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Abstract

Magnetic reconnection and Kelvin-Helmholtz (KH) instability are the two most im-
portant mechanisms for plasma transport across the Earth’s magnetospheric bound-
ary layer. Magnetic reconnection is considered as the dominant process for southward
interplanetary magnetic field (IMF), and the KH instability is suggested to play an
important role for northward IMF'.

It is interesting to note that this plasma entry is associated with a dramatic en-
tropy increase, which indicates the existence of strong nonadiabatic heating during
the entry process. Observations indicate a plasma entropy increase by two orders
of magnitude during the transport from solar wind into the Earth’s magnetosphere.
Therefore, it is important to examine whether magnetic reconnection can provide suf-
ficient nonadiabatic heating to explain the observed plasma properties and to identify
plasma conditions that allow strong nonadiabatic heating. ‘This thesis demonstrates
that the entropy can indeed strongly increase during magnetic reconnection provided
that the plasma beta, i.e., the ratio of thermal to magnetic energy density is small.

A realistic three-dimensional configuration of the Earth’s magnetopause for south-
ward IMF conditions includes large anti-parallels magnetic components with a fast
perpendicular shear flow. Thus, it is expected that KH modes and magnetic recon-
nection operate simultaneously and interact with each other. This thesis provides a
systematic study on this interaction between reconnection and KH modes by means
of three-dimensional MHD and Hall MHD numerical simulations. It is demonstrated
that both reconnection and nonlinear KH waves change the other modes onset condi-
tion by changing the width of the transition layer. It is shown that dynamics of the
system can be strongly modified by a guide field or Hall physics.

In the presence of plasma flow, magnetic reconnection is also associated with the
generation of field-aligned currents (FACs), which play a critical role in the coupling
between the magnetosphere and ionosphere. This thesis also examines systematically
the generation of FACs. It is demonstrated that such currents are generated either

by a guide magnetic field, by shear flow, or by the inclusion of Hall physics already



in two-dimensional magnetic reconnection.
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Chapter 1
Introduction
1.1 Background on Magnetospheric Physics
At a distance of 1.5 x 10" m (1 AU) from the Earth, the sun, as the biggest power

factory in our solar system, releases energy at 3.846 x 10 W.s~!

, which corresponds
to 4.3 x 10%kg - s7! according to the mass-energy equivalence [Kallenrode, 2004].
Theoretical models suggest a powerful fusion reactor at the core of the sun operating
at a temperature of 1.5x 107 K and generating energy through fusion of 5 x 10° kg-s~!
of hydrogen to form helium [Kivelson and Russell, 1995]. Above the core are the
radiative diffusion region, the convection region, and the atmosphere. The solar
atmosphere consists of three layers: the photosphere, the chromosphere, and the
corona [Kivelson and Russell, 1995]. Due to strong magnetic fields and the large
pressure gradient between the corona and interstellar space, the ionized solar plasma
and a remnant of the solar magnetic field are driven outward, which generates the
solar wind. The first stationary expansion solar wind model was developed by Parker
[1958]. It takes the solar wind about 4 days [Kivelson and Russell, 1995] to travel
from the sun to the Earth. The typical solar wind density at 1 AU is several particles
per centimeter cubed with a temperature of 1.2 x 10° K, and its highly supersonic

! nearly along the radial direction [Kivelson and Russell,

speed is about 450 km-s~
1995). Without the Earth’s magnetospheric protection, high energy particles in the
solar wind can easily penetrate into the Earth’s atmosphere.

The Earth’s magnetosphere is a large low density plasma cavity generated by the
geomagnetic field and the solar wind plasma [Otto, 2010; Kallenrode, 2004; Kivelson
and Russell, 1995]. The geomagnetic field is caused by internal dynamo mechanisms
in the outer core of the Earth. Near the Earth’s surface, the magnetic field can
be well described by a magnetic dipole moment, which is tilted at an angle of 11
degrees with respect to the rotational axis and has a magnetic moment of about
8 x 10'®* T - m®. The actual solar wind velocity is superfast at 1 AU, meaning it is

faster than the fast mode speed V; = /2 + V2, where c; is the ion acoustic speed and



V4 is the Alfvén speed (see Section 1.2). This is the fastest wave velocity with which
information can propagate in a large scale plasma. Therefore, a bow shock is formed
in the front of the Earth’s magnetosphere [ Burgess et al., 2012] similar to sonic shocks
caused by supersonic jets, and the magnetosheath is the shocked solar wind plasma.
The shocked solar wind compresses the dayside portion of the geomagnetic field and
generates a tail which is many hundreds of Earth’s radii (R; = 6.4 x 10%° m) long.
Although, most of the shocked solar wind particles are deflected by the geomagnetic
field at the magnetopause, which is the actual boundary between the solar wind and
the magnetospheric plasma, the magnetopause is not a “plasma proof” shield. The
real interaction between the solar wind and magnetosphere is much more complex and
important. Just inside of the magnetopause are the cusp and mantle regions. The
cusp is the region where dipolar field lines converge, and the mantle region represents a
boundary to the magnetotail usually filled with solar wind plasma but with a stretched
magnetospheric magnetic field. Further inside is the magnetotail, which is the long
tail-like extension of the magnetosphere on the nightside of the magnetosphere. The
inner magnetosphere is the region where the magnetic field is dominated by the
dipole component, and relative magnetic field changes are small, typically inside of 8
to 10R; radial distance [Otto, 2010]. The transition region between the fully ionized
magnetosphere and the neutral atmosphere is the ionosphere.

