 1,0))
+ A(ry — ki, ki + L,k + 1) f(t —w(r — ki, ki + 1,k +1))]. (1.43)

6.4. Let r3 > 0 and k3 = k;.Then

(UN(E) = Xia',a'+a1] () [A(T1, k1, 0) f (£ — w(r1, k1, 0))
+ A(r1, k1 + 1,0) f(t — w(ry, kb + 1,0))
YA — k41 kR F(E~ w(r — k1 + 1,k k)
+ Al — ki, ki + L ki + D) f(t —w(r — ki, kb + 1,k + 1))] . (1.44)

6.5. Let r3 > 0 and k3 = k; — 1.

UH() = X ar+ai)(t) [Alr1, k1, 0) f(t — w(r1, k1,0))
+A(T‘1 '“kl +2,]€1 - 1,]{31 - 1)f(t~w(r1 —kl +2,k1 - l,kl ~].))
+ A(T‘l — kl + 1, kl, kl)f(t — ’U)(T'l — kl + ]., kl, kl))] . (145)

6.6. Suppose r3 > 0 and k3 < k; — 1.

UF)(#) = Xiorar4en)(t) [Alrs, k3, ks) f (8 — w(7s, ks, k3))
+ A(T‘g — 1,]63 + ].,kg + 1)f(t — 11)(7'3 - ]., kg + 1, kg + 1))] . (146)

We derived all possible formulas for U for various relative positions of intervals [,
and I, (see (1.10)). Note that U may contains two (formulas (1.38), (1.40), (1.41),
(1.46)), three (formulas (1.37), (1.39), (1.42), (1.43), (1.45)), or four (formula (1.44))

terms.
a
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Appendix 1.B. The proof of Lemma 1
Lemma 1. If the operator U is invertible, then ||[U~|| < |u|~®+VC for small enough
||, where C > 0 depends only on r, k, q.

Proof. First we show that ||Uf|| > |ulf*B||f]|| for any f € L?[0, ], where B is a
positive constant. To prove this we need the formulas for the operator U from the
proof of Theorem 2 given in Appendix 1.A. We consider separately cases when U
consists of 2, 3 and 4 terms.

In formulas (1.38,1.40,1.41,1.46) the operator U has two terms:

(U)(0) = Xtorarson) (O) [ AL (= 0) + 15 A f (1 — w0 £ en)]

Here A,, A, w do not depend on u, and A; # 0, A, # 0. Notice that since f
is defined on [0, o], then the two terms are never nonzero on the same part of the

interval [0, a|, because distance between ¢t — w and t — w + a3 is ;. Then

WA = min(|Al, [wADIulFI 1] 2 ul* Al F]]

for small enough p.
Let us consider the cases when the operator U has three terms. In formulas

(1.37,1.39,1.43,1.45) the operator U has the form

(UF(E) = Xjor.artan @) [EALF(E — wi) + @5 Ao f (E — w1 £ o)
+ pF As f(t — wy)).

For these cases

NUAHOI = min(|Asl, |eAzl, [ A1 + pAsl, [1(Az + Ag)DIl*l £]] >
|+ min(| Az + Asl, | A2])]|f]]

for small enough 1. One can check using the exact formulas for the coefficients A;,
that Az + A3 7é 0.
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In formula (1.42) the operator U is:

(Uf)(t) = X[a',a’-}-al](t)[.ukAlf(t - wl) + ,U'k+1A2f(t —uw + al)
+ [Lk3A3f(t - 'U)g)], k3 S k + 1.

Then for small enough p and a positive constant D we have

IUAHON > min(|Asl, |nAal, [Ar + " As], (A2 + p** Ag) ) ul* [ £1]
> |ul* min(|A; + =7 A [A)IfI] = DIkl*HIF]-

Now we consider the last case of four terms (see formula (1.44)):

(Uf)(t) = X[a’,a’-}-al](t)[.ukAlf(t - ’LU1) + ,U/k+1A2f(t —w; — al)
+ WP A3 f(t — wo) + W AL f(t — wa + o).

Then

(U F)(E)]] = min(| Ay + Ag|, |[Ay + pAgl, |As + pAs], |n(Az + Ag))|ul*]|F]] >
[t A2 + Al £l

for small enough p. Let us show that A; + Ay # 0. From formula (1.44) we see that

+k+1)! (r+1)!
= (—1 rkr (T HE+ D! (1)
A= (=1) rl(k+ 1)’ Ar=(=1) (r — k)!(k +1)!
for some r, kK > 1. Note that for k£ > 1
(r+k+1)! (r+1)!

ri(k + 1)! (r— k) (k+ 1)
so Ay + A4 # 0.
We have shown that for any f € L%([0,c4]), [|Uf]| > |u|FB]|f||, where B is
a positive nonzero constant. Since we assumed that U is invertible, then for any
g € L*([o,d' + a1]), llgll = |ul*"1B||U~1g|]. So, for every g € L*([o/,& + a1]) :
WU=gl] < [ul=®*+D 2 llgl]. Thus [JU7H] < |ul~*+VC. O



40

Bibliography
Antonevich A. (1996): Linear Functional Fquations. Operator Approach. Basel,

Boston, Berlin: Birkh&user.