Figure 1.1 presents the magnetospheric boundary layers and currents. Early
models of the magnetosphere consider the magnetopause as an almost impenetra-
ble boundary, which separates the magnetosphere entirely from the magnetosheath
by a tangential discontinuity, since the plasma (electron and ion) transport across
the magnetic field lines is very slow. In this model the entire geomagnetic field is
closed inside the magnetosphere. However, early ionospheric and satellite observation
demonstrated that the actual geomagnetic field is not confined to the magnetosphere
but threads out into interplanetary space. In fact, the solar wind plasma has access
to the Earth’s magnetosphere along the open magnetic field at its boundary. This
boundary layer is often divided into the low-latitude boundary layer (LLBL), the en-






try layer near the polar cusps and the plasma mantle (PM) along the high-latitude
magnetotail [Sibeck et al., 1999]. The formation of the LLBL, or the mechanism of
the plasma transport from the solar wind into the Earth’s magnetosphere is a crit-
ical problem in the magnetosphere physics, and is still not fully resolved. Several
processes have been proposed to account for this transport, i.e., magnetic reconnec-
tion (tearing mode), Kelvin-Helmholtz (KH) instability, finite Larmor radius effects,
diffusion, impulsive penetration, and direct cusp entry [Sibeck et al., 1999]. Among
them, magnetic reconnection and KH instability are considered as two of the most
important processes. I will introduce these two processes in Section 1.3 and 1.4. Be-
fore that, a background on magnetohydrodynamics (MHD) helps to understand the
underlying physics and plasma properties for these physics processes, which will be

discussed in Section 1.2.

1.2 Basic Equations and Their Properties
1.2.1 MHD Equations and Normalization

A very rigorous way with the least assumptions to treat space plasma physics is
through kinetic theory [Lifshitz and Pitaevskii, 1981]. However, the typical spatial
and temporal scales of a space plasma are often much larger than kinetic scales.
Therefore, small scale fluctuations are usually not taken into account, and a kinetic
treatment of large scale plasma processes is not feasible for analysis and numeri-
cally not possible with current computer resources. Neglecting those small scale fluc-
tuations through spatial and temporal averages, yields the magnetohydrodynamic
(MHD) equations, a fluid approach to describe the self-consistent plasma interaction
with the electric and magnetic fields. The MHD equations are given by [Krall et al.,
1974):



dp

ndad . = 1.1
o TV (V) =0, (1.1)
opV
0B
s -V x E, (1.3)
mem; @+V(V+V) _MV +E'XB+ i=E—-VxB (14)
___.__62p at J J ep De CPJ n = ) .

1 Bp - .2
;_—l(at-vaV)-— pV -V + n3°, (1.5)

poj =V x B, (1.6)

where p is the plasma density, V is the plasma velocity, p is the thermal pressure, j
is the current density, B is the magnetic field, E is the electric field, m, = 9.1094 x
1031 kg is the electron mass, m; = 1.6726 x 10~?" kg is the ion mass, ¢ = 1.6022 x
10~ C is the elementary charge, M = m. + m; = m;, 7 is the resistivity, v = 5/3
is the ratio of specific heats, and py = 47 x 107"H-m™! is the vacuum permeability,
e.g., [Huba et al., 2006].

For convenience, I normalize these equations to the typical values, i.e., B = BOE,
p = pop- For all typical values see Table 1.1. The actual choice of the normalization
values Ly, By, etc., depends on the physical system under consideration. I will later
introduce such typical parameters for the Earth’s magnetospheric boundary for the
particular applications in this thesis. The normalized equations are as follows, where

I have omitted the “A” for the normalized quantities for convenience.



Table 1.1: Physical quantities and typical values

Physical quantity f Typical value f;
length scales L Lg
mass density p N,
magnetic field B By
velocity V Va = By (popo)”? (Alfvén speed)
time ¢ T = Lo/Va (Alfvén time)
pressure p Py = B2/ (2u)
electronic current density j Jo = Bo/ (1oLo)
electronic field E Ey=WBy
resistivity 7 Mo
a
6’: +V-(pV) =0, (1.7)
dpV 1
—gt-— +V-(pVV) = -V <§p) +jxB, (18
%?— = -V xE, (1.9)
L 8j+V (Vj+jV)]—£Vﬁ-+—lj><B+nj—E+VxB (1.10)
p |0t p P ’ '
1 Op )
hut . =—-pV-V 2 1.11
7_1(6)t+‘7 pV) pV -V +2n5%, (1.11)
j=V xB, (1.12)

where [, = ALy 1] = ALy 1 pe = pePO"], Ae = c¢/w, is the electron inertia scale,
Ai = c/w; is the ion inertia scale, c¢ is the speed light, w, = \/W is the
electron frequency, and w; = \/W is the ion frequency. For a constant
resistivity, the normalized n~! is the Lundquist number R = 5 oLoVa.

Equation (1.7) is the continuity equation, where the second term is the divergence

of the mass density flux. Equation (1.8) is the momentum equation. On the left-hand



side of the equation is the inertia term, the first term on the right-hand side is the
pressure gradient, and the second term is the magnetic force. Equation (1.9) is the
induction equation from the Maxwell equations and Equation (1.10) is general Ohm’s
law. The second term on the right-hand side of Equation (1.10) is the convection term.
The first term on the left-hand side of Equation (1.10) is the electron inertia term,
which is important only when the typical length is comparable to the electron inertia
scale (I ~ @ (1)). The second term is electron pressure term and the third term is
the Hall term. Both become important when typical length scales are comparable to
the ion inertia scale (I ~ O (1)). However, the electron pressure can often be ignored
in the magnetosphere where p. < F. The last term is the resistive diffusion term. In
most of space environments, the plasma is collisionsless. Therefore, the resistivity is
negligible almost everywhere. Note, that a possible exception is the diffusion region of
magnetic reconnection, as explained later. Equation (1.11) is the pressure or thermal
energy equation. Equation (1.12) is Ampere’s law, where the displacement current
is neglected because the maximum wave speeds for my application are much smaller

than the speed of light.

1.2.2 MHD Equations and Conservation Laws

The continuity equation implies that total mass is conserved. By combining the
continuity equation and the momentum equation, I obtain a conservative form of the
momentum equation

0 (pV)
ot

=~-V. pVV+-;—(p+B2)I—-BB] , (1.13)

where I is the unit tensor. The divergence on the right hand side implies that the
total momentum of a system with closed boundaries is conserved. Especially, for an
equilibrium without curved magnetic field lines, this equation implies total pressure
balance.

If I ignore all the terms on the right-hand side of general Ohm'’s law, and combine

it with the induction equation, I can eliminate the electric field and obtain an equation



for the evolution of the magnetic field:

%?—sz(VxB). (1.14)

This equation reveals a very important property of the plasma, which is so-called
“frozen-in” condition [Kallenrode, 2004]. The frozen-in condition implies that the
magnetic flux through a closed contour which moves with the plasma is constant.
Equivalently this also implies that two fluid plasma parcels that are connected by a
magnetic field line (line along the magnetic field vectors) are always connected by a
magnetic field line. This provides a way to identify a magnetic field line through the
plasma elements. Note, that the inclusion of Hall physics leads to the separation of

ion and electron velocity. With the relation

V. =V—£j, (1.15)
p
Ohm’s law including the Hall term becomes
E=-V,.xB, (1.16)

which demonstrates that the frozen-in condition now applies to the electrons only.
Using the frozen-in condition in the plasma, a magnetic flux tube can be associated

with physical properties such as volume or mass. Therefore, to discuses the overall

quantity in a flux tube is meaningful. For example, the volume of a closed magnetic

flux tube (magnetosphere or magnetic mirror) is given by

V= / (//ds) di, (1.17)

where s is the flux tube cross section varying along the flux tube, dl is infinitesimal
length along magnetic field. For a “sufficiently thin” flux tube the cross section of
the tube varies as

s~ B (1.18)

This leads a definition of the differential flux tube volume



This concept can also be used to evaluate the total number of particles on a differential

th=/ndV= /nsle/%dl. (1.20)

Provided that the frozen-in condition applies and that the flux tube has well defined

flux tube through

“end points” at which no mass is lost (V} = 0), the continuity equation can be used
to show that the mass of this flux tube is conserved. With a similar motivation, I can

also define the flux tube entropy

pl/'r
Hy, =/—B—dl. (1.21)

Using the pressure equation it is possible to show that p'/7 satisfies a continuity
equation such that the flux tube entropy is also a conserved flux tube property for
the same provisions as for flux tube mass conservation. Those physical quantities
are very useful in the space physics. In the next section, I will show an important
example when the frozen-in condition is violated.
Finally, combing the continuity equation and thermal energy equation, I can derive
an equation for pp~” which is a measure of local plasma entropy
2
d% (%) =(y-1) %, (1.22)
where d/dt = 8/0t + 'V - V. This equation shows that resistive Ohmic heating is the
only (nonadiabatic) source for an increase of entropy S = p/ (2p”) and S is conserved
along a fluid path in the absence of resistive heating consistent with the properties
of entropy. Note, that the factor 1/2 arises from my normalization. One can also
combine all the equations (Equation (1.7) - (1.12)), to derive an energy conservation

equation, which will be discussed in Chapter 3.

1.3 Magnetic Reconnection
Magnetic reconnection is a process in which plasma is transported across a separatrix
surface [Otto, 2012]. Figure 1.2 shows a typical magnetic reconnection configuration.