Avdonin S. (1979): On Riesz bases from exponentials in L?. Vestnik Leningrad Univ.
Math., vol. 7, pp. 203-211.

Avdonin S. and Ivanov S. (1995): Families of Exponentials. The Method of Moments
in Controllability Problems for Distributed Parameter Systems. New York: Cam-
bridge University Press.

Avdonin S. and Ivanov S. (2008): Sampling and interpolation problems for vector
valued signals in the Paley- Wiener spaces. IEEE Transactions on Signal Processing,

vol. 56, no. 11, pp. 5435-5441.

Avdonin S. and Moran W. (1999): Sampling and interpolation of functions with multi-
band spectra and controllability problems. In: Optimal Control of Partial Differential
Fquations (K.H. Hoffmann, G. Leugering and T. F., Eds.), vol. 133, pp. 43-51,

Basel: Birkhauser, internat. Ser. Numer. Math.

Beaty M. and Dodson M. (1989): Derivative sampling for multiband signals. Numer.
Funct. Anal. Optim., vol. 10, pp. 875-898.

Beaty M. and Dodson M. (1993): The distribution of sampling rates for signals with
equally wide, equally spaced spectral bands. SIAM J. Appl. Math., vol. 53, pp. 893-
906.

Bezuglaya L. and Katsnelson V. (1993): The sampling theorem for functions with
limited multi-band spectrum, I. Z. Anal. Anwendungen, vol. 12, pp. 511-534.

Béttcher A., Karlovich Y. and Spitkovsky 1. (2002): Convolution operators and fac-

torization of almost periodic matriz functions. Basel, Boston: Birkh&duser Verlag.



41

Dodson M. and Silva A. (1989): An algorithm for optimal regqular sampling. Signal
Process., vol. 17, pp. 169-174.

Higgins J. (1996): Sampling theory in Fourier and signal analysis: foundations. Ox-

ford: Clarendon Press.

Hruséev S., Nikol’skii N. and Pavlov B. (1981): Unconditional bases of exponentials
and reproducing kernals. Complex Analysis and Spectral Theory, Lecture Notes
Math., vol. 864, pp. 214-335.

Katsnelson V. (1996): Sampling and interpolation for functions with multi-band spec-
trum: the mean-periodic continuation method. In: Wiener-Symposium (Gross-
bothen, 1994) Synerg. Syntropie Nichtlineare Syst., vol. 4, pp. 91-132, Leipzig:
Verlag Wiss. Leipzig.

Kohlenberg A. (1953): Ezact interpolation of band-limited functions. J. Appl. Phys.,
vol. 24, pp. 1432-1436.

Lyubarskii Y. and Seip K. (1997): Sampling and interpolating sequences for
multiband-limited functions and exponential bases on disconnected sets. J. Fourier

Analysis Appl., vol. 3, pp. 597-615.

Lyubarskii Y. and Spitkovsky I. (1996): Sampling and interpolation for a lacunary
spectrum. In: Proc. Royal. Soc. Edinburgh, vol. 126 A, pp. 77-87.

Moran W. and Avdonin S. (1999): Sampling of multi-band signals. In: Proceedings of
the Fourth International Congess on Industrial and Applied Mathematics (J. Ball
and J. Hunt, Eds.), vol. 126 A, pp. 163-174.

Peterson K. (1983): Ergodic theory. Cambridge: Cambridge University Press.

Russell D. (1978): Controllability and stabilizability theory for linear partial differen-
tial equations. SIAM Review, vol. 20, pp. 639-739.



42

Seip K. (1995): A simple construction of exponential bases in L? of the union of
several intervals. Proc. Edinburgh Math. Soc., vol. 38, pp. 171-177.

Spitkovsky I. (2006): Personal communication.



43

Chapter 2
Boundary Control approach to the spectral estimation problem. The

case of multiple poles!

Abstract
There exist many methods for solving the spectral estimation problem. This chapter
proposes a new approach to this problem based on the Boundary Control method. We
show that the problem of decomposition of a signal modeled by a sum of exponentials
with polynomial coefficients can be reduced to an identification problem for a discrete
time linear dynamical system. It follows that values of exponentials can be found
solving a generalized eigenvalue problem as in the Matrix Pencil method. We also
give exact formulas for the polynomial amplitudes.

Keywords: Spectral estimation, Signal Processing, Boundary Control method,

Control theory, Matrix Pencil method.

2.1 Imntroduction

Let a signal r(t) be modeled by the following expression:

r(t) =Y an(t)e*, (2.1)

where a,(t) are polynomials and A, can be real or complex numbers. Qur problem
is to recover the number of poles K, the polynomial coefficients {a,(t)} and the

exponents {A,} knowing the observations of the signal r(0), (1), ...

Functions of the form (2.1) arise as solutions of linear homogeneous ordinary

differentials equations with constant coeflicients

2@ 4 Az 4 p A =0 (2.2)

1S.A. Avdonin and A.S. Bulanova, Boundary control approach to the spectral estimation problem.
The case of multiple poles, Mathematics of Control, Signals, and Systems, submitted, 2007.
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and linear homogeneous recurrence relations with constant coefficients
p = C1n_] + CoQp_o + ...Ce0n_q. (2.3)

A general solution to equation (2.2) is

M;-1

T(f) = Z Z aijtjezit

=1 j=

where z; is a zero of multiplicity M; of the characteristic polynomial
p(Z) = Zd + Alzd“l + ... Ad.