The magnetic field lines that cross in the center are called separatrices and the point
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where they cross is called an X-point or X-line (when the three-dimensional aspect is
emphasized). At t = t,, particles p; and p, are connected by the same magnetic field
line [;, while particles p3 and p4 are connected by the same magnetic field line ly. [,
and [, are anti-parallel and approach each other. At t = ¢, reconnection takes place
at the X point, where /; and [, are connected. All those four particles are convected
to the position of the X-line which implies that the magnetic field line on which they
are located is now the new separatrix. At t = t3, those four particles are now in the
outflow. Particle p; and p; are connected by the same magnetic field line I3, while
particle p, and p3 are connected by the same magnetic field line 4 .

The key point of this magnetic reconnection is the localized diffusion, violating
of the frozen-in condition in a very small vicinity of the X-line which is called the

diffusion region. There are three important properties of this process.

1. Magnetic reconnection changes the magnetic topology, which allows fast mix-
ing of plasma of different origin [Dungey, 1961; Otto, 1999]. This property is
important for the solar wind plasma access to the Earth’s magnetosphere at
the LLBL for southward interplanetary magnetic field (IMF) conditions. For
northward IMF conditions, magnetic reconnection may occurs at the cusp re-
gions [Adamson et al., 2012], or it may be driven by the KH instability [Otto
and Fairfield, 2000].

2. Magnetic reconnection converts a large amount the magnetic energy (stored
energy) into the bulk kinetic energy (plasma acceleration) and thermal energy
in a short time, which is important for the acceleration of plasma in the mag-
netosphere (bursty bulk flows, plasmaoids, magnetic flux transfer events), and
which potentially explain solar coronal heating and heating of magnetospheric

plasma. [Birn and Priest, 2007].

3. As an irreversible process, magnetic reconnection changes both the local and
total entropy. One of the outstanding compelling problems of space physics is

the strong nonadiabatic heating of the solar corona but also albeit on a smaller
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Figure 1.2: Sketch of the magnetic reconnection geometry and the associated plasma

and magnetic flux transport.
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scale of magnetospheric plasma. In Chapter3, I will discuss more about this

property.

Historical, the concept of magnetic reconnection was first introduced by Giovanelli
[1946, 1947] to explain solar flares. Dungey [1961] applied this concept to introduce
the concept of an open magnetosphere. The first stationary two-dimensional magnetic
reconnection model was proposed by Sweet [1958] and Parker [1957]. In their model,

the magnetic flux is convected into the diffusion region at an inflow region speed
Vi ~ ’UA,'R_I/2, (123)

where R = poLovaing ! is the Lundquist number, vy; is the inflow Alfvén speed.
In two-dimensional steady-state models the electric field £ in the invariant direction
is uniform in space. Thus, the Alfvén Mach number
v, uwuB FE

M Al = = ol
b
Vai vaiB; V4 B;

(1.24)

provides a quantitative measure of the rate of the flux magnetic transport (also called
the “reconnection rate”), normalized by the typical electric field v4;B;. In terms of

this number, the Sweet-Parker reconnection rate is
r= Mg ~ R (1.25)

However, in a space plasma environment the Lundquist numbers are always large.
Therefore, this magnetic reconnection model is too slow to explain the real physical
phenomena. in the space environment. To resolve this problem, Petschek [1964] first
pointed out that a much larger reconnection rate would be possible if the diffusion
region were much shorter. Figure 1.3 illustrates the Petschek reconnection geometry.
In his model, a tiny diffusion region is bound by two pairs of slow shocks, the outflow
region plasma is strongly accelerated and heated by the slow shocks. The maximum

reconnection rate in this model is about

™

~—_— 2
SnR’ (1.26)

r
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Figure 1.3: Illustration of the diffusion region and the attached slow shocks in

Petschek’s reconnection model.

which is much faster than for the Sweet-Parker model. Another important prop-
erty of Petscheck reconnection is a fairly weak dependence on the macroscopic length
scale Ly. For Lundquist number ranging from 10% to 10%°, the Petscheck reconnec-
tion rate various only between 0.09 and 0.01, which is in reasonable agreement with
observations of macro plasma transport for most space plasma systems [Otto, 2012].

The above stationary models are based on the MHD frame work. Thus, resistiv-
ity is the only source to break down the frozen-in condition. However, in a space
environment, plasma is usually considered as a superconductor. Thus, to facilitate
magnetic reconnection in MHD, one has to make an ad hoc assumption for the re-
sistivity or include more physics, i.e., an electron pressure tensor, electron inertia, or
explicit kinetic processes and instabilities. The latter options not only require the
inclusion of complex additional physics but also the resolution of kinetic length scales
in large scale plasma models, which for most applications requires computer resources
far beyond today’s capabilities.

Here I only consider the resistive term. Assuming a width of the current layer of

4, the current density can be approximated by

B

£ 1.27
s (1.27)

j=en(v; —v,) =

where v; and v, is the ion and electron speed, respectively. Normalized by the typical
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value, Equation (1.27) can be rewritten as

Ui“Ue_/\i
VA (5)

(1.28)

which indicates that thin current layers require large drift speeds of the current car-
riers. As a reminder, J; is the ion inertia scale. However, large drift velocities are
expected to generate micro-instabilities when this velocity significantly exceeds the ion
thermal speed vy,. The turbulent interaction of the waves of the instability with the
current carrying particles will slow the particle to conditions sub-critical for the insta-
bility [Otto, 2012]. The overall effect is equivalent to a resistivity. Assuming a critical
velocity for the onset of micro-instabilities of v. = ac,, where ¢, = \/m is
the ion acoustic speed, implies that « is of order unity when the ion inertia scale is
comparable to the normalization length Lo. In reality, a is determined by the onset
conditions for current driven turbulence in a strong current. Since the exact choice
has minor influence on the macroscopic dynamics, it is used in my numerical model
as a free parameter to adjust magnetic reconnection onset condition. For example,
In the three-dimensional simulations, three resistivity models are applied, which are

given by:

Model 1: m =noVJj? = J2H (§ ~ jc) + J, (1.29)
Model 2: 12 =no\/j — JeH (5 — je) + b, (1.30)
Model 3: 13 =No (j2 - ch) H (G — je) + v, (1.31)

where H(z) represents a step function, j. = pv. = a+/vpp/2 the critical electric
density, and j, the background resistivity. Therefore, the onset current layer width is
given by

§ = \va/ve ~ A (aB)_l , (1.32)
where 3 is the plasma beta 2ugp/B?. At the magnetopause 8 = 0.1 ~ 1, but near

the X-point the plasma (3 can be higher, which indicates that the diffusion region

is at least on the ion inertia scale. Thus it is potentially important to include Hall
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physics into a model of magnetic reconnection at the magnetopause. Although Hall
physics does not violate the frozen-in condition, the frozen-in condition outside of
the diffusion region applies to electrons, the inclusion of the Hall term achieves much
higher reconnection rates than MHD [Otto, 2001; Ma and Bhattacharjee, 2001]. The
Hall reconnection rate is comparable to the rate obtained by other plasma descriptions
which include additional physics, i.e., electron pressure and kinetic models [Birn et al.,
2001].

Observational evidence of magnetopause reconnection was first presented by Rus-
sell and Elphic [1978]. By using ISEE satellite data, they found many events with
a bipolar signature in the magnetic field component normal to the magnetopause
boundary (Bpy). Another feature is an enhanced magnetic field strength at the center
of the event [Russell and Elphic, 1978]. They called these structures as flux transfer
events (FTEs) and assumed they represented magnetic flux ropes in which magnetic
flux connecting magnetosheath and magnetosphere is caused by localized patchy re-

connection.

1.4 The Kelvin-Helmholtz Instability

The Kelvin-Helmholtz (KH) instability is one of the most important instabilities in
geophysics. It occurs in the presence of a large shear flow across a thin boundary layer.
It can be easily found in our physical environment, such as water ripples on a lake
surface and waving flags generated by wind, or the vortices at the confluence of two
rivers. It is also found that the KH instability can be observed in such space areas as
the solar corona, the ionosphere, and astrophysical objects (M82) [Foullon et al., 2011,
Birk et al., 1999]. The well known application of KH instabilities are the surface waves
at the Earth’s magnetospheric boundary. Figure 1.4 illustrates KH vortices close to
the equatorial plane at the duskside magnetopause for northward IMF conditions
[Hasegawa et al., 2004]). The thickness of the magnetospheric boundary is around
100 to 1000 km, which is comparable to the ion inertia scale. The magnetospheric

boundary provides a good candidate for the occurrence of KH instability because of
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the high velocity on the solar wind side and a stagnant flow on the magnetospheric
side of the boundary.

The KH instability is highly efficient to mix material and momentum from both
sides of a shear flow boundary. Therefore, its macroscopic effect is equivalent to
diffusion and viscosity. At the magnetospheric boundary, Azford [1964] suggested
the KH instability as a possible mechanism for viscous coupling between the solar
wind and the Earth’s magnetosphere.

Chandrasekhar [1961] studied the KH instability as one among several interchange
instabilities. He assumed an incompressible homogeneous plasma on the two sides
of a discontinuous tangential flow including a homogeneous tangential magnetic field

and calculated the growth rate of the KH instability g:

¢= Voo (Vi — V) -k — a1 (Var -k — 03 (Vaz-k)?,  (1.33)

where the indices refer to the two sides of the shear flow layer, a; = pi/(p1 + p2),
k is the wave vector of the perturbation, and V5; = B;/\/p; is the Alfvén velocity.

Important properties implied by the dispersion relation in Equation (1.33) are:

1. In the absence of a magnetic field, the KH instability is always operating as long
as there is a nonzero shear flow V; —V, # 0. The growth rate is proportional to

the k vector, indicating that the fastest growth is for the smallest wavelengths.