A general solution to equation (2.3) is

K M;-1 K M;-1

a, = Z Z bijnj/\;‘ — Z Z bijnje(ln An

i=1 j=0 i=1 j=0
where A; is a zero of multiplicity M; of the characteristic polynomial

p(A)=2% —cj2%t -y

Solutions of the form 3%  a,e~%* with real coefficients a; and b; > 0 appear in heat
diffusion and diffusion of chemical compounds problems, time series in medicine,
economics. Solutions of the form S>% . a;sin (bt 4+ ¢;) occur when the characteristic
polynomial has complex roots, and are typical for electrical systems.

The classical spectral estimation problem is to recover the coefficients a;, A; of
a signal r(t) = vazl a;e™*, by the given observations r(j), j = 0,...2N — 1. This
problem is very important in signal processing, the applications are in wireless com-
munications, antenna array design, bio-medical imaging, high-speed circuit analysis

and others (see [9; 16]).

There exist many methods for solving the spectral estimation problem: the method
of Prony and its numerous modifications [13; 11]; the Matrix Pencil method devel-

oped by Hua and Sarkar [8; 9; 16]; iterative maximum likelihood methods (see, for



45

example, [12]); MUSIC (Multiple Signal Classification) [17] and ESPRIT (Estima-
tion of Signal Parameters via Rotational Invariance Techniques) [14] algorithms, and
others. Badeau et al. [4] develop a generalized ESPRIT algorithm for estimation of
parameters of a signal modeled by the Polynomial Amplitude Complex Exponentials

model.

We propose a new approach to this problem based on the “nonselfadjoint” ver-
sion of the Boundary Control (BC) method [2]. The BC method has been recently
developed for solving boundary spectral and dynamical inverse problems for partial
differential equations (see, e.g., [5; 1]). The BC method reveals that the two central
problems of the theory of inverse and control theory of distributed parameter sys-
tems have a direct connection with each other. The first problem is the recovery of
unknown coeflicients, the second problem is the controllability of the corresponding
initial boundary value problem. Roughly speaking, the BC method gives the realiza-
tion of R. Kalman’s idea that the controllable (or observable) part of a system can
be identified. We extend this method to dynamical systems with discrete time.

In the joint paper with S. Avdonin and D. Nicolsky [3] the BC method is applied

K A

to the problem of decomposition of a signal 7(t) = >, _, aye**, where amplitudes a,

are constant. Here we consider the case of a signal with polynomial amplitudes a,(t):

r(t) = S5 an(t)ert.
Using Boundary Control method we show that the coefficients {\,} can be ob-

tained as in the Matrix Pencil method by solving the generalized eigenvalue problem

for the matrices A and B:

Af = ABf
Aj=r(i+j—-1), By=r(i+j—-2), i,j=1,.,N

using this formula: A, = In \,. Also our method gives exact formulas for computation

of the amplitudes a,(t) in terms of generalized eigenvectors and eigenvalues of the
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above eigenvalue problem and observations r(t). Note that N may be unknown and
can be found in the procedure.

This chapter is organized as follows. We introduce a pair of auxiliary dynamical
systems (2.5), (2.10) (see Sec. 2.2); state a controllability condition for such systems
(see Sec. 2.3), introduce the control and response operators for systems (2.5), (2.10)
(Sec. 2.4). In Section 2.5, we consider the problem of identification for system (2.5):
we show that parameters of system (2.5) can be recovered using values of the kernel
of its response operator. Section 2.6 shows that an application of a transformation
of variable to system (2.5) does not change its response operator. In Section 2.7, we
show that the problem of decomposition of a signal of form (2.1) is equivalent to an
identification problem for a certain system of form (2.5) and present an algorithm for

signal estimation based on these ideas.

2.2 Dynamical systems

In this section we construct such a dynamical system that the function

K
r(k) =) an(k)A; (24)

is the kernel of the input-output operator of this system. The problems of determining
the coefficients A, and a,, for functions (2.1) and (2.4) are equivalent. In what follows
it is more convenient to work with form (2.4).

Let N = Zle M,,, where M, are the degrees of the polynomials a, (k).

Let us introduce an auxiliary discrete-time dynamical system:
z(k+1) = Mz(k) + bf(k), z(k) € CV, 2(0) =0 (2.5)

with an observation y
y(k) = (z(k), c)en = c*x(k).

Here M is an N x N constant matrix, f is a scalar control, b,c¢ € CV, and c¢* means

conjugate transpose of N x 1 vector c. In general situation M is not self-adjoint.
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Solving equation (2.5) for a given control f(0), f(1),..., f(k),... we get

k-1

o/ (k) = M*17hf(i). (2.6)

1=0

Define the matrix Y (k) yxx and the vector F'(k)gx; by

Y (k) = (b|Mb|M2b| ... [M*1b), (2.7)
F(k) = (f(k~1),..., (1), fFO))T. (2.8)

Using (2.6), (2.7) and (2.8) we obtain

We also consider the adjoint system:
z(k+1) = M*z(k) + cg(k), z(k) € CY, 2(0) =0 (2.10)

with an observation w(k) = (z(k), b)cv = b*z(k). The solution to this equation is

ko

(k) = 3 (M) eq(5), (2.11)

J

I
o

Formula (2.11) can be rewritten in matrix form as
(k) = Y*(k)G(k),

where
Y#(k) = (M| (M*)2e] ... [(M*)F"0),
G(k) = (9(k = 1),...,9(1),9(0)) .

We show that it is possible to solve the spectral estimation problem for signal (2.4)

using systems (2.5), (2.10) and the ideas of the Boundary Control method.
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2.3 Controllability
Definition 1. System (2.5) is said to be controllable, if for any given w € C™ there

exists a finite positive integer T and a sequence of inputs f(0), ..., f(T —1) such that
=/ (T) = w.

Equation (2.9) connects a control f(i) defined for ¢ from 0 to £ — 1 and the state
z/ (k) of the system at the step k. Recall that z/(k) is an N x 1 vector, Y (k) is an
N x k matrix, F(k) is a k x 1 vector. Then we can solve equation (2.9) for F (k) with
arbitrary z/(k) and given Y (k) if K > N and Y (k) has full rank N. This constitutes

the well known Kalman’s controllability condition (see, for example, [6; 7; 10; 15]).

Proposition 1 (Kalman’s controllability condition). System (2.5) is controllable if
and only if the N x N matriz Y (N) = (bjMb|M?b|...|MN~1b) has rank N.

The matrix Y (N) is called a controllability matriz. Similar condition obviously

holds for adjoint system (2.10): system (2.10) is controllable if an only if

rank(Y#(N)) = rank(c|M*c|(M*)?c|...|(M*)¥"tc) = N.

2.4 Operators W and R

Let us introduce the control operator W : CN+t1 — CV,
(Wf):=z/(N+1)
and the response operator R : C* — C* for system (2.5),
(Rf)(k) := y(k) = (7 (k),¢c), k=1,2,... (2.12)
Similarly we introduce control and response operators for adjoint system (2.10):

W# . CNtL L CV, (W#g) = 29(N +1),

R* . C® — C*=, (R*g)(k) = wk) = (29k),b), k = 1,2,... (2.13)



Notice that

k-1 k-1
(2! (k),¢) = el (k) = " > MF17bf(i) = ) [ M*TI ] £(5).
i=0 1=0
Therefore, if we denote c¢* M*b by r(k) then R takes the form:
k—1
(RA) (k) =) _ f(G)r(k—1—7)
7=0
Likewise,
k-1
(R*g)(k) = > g(j)r(k—1—7)
=0

2.5 Identification
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(2.14)

(2.15)

In this section we show that it is possible to obtain the eigenvalues of M and coeffi-

cients of decomposition of vectors b and c in bases of eigenvectors of matrices M and

M* respectively from values r(k).

Suppose f(0) =0, f(i) =0 for i > N + 1. Let us introduce the shift operator S

f(k) = Sf(k) = f(k+1).

Then f(7) =0fori> N.

Since M and b are both constant (do not depend on k), then z/ (k) = zf(k + 1)

forl1<k<N.
Since f(N) =0,

o/ (N +1) = Mzf (N) = M2/ (N + 1),

which can be rewritten as

WSf=MWF.

This is true for all controls f with support on the set 1,..., N.

Consider expressions for following scalar products:

(WEHEW#g) = (£ (N +1),29(N 4+ 1)) = (29(N + 1)) 2/ (N + 1)

= (Y#(N)G)"Y(N)F = G* (Y#(N)) Y(N)F,



and

(W, W#g) = (MW f,W#g) = (Mzf (N + 1), 29(N + 1))
= (2°(N+1))" Mzf(N+ 1) = (Y#(N)G)" MY (N)F

30

=G" (Y#(N))" MY (N)F.

Here F' and G are control vectors:

Let us define two N x N matrices:
B=(Y*(N)) Y(N),
A= (Y#(N))" MY(N).
Now we can rewrite the above scalar products as
(Wf,W#g) = G*BF,
(W f,W#*g) = G*AF.
Since
B = (Y#(N))"Y(N) = (c|M*c|...(M*)N71c)*(b| Mb] ... |MN1b),
then

By = (M*)7e) MI b = M M7 b = " M™% = (i + j — 2).

J

Also, using (2.17), we get

(2.20)

(2.21)

Matrices A and B are nonsingular if Y/(N), Y#(N), or M are nonsingular. There-

fore if A or B are not of full rank, then one or both of systems (2.5), (2.10) are not

controllable. If rank(A) = rank(B) = N, then rank(Y(N)) = rank(Y#(N))

= N,

and therefore both dynamical systems are controllable. This way we can find out if

both systems are controllable from values of r(k), and the order of the systems N.
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2.5.1 Determining the order of the systems

On the other hand we can show that it is possible to find order N of systems (2.5),
(2.10), if we know that both of those systems are controllable and we are given values
r(k) for large enough number k.

For this we introduce a sequence of matrices B!, B2*2 . BL*L _  of increasing
sizes. Each matrix BX*% is an L x L matrix, and B*! = r(i+j—2). It is easy to see
that rank(BL*L) < rank(BE+Dx(E+D) | Also, notice that BX*L = (Y#(L))*Y (L).