2. The magnetic field can entirely stabilize the mode if there is a sufficiently large
magnetic field component along the k vector. In order words, the kinetic energy

of the shear flow has to be large enough to overcome the magnetic tension force.

3. If the magnetic field is perpendicular to the k vector, it does not affect the
KH instability growth rate. Therefore, this magnetic field can be treated as an
additional pressure.

It is worth mentioning that the vortices generated by the KH instability are moving

at the velocity V = a;V; + auVy. Thus it is convenient to perform a Galilean
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Figure 1.4: (a) Cartoon of the magnetosphere, showing the KH vortices at the dusk-
side magnetopause. (b) Vortex structure resulting from a three-dimensional numerical
simulation of the MHD KH instability under a magnetosphere-like geometry, with the

plasma sheet sandwiched between the two lobes [Hasegawa et al., 2004].
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transformation and use a frame in which the KH vortex is stationary. Hereafter,
most of the results are based on this frame.

Although the most important properties of the KH instability are illustrated
above, the basic assumptions have some important limitations. It is expected that
compressibility will stabilize the system. KH instability can not operate if the initial
velocity on the two sides is larger than a critical value [Pu and Kivelson, 1983; Miura
and Pritchett, 1982]. The assumption of incompressibility assumption assumes an
infinite ion-acoustic speed. In order to generate the flow in and around the vortices,
the system must pass the information on the obstacle downstream. However, a super-
sonic flow prevents this information transport such that the instability cannot operate
anymore.

The assumption of an infinitely thin shear flow layer implies a width of the shear
layer which is small compared to the wavelength. This is often violated because
the fastest growth mode is always the smallest typical length scale in the system.
Therefore, the fastest mode always has a wavelength which is comparable to 27 times
the width of the shear flow layer. Using two-dimensional MHD simulations, Miura
and Pritchett [1982] have shown that the fastest growth rate requires ka =~ 0.5 ~ 1,
where a is the half width of shear flow, and KH instability will be switched off when
ka > 2.

The KH instability as an efficient transport of energy and momentum across the
plasma boundary have been demonstrated by a number of two-dimensional MHD sim-
ulations [Miura, 1982, 1984, 1987, 1992, 1996; Miura and Pritcheit, 1982]. However,
as an ideal instability, the KH instability does not violate the “frozen-in” condition.
Nevertheless, more recent two- and three-dimensional simulations for northward IMF
conditions have demonstrated the formation of very thin current layers in the non-
linear vortices of KH waves. In resistive MHD), these current layers force magnetic
reconnection to operate which allows the plasma to cross the magnetospheric bound-
ary [Otto and Fairfield, 2000; Nykyri and Otto, 2001, 2004; Otto, 2008]. Figure 1.5

illustrates two types of magnetic reconnection driven by KH waves. The first type
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occurs in the case where the magnetic field components along the k vector of KH
instability are anti-parallel across the velocity shear layer (anti-parallel case). The
second type occurs for flow shear strong enough to produce well developed large size
KH vortices and strongly stretched field lines therein (strong KH instability case)
[Nakamura et al., 2006, 2008]. It is often reported in numerical simulations that the
fastest modes (also usually short wavelength modes) are the first to reach a saturation
state. A merging of neighboring vortices to form a longer wavelength mode has often
been observed in simulations [Nakamura and Fujimoto, 2008]. Another property is
a periodic increase and decrease of density by the KH waves, which modulates the
local ion acoustic speed. Once the ion acoustic speed is below the bulk velocity, a fast
shock can be formed [Miura, 1984; Wu, 1986]. It is demonstrated that the net plasma
transport due to reconnection inside KH vortices is unaltered in a Hall-MHD approxi-
mation and the Hall-MHD growth rates are about 20% larger than the corresponding
MHD growth rates [Nykyri and Otto, 2004].

The KH instability at the magnetopause has been widely confirmed by means of
the satellite observation |[Fairfield et al., 2000; Hasegawa et al., 2004; Hwang et al.,
2011]. A good example is the event on March 24, 1995 [Fairfield et al., 2000]. “For
several hours the Geotail spacecraft remained near the dusk-side magnetotail bound-
ary some 15 R behind the Earth while the solar wind remained very quiet with a very
steady 11nT northward magnetic field. Geotail experienced multiple crossings of a
boundary between a dense, cold, rapidly flowing magnetosheath plasma and interior
region characterized by slower tailward velocities and lower but substantial densities
and somewhat hotter ions. The crossings recurred with a roughly three minute pe-
riodicity, and all quantities were highly variable in the boundary region, especially
the B, component showed strong short-duration fluctuations in which B, could even
reach negative values. The observation also suggests direct entry of plasma through
the boundary as the source of high densities in the plasma sheet” [Fairfield et al.,
2000]. Otto and Fairfield [2000] used two-dimensional MHD simulations to show that
the fluctuations can be explained by the KH instability if the k vector of the in-
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(a) First type reconnection driven by KH mode. (Top) Density contours and flow vectors for ion
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(b) Second type reconnection driven by KH mode. (Top) Density contours and flow vectors for ion

and magnetic field lines. (Bottom) Sketches of the evolution of magnetic field lines. The blue crosses

show the reconnection sites, and the blue arrows show the motions of the magnetic islands.