Theorem 1. Assume that both systems (2.5), (2.10) are controllable. Then the sys-
tems have order N if and only if rank(BN*N) = N and rank(BNFV*(N+1)) = N,

Proof. Suppose that systems (2.5), (2.10) have order N and are both controllable.
Then

rank(Y#(N)) = rank(Y(N)) = rank(Y#(N + 1)) = rank(Y/(N + 1)) = N.

We know that BX*L = (Y#(L))*Y (L), therefore rank(BY*N) = N,
rank(BWHDX(N+1)) < N Since rank(BE*L) < rank(BEFV*(L+1)  we have
rank(BNFDX(N+1)) — N

Let us suppose that systems (2.5), (2.10) are controllable, but their order is un-
known; and there is such number N, that rank(BY*V) = rank(BWN+Dx(N+D) = N
Let D be an order of systems (2.5), (2.10). Let us show that D = N. Suppose that
N < D. Then rank(BW+Dx(N+1)y = N 4 1. This contradicts our assumption. Let
N > D. Then rank(B¥*N) = D < N. This contradiction completes the proof. [

So we can find order of system (2.5) and of adjoint system (2.10) by considering
square matrices BL*L of increasing size until we find the first number Ly such that

the matrix BLoxLe ig singular. Then Lo — 1 is the order of both dynamical systems.

2.5.2 Determining eigenvalues

In this section we show how to find eigenvalues of the matrix M of system (2.5)

using the matrices A and B as in (2.20), (2.21) (Notice that the eigenvalues of M*
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are complex conjugates of the eigenvalues of M). We assume that both systems are

controllable.

Suppose that matrix M has K eigenvalues {\;}X,, and each eigenvalue \; has

multiplicity M;. The matrices M and M* both have N generalized eigenvectors:
MY = \gl) + o1, (2.22)
My = X iy

Note, that we assume qb((f) = 1/15\2 +1 = 0, so that qb(li) and 1/15\2_ are eigenvectors of M

and M* in a regular sense:
M = Mo, MUy =Xy
Since we assumed that both systems (2.5), (2.10) are controllable, then matrices
Y(N),Y#(N) are not singular, and we can multiply the equality (2.22) by (Y#(N))*
from the left:
(Y#(N)" M (Y ()Y} () ¢
=X (YH(V)) (Y(NY (V) ¢ + (YHIV))" (Y (V)Y (V) 6. (2.23)
Recall that
A= (Y*(N))"MY(N); B=(Y*(N))"Y(N).
Then (2.23) transforms to
AYY(N)¢® = ,BY 1(N)¢\” + BY "1{(N)g”,.
Therefore the generalized eigenproblem
(A= \BFEY =0

has the same eigenvalues \; with the same multiplicities M; as the matrix M.
The generalized eigenvectors F,Ei) are connected to generalized eigenvectors of M
by the equality:
F =Y (N)gy.
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Thus
80 = Y (V).

Notice that for such control f,Ei) that Fk(i) = ( ,Ei)(N), . .,fki)(l))T, .’nflgi)(N +1) =
Y (N)F®. Therefore the control £ drives our system to the state z C(N+1) = @,

Using the same reasoning we can deduce that solving the generalized eigenproblem
(A* _ /\_iB*)Mi—H—IcGl(:) =(

we find control vectors G,(f) that take adjoint system (2.10) to zgl(ci)(N +1) = ,ff).

We summarize this subsection in the following theorem:

Theorem 2. Suppose that both systems (2.5), (2.10) are controllable and have order
N. Then we can find eigenvalues of the matrix M and their multiplicities by solving

the following generalized eigenproblem:
(A= MB)FFY =0, (2.24)
where A and B are N x N matrices,
Aj=r(i+j—-1),B=r(i+75—-2),1<4,j<N.

F ,Si) gives us a control yielding the corresponding eigenvector of matrix M : if we take a
control f such that F,Ei) = (f(N),..., f(O)T, thenz/ (N +1) = fj). FEach generalized
eigenvector of our generalized eigenproblem (2.24) corresponds to an eigenvector of
matriz M.

Determining generalized eigenvectors of the adjoint generalized eigenproblem
(A* = X B)Mi+1-k Gl — (2.25)
we obtain control vectors for the second system that yield zgl(ci)(N +1)= ,(:).

Using Theorems 1 and 2 we can recover order of the systems and their eigenvalues

with multiplicities, knowing values 7(0),...,r(L) for large enough number L.
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2.5.3 Determining decompositions of vectors b and ¢ in bases made of

generalized eigenvectors of M and M*

Here we assume that generalized eigenvectors w,(f) of M™ are biorthogonal to general-
ized eigenvectors qb,(:) of M.

In this section we use controls described in the previous section. These controls

(l) and gk) take our system to the corresponding generalized eigenvectors of M and

Wi = g0, Whgd = o).
Recall, that those controls can be found using Theorem 2 from generalized eigen-
vectors of two generalized eigenproblems (2.24), (2.25). Then, f,gi) is such that
FO = (fOV), fO(N-1), ..., f91)7T; and ¢ is such that G = (g ("(N) g (N -
1),..., g,(c’)(l))T. To get the controls such that the eigenvectors gbk and w,(f) are
biorthogonal, it is necessary to chose vectors F, ,Si) and Gf:) so that (G,(:)) ' BF, k(i) =1
and (ij))* BF® =0 when j #i, k # L.

Formulas (2.12), (2.14) and (2.13), (2.15) give us:

(RED)(N +1) Zf; (N = j) = (8, ), (2.26)
(R* ) (N +1) Z (N =) = (%, b). (2.27)

Notice that ( ,(:), b) are coeflicients in a decomposition of the vector b in a basis of

b="> (W, by

i,k

eigenvectors of matrix M:

Also, { (), ¢) are coeflicients in a decomposition of the vector ¢ in a basis made by

c = Z ¢(1) (1).

Therefore we can use formulas (2.26), (2.27) to find the decomposition coefficients

eigenvectors of matrix M™:

( ) (z/;(l) by, if we know the kernel (k) of the response operator R (we find f,gi)

and g\ using Theorem 2).
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Theorem 3. The coefficients in a decomposition of the vector b =) .. bf:)qﬁfj) n a

basis of eigenvectors of M are given by the formula:
b =3’ (N = 7).
j=1
The coefficients in a decomposition of the vector c =7, ck)wk are

Z (z) )

Theorems 1, 2, 3 allow us to extract information about dynamical systems (2.5),
(2.10) from the kernel of the response operator R. We can find the order of the
systems, the eigenvalues of M, and decompositions of vectors b and ¢ in bases of
eigenvectors of M and M* respectively. However, using only values of r(k) we cannot
find eigenvectors of M and M*; instead we can find the controls f, ® for system (2.5)
yielding the eigenvectors ¢( of M and the controls g, @ for system (2.10) yielding the

eigenvectors w,(:) of M*.

2.6 Equivalence of dynamical systems with respect to a transformation
of variable
Let us apply a transformation of variable z(k) = QZ(k) with a nonsingular matrix @

to system (2.5):

Qi(k + 1) = MQz(k) + bf (k),
y(k) = (z(k),c) = (Qz(k), c) = (£(k), Q"c).

Multiplying both sides of the first equation by Q! we get:
2k+1) = Q 'MQz(k) + Q 'bf(k). (2.28)
The kernel of the response operator R of system (2.5) is

r(k) = c*M*».
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New system has the same structure, with matrix M replaced by Q' M@, vector b by
Q7'b, and ¢ by Q*c. The kernel of the response operator of system (2.28), is

(k) = Q") (Q7'MQ)* Q7'b = " M*b = r(k).

Therefore the kernel r(k) does not change when we apply a transformation of a
variable to the system. This means that we can work with a convenient form of

matrix M, for example Jordan normal form.

2.7 Connection with the original problem

In this section we show that the problem of estimation of coefficients a,(t) and A, of
function (2.4) is equivalent to the problem of identification of parameters of system
(2.5). First let us choose a form of the matrix M and vectors b and c¢ so that the

kernel r(k) = c*M*b of response operator R (2.12) has the same form as signal

r(t) = BX Jan (DAL, (2.29)

n

2.7.1 Matrix M

Let us assume that N x N matrix M has the following structure:
M =TAT™, (2.30)

where A is a Jordan canonical form of M:

A= diag(Jl, Ceey JK), J’i =

\3 L

By M; denote the order of each Jordan block J;.

T = dlag(]" /\i_l’ Tt A;(M1~1)7 17 /\2—1’ Tty /\2_(M2~1), e 11 /\}_(1) N ,/\I‘((MK_I))-
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From formula (2.30) it is easy to see that columns of the matrix T are generalized
eigenvectors qﬁg) of M; columns of the matrix (T"!)* are generalized eigenvectors 7,/),(:)

of M*. Notice, that eigenvectors constructed this way are biorthogonal:

» 7

( l(f) @)y — 1, whenk=1landi=j
0, otherwise.

We suppose that M has K nonzero eigenvalues A;, each eigenvalue has algebraic
multiplicity M;, and geometric multiplicity 1. Eigenvalue having geometric multi-
plicity 1 means that only one Jordan block J; corresponds to this eigenvalue. In
what follows we show that this condition is necessary for systems (2.5), (2.10) to be
controllable.

It is easy to check that the matrix M has a block form:

1 1 0

N 0 . 0

M =TAT " =diag(Dy, ..., Dy), where D; = \; ,
: IR |
0 0 1
D; are M, x M, matrices.
Then,
M™ = diag(DT', ..., Dg); (2.31)

(1) @ - ()
o 1(7) (%)
DI =A™ S .
o 1 (7

0 1)

Here (?) are binomial coefficients (';) = (k—_k]%,]—, We assume that (f) =0 when j > k.
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2.7.2 Dynamical systems and the controllability condition

We work with two linear dynamical systems of the same structure as systems (2.5),
(2.10). We use matrix M = TAT ! as in (2.30):

z(k+1) = TAT 'z(k) + bf(k), z(0) =0, y(k) = (z(k),c) = c*z(k); (2.32)

z(k+1) = (T"HY*A*T*z(k) + cg(k), 2(0) =0, w(k) = (2(k),c) = b*2(k). (2.33)

We denote entries of vectors b, ¢ by ﬁ,(f) and 'y,(:) in the following way:

1 1 2 2 K K
b= (8", ....00 B, B8 B0 B )T (2.34)
1 1 2 2 K K
c= ('yé ), .. ,'yng_l,'y(() ), . "71(\/11—1, . ,'y(() ), e ,'yj(wk)_l)T. (2.35)
Then subvectors b = (ﬁéj),..., j(\fg__l)T and ) = ('yéj),...,'yj(\ﬁ_l)T of b and ¢

correspond to j—th block D; of M.