Figure 1.5: Two different types of magnetic reconnection driven by KH mode [Naka-
mura et al., 2008].
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stability has a component along the magnetic field direction. “The results suggest
an average KH wavelength of about 5 R, with a vortex size of close to 2 Rg for an
average repetition time of 2.5 min. The growth time for these waves implies a source
region of about 10 ~ 16 Rg upstream from the location of the Geotail spacecraft.
The simulations also indicate a considerable mass transport of magnetosheath mate-
rial into the magnetosphere by magnetic reconnection in the KH vortices” [Otto and
Fairfield, 2000].

Recently, Hwang et al. [2011] presented the first in situ observation of nonlinearly
developed KH waves during southward IMF. “The analysis revealed a mixture of
less-developed and more-developed KH waves that shows inconsistent variations in
scale size and magnetic perturbations consistent with the expected evolution of KH
structures. A coherence analysis implied that the observed KH waves under south-
ward IMF appear to be irregular and intermittent. These irregular and turbulent
characteristics are more pronounced than previously reported KH waves events for

preferentially northward IMF conditions” [Hwang et al., 2011].

1.5 Motivation and Outline of the Thesis

As mentioned before, both magnetic reconnection and Kelvin-Helmholtz instabilities
at the Earth’s magnetopause have been studied by numerous authors in the past
half-century. However, there are still some major important open questions in this

area, among them the problems outlined below.

1.5.1 Entropy Changes Associated with Magnetic Reconnection

As mentioned before, entropy is a conserved quantity in the ideal MHD. However,
many observations indicate that the plasma in the magnetosphere is strongly heated
and has an entropy that is orders of magnitude higher than its solar wind origin.
Only a small fraction of this nonadiabatic heating is explained by the Earth’s bow
shock, such that the high entropy of magnetospheric plasma is still a fundamentally

important and unresolved issue. Figure 1.6 summarizes observed values of the typical
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entropy S = pp~” in the solar wind and magnetosphere. In the magnetosphere,
satellite observations show that ions in the Earth’s plasma sheet become cold and
dense during prolonged periods of northward IMF, which has been attributed to
the massive transport of the solar wind or magnetosheath ions into the plasma sheet
[Fujimoto et al., 1997]. There are two components of plasma in this cold dense plasma
sheet, a hot distribution, which is considered a remnant of the original plasma sheet
plasma, and a cold distribution, which is believed to be of magnetosheath origin
[Wang et al., 2007]. The typical flank magnetosheath ion density and temperature
for fast solar wind conditions are about 5 cm™3 and 50 eV. For slow solar wind
conditions, the ion density and temperature are about 8 cm™® and 10 eV [Borovsky
and Cayton, 2011]. Density and temperature for the cold plasma component are
about 0.5 cm™2 and 500 eV [Wang et al., 2007], which yield an entropy increase of
about 1 ~ 2 orders of magnitude compared to the magnetosheath. To determine
which process can provide sufficient nonadiabatic heating may also shed light on a
better understanding of the plasma transport at the magnetopause. The problem is
reminiscent to the problem of coronal heating, where, again, the entropy is orders of
magnitude higher than in the solar photosphere and chromosphere.

A prime candidate for the observed nonadiabatic heating is magnetic reconnec-
tion, which requires the violation of the ideal MHD by local dissipation. This is
particularly attractive because it is very clear that magnetic reconnection plays a
major role for the plasma transport from the magnetosheath into the magnetosphere.
Therefore, the idea to resolve the problems of nonadiabatic heating and of the plasma
transport is very appealing. Furthermore, entropy is the quantity to describe irre-
versible processes, and has not been systemically examined in magnetic reconnection.
Thus in Chapter 3, I investigate systematically any entropy increase through different
magnetic reconnection configurations in the framework of MHD and Hall MHD by

using one- and two-dimensional numerical simulations.
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1.5.2 Field-Aligned Currents Formation in Magnetic Reconnection

Field-aligned currents (FACs) represent the current component along the magnetic
field direction. Figure 1.7 is a schematic of combined FACs and ionospheric current
systems. More than 100 years ago Kristian Birkeland hypothesized the existence of
currents in the upper ionosphere, which are not all closed in the upper atmosphere
but have currents connected to interplanetary space. Now it is well known that
these currents not only exist but also play a critical role in the coupling between the
magnetosphere and ionosphere. The coupling implies the existence of forces on the
plasma and therefore requires the presence of currents to communicate such forces
between the magnetosphere and the ionosphere. Thus, it is highly important to
understand the plasma processes that generate FACs.