Lemma 1. System (2.32) is controllable if and only if all eigenvalues of M are
not equal to zero (A; # 0 Vi), have geometric multiplicity 1 (A, # A\; Vi # j), and
1(\2_1 # 0 (the last entry of each subvector b is not equal to zero).
System (2.33) is controllable if and only if all eigenvalues of M are not equal to
zero (N # 0Vi), have geometric multiplicity 1 (A; # \; Vi # j), and 'yoi) # 0 (the first

entry of each subvector ¢V is not equal to zero).

We present a proof of this Lemma in Appendix 2.A.

2.7.3 Kernel of the response operator of system (2.32)

From section 2.4 we know that kernel r(k) of response operator R for system (2.5)

has the form r(m) = ¢*M™b. For our choice of matrix M and vectors b and c¢ (see
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(2.31), (2.34), (2.35)):

K
r(m) =c"M™b =Y (c)*(D;)"b%
(1) @ )
K 0 1 (7) (3)
=S ref,. ) e BB )T

e EO(E )] e

=0 1=0
Notice, that (’]") is a j-th degree polynomial in m. So, from the formula above it
follows that r(m) is a combination of A\* with polynomial coefficients. Thus r(m) has
the same form as the signal 7(¢) in (2.29). The kernel (2.36) of the response operator
of system (2.32) corresponds to a signal

o= () (8P 1

i=1 | j=0 1=0

Mi—1 ) ( ;\;IB"I_J (1)@(2])] is a polynomial of degree

Notice that the coefficient [ij’o ;
M; — 1 with respect to t. Therefore it is obvious that for every controllable system
(2.32) there is a signal 7(¢) of form (2.29) that is equal to the kernel r(m) = c*M™b.

We would like to show that for any signal r(t) = X a;(t)\! where a;(t) are
polynomials, there exists a controllable system (2.32) such that the kernel of the
response operator of system (2.32) is r(m) = X a;(m)\"

Let a;(t) = Z;i:o a7, for 0 < ¢ < K. Suppose ayp, # 0, so that polynomial a;(t)
has the degree p;. Since (;) is a j—th degree polynomial, then

pi pi
, t
j=0 j=0

for some set {w;;}, wip, # 0.
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It is rather easy to show that for any such set {w;;} we can find two sequences

ﬂ(z) , 711) such that
pi—J

Wyj = Z 1)@4_] (2.38)

=0

and 4 # 0, (l) # 0 (this is necessary for the systems we are constructing to be

controllable). The proof of the following lemma is straightforward.

Lemma 2. Given p+ 1 numbers {w;};_o with w, # 0, one can find 2(p + 1) numbers
{B;¥5=0 {7i}5=0 such that §, # 0, v # 0, w; = 07 Wibus,.

Combining (2.29),(2.37), and (2.38) we get
K Pi t pi
-3 (5 () (S0 ) | x.
i=1 Lj=o J 1=0
This is equivalent to (2.36) if we replace M; —1 with p;. Therefore, if we take a matrix
M as in (2.30) with A; the same as ); in our signal with multiplicities M, =p;+1,

where p; is the degree of a;(t); and vectors b and c so that w;; = (l)ﬂl(jr)], then

the kernel of the response operator of system (2.32) is equal to r(t).
2.7.4 Equivalence of the problem of signal decomposition for signal (2.29)
to the identification problem for a dynamical system (2.32).

Returning to our original problem: given values of the signal r(t) at ¢ = 0,1,... we
want to find number and values of the poles A;, and their polynomial amplitudes a;(t).

By assumption our signal satisfies

K
r(t) =) ai(t)A,
i=1

with some unknown K, a;(t), A;. We need to find all these unknown values. In the

previous section we showed that then r(t) also satisfies

r(t) = EK: {zp: (;) (Z (’)ﬁfi’]ﬂ (2.39)

i=1 Lj=0 =0
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with 'y 7é 0 and £, (z) # 0. Therefore, r(t) is the kernel of the response operator of
some controllable (notice that all the conditions of Lemma 1 are satisfied) system of
type (2.5).

Thus, we can apply Theorems 1, 2, and 3 to find A;, 'y(l), ﬂl(i). First we apply
Theorem 1 to find the order N of the system. All that we need for that are values
r(k) for k from 0 to 2N to construct a sequence of matrices B7*J. After that we can
apply Theorem 2; it gives us A;, number K, and p;, = M; — 1. Using Theorem 3 we find
(89, ¢) and (), b). For system (2.32) (¢, c) = 'yk) ATED () by = g8 AR
Since we already found all )A;, these equalities allow us to find ﬁ(z , 71(1) Now all the
coeflicients in (2. 39) are known. Thus, we have decomposed the signal r(t): we have
found X, K, a;(t) =35, ( ) ( P 'yl(z)ﬁl(fj) )

We descrlbe an algorlthm that allows us to recover the parameters of the signal

7(t) from 2N + 1 equispaced samples.

Algorithm 1.

step 1 Construct a sequence of matrices of increasing size BP*P. BP*P is g p X p matriz,
BYP =r(i+j—2),4,j5=1,...p. Find N such that BNV is nonsingular,
and BINtOXIN+Y 4s singular. Then N is the order of our systems. We use this

number on the next step.

step 2 Consider two N XN matrices A and B: A;; = r(i+j—1), By, = r(i+j—2),4,j =

1,... N. Find eigenvectors and eigenvalues of the generalized eigenproblem
(A= NBFEY =0

and
(A* _ XTB*)Mi—f-l—kGEc") —_ O
so that (G,(j)) BF® =1, and (G(”) BFY =0 when j # i, k # . We obtain:

o Number and wvalues of ;. Those values A; are the poles of our signal.

Number of distinct eigenvalues is the number K in formula (2.29).
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o Algebraic multiplicities M; of A\; correspond to degrees of the polynomials

a;(t) (p: = M; —1). They are used on the next step.

e The generalized eigenvectors F, k(i) and GS) are used on the next step to find
ﬁj(.i) and 71(.1)

step 8 Theorem 3 allows us to find ( ,(:), c) and (@/1,(:), b) knowing r(k) and vectors Fk(i),
GY.

(W9, by = Zg,i><yr<zv 7,

O Z FOG(N = ).
HCTC FkE'L) ( ( ),fk(:’t)( ) , I{(:'L)(]_))Tv
GY = (g(N), g0 (N - 1),. --’gl(c)(l))T'
Since for our kind of system < k’L ,C> — 7]£i—)1/\-£_(k_1); < ](C’L),b> = 1(:.)1/\5—1, ]E:'L)

and 7,(;) are given by

O — () DA = (¢, )Mk,

Then the polynomial coefficients a;(t) can be found using the formula

AN _
a;(t) = Z (]) ( Z 71( )ﬁl(-}-)j>'

j=0 =0

Appendix 2.A. The proof of Lemma 1
Lemma 1. System (2.32) is controllable if and only if all eigenvalues of M are
not equal to zero (A, # 0 Vi), have geometric multiplicity 1 (N, # A\; Vi # j), and
51(\2—1 # 0 (the last entry of each subvector b® is not equal to zero).

System (2.83) is controllable if and only if all eigenvalues of M are not equal to
zero (N, # 0Vi), have geometric multiplicity 1 (A, # \; Vi # j), and ’yoi) # 0 (the first

entry of each subvector ¢ is not equal to zero).
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Proof. Controllability of (2.32) is equivalent to nonsingularity of matrix Y(N) =
(b|Mb|...|MN1b) (see Proposition 1 in section 2.3).
Let us find the condition for det(Y'(N)) # 0.
Let
Y = (b(M — M\ Db|... (M = \I)V'b).

One can see that det(Y (N)) = det(Y'). Since M = diag(Ds, ..., D), then
(M — MIY =diag((Dy — MI),(Dy — M), ..., (Dg — MI)P).

We can rewrite Y as

p» (D, — ,\11)5(1) | (D) = ,\II)N—lb(l)
v p@ (Dy — ,\lj)b(Z) v | (Dy = ,\11)N~1b(2)
b | (D — MDE) | oo | (D — A\ DN -1pHFO

Notice, that Dy is an M; x M, upper triangular matrix with A, on its main
diagonal. Thus (D; — A\ I)? = 0 for any j > M;. The matrix Y can be called a ”block

lower triangular” matrix;

det(Y(N)) = det(Y)
= det (b |(Dy — MDD ... |(Dy — M DM~ 1M det(Yr),

(Dy — M\ DM1p@) | oo | (Dy — M)V
Yi= I :
(Dg ~ M DM | oo (D — M T)N1pE)
The first matrix (60 |(Dy — A\ 1)bW| ... |(Dy — A\ T)M1~16()) is a square ”upper-left”
triangular matrix with A{ﬁf\}z_l on its antidiagonal. Thus, the first determinant
det(bW[(Dy — MDD, [(Dy — MI)Mi=15M) is not zero if and only if B5) _, # 0
and A\ # 0.
Notice, that it is necessary that \; # A, for i = 2,3, ..., K in order for the second

matrix Y; to be nonsingular, otherwise one of the rows of Y; contain only zeros.
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Therefore matrix Y (N) is nonsingular if and only if 51(\2*1 #0, A\ #0, A} # X\
fori =2,3,..., K, and det(Y7) # 0.

Let us rename columns of Y; in the following way:

(Dz — A\)Mp@
b= : M = diag((Dy — MI),...,(Dx — M\I)).
(Dg — Ap)M1pE)

Then

Y, = B3y (A" M),

Notice that Y; is the same type of matrix as Y (N), with M being a block diagonal
upper triangular matrix with diagonal entries A\; — A\, (¢ > 2). If we repeat the same
procedure for the new matrix Y], using Ay — A; instead of A;, we see that det(Y;) # 0

if and only if
B2 L #0, A # 0, A # A for i > 3; det(Ya) # 0,

where
- == —N—-1-M;—M;=
Y, = (B|MY|...|M b),

(D3 _ /\2)M2B(3)
: ; M = diag((Ds — Xol), ..., (Dk — A2l)).

SHT
l

(DK _ /\2)MZE(K)

Using the above scheme K times we obtain the statement of the first part of the

lemma. The proof of the second part is similar. O








































