At the magnetopause, it is believed that FTEs represent magnetic flux ropes that
connect the magnetosheath magnetic field and the geomagnetic field. Associated with
these events are observations of transient acceleration and auroral emissions in the
dayside polar ionosphere which are believed to be related to FTEs. If this is the case,
FACs must have been generated during the reconnection process that formed the flux
ropes. Therefore, FACs are key to understanding the ionospheric response to the
interaction between the solar wind and the magnetosphere. In the Earth’s magne-
totail, the occurrence of substorms, which involves magnetic reconnection, increases
the Birkeland currents (FACs), accelerates particles along field lines, and causes the
aurora to brighten. Thus FACs are critical to the magnetosphere-ionosphere coupling
(For more detail, see Chapter 4). These two examples clearly hint that magnetic re-
connection may generate the FAC; however, the mechanism is not fully understood.
Several studies examine the formation of FACs associated with magnetic reconnection
and KH waves. However, most of these studies invoke three-dimensional reconnec-
tion whereas guide magnetic field or velocity shear should be very efficient to generate
FACs in two dimensions. In fact, several of the three-dimensional results can prob-
ably be attributed to two-dimensional mechanisms. This problem is also relevant to

better understand the formation of FACs in the shear flow geometry necessary for
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Figure 1.7: A schematic of combined FACs and ionospheric current systems [Le et al.,
2010).



26

the formation of KH waves. It has been demonstrated that the FACs generated by
the velocity shear are critical for the coupling of KH and current sheet instabilities
to the ionosphere [Lysak and Song, 1996]. In Chapter 4, I systemically examine FAC

generation in two-dimensional magnetic reconnection.

1.5.3 Interaction Between Kelvin-Helmholtz Instability and Magnetic

Reconnection

Magnetopause magnetic reconnection is considered the dominant process for south-
ward IMF conditions at the Earths magnetopause. However, a shear flow, perpen-
dicular to the reconnection plane, is always present due to the solar wind velocity.
Therefore, it is expected that KH modes and magnetic reconnection operate simulta-
neously and interact with each other. It is important to note that magnetic reconnec-
tion and KH waves cannot simultaneously occur in two-dimensional configurations.
Figure 1.8 illustrates the role of reconnection versus the role of KH instability for
k || B and parallel to the velocity shear direction condition. Flow shear modifies
magnetic reconnection by generating a configuration similar to a density asymmetry
with a nonzero B, in the outflow region when |V| < |V 4| [La Belle-Hamer et al.,
1995]. When the shear flow value is larger than the inflow Alfvén speed (V| > |V 4}),
magnetic reconnection is switched off by KH modes [Chen et al., 1997]. In cases where
the directions of magnetic shear and velocity shear are not aligned, the k vectors for
the respective instabilities are not aligned. Therefore, a configuration where both
instabilities are permitted to operate simultaneously is necessarily three-dimensional.
Several two-dimensional simulation studies were carried out considering either con-
figurations where only reconnection can operate or where only the KH mode can
operate. Thus to fully understand this interaction process, a fully three-dimensional
MHD or Hall MHD simulations is required. The case of largely parallel magnetic field
(for northward IMF conditions) has been investigated in three dimensions by Takagi
et al. [2006] and Otto [2008). However, southward IMF has only been considered in
a global simulation study with limited resolution [Hwang et al., 2011]. This study
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also has not examined any details of the KH-reconnection interaction. There are also
no studies to consider the effect of Hall physics in three-dimensions, although it is of
potential importance because of the thin current layers that are caused by nonlinear
KH waves. Therefore, Chapter 5 and 6 examine the three-dimensional interaction of
KH waves and magnetic reconnection. A significant uncertainty is presented by the
spectrum and type of the initial perturbations that cause the instabilities to grow.
Generally, it is more likely that the evolution of KH waves is faster because the mode
represents an ideal instability which implies always fast growth on the time scale of
ideal MHD. In comparison, fast magnetic reconnection requires first a thin current
layer and then develops on the time scale of the Petschek rate. However, the details
are more complicated because large scale KH waves also have a slower evolution than
short wavelength modes. To cover these possibilities, I consider first a situation with
perturbations that favor KH growth over reconnection in Chapter 5 and then consider
a scenario with perturbations that favor the evolution of magnetic reconnection as
the primary process in Chapter 6.

Since all these studies are based on numerical simulation, an introduction of the
numerical method is provided in Chapter 2. In Chapter 7, I summarize the results

and discuss remaining problems and future work.
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Figure 1.8: For k || B, magnetic reconnection operates only when |V| < |V 4|.
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Chapter 2
Numerical Methods
2.1 Numerical Integration of the MHD and Hall MHD Equations
In this thesis, I use a leapfrog scheme to solve the full set of normalized resistive Hall
MHD equations [Otto, 1990):

dp

3 =~V V), (2.1)
8?%=—V- [pVV+%(p—B2)I+ BB] ) (2.2)
%}—?-=Vx[(V-—l%)xB—nj], (2.3)
Oh _ _v.(hv)+ 1 ptm, (2.4)
ot ~
h=(/2)"", (2:5)
j=V x B, (2.6)

where all the notations have the same meaning as in Chapter 1.

The leapfrog scheme is given by introducing centered differences in both time and
space. Figure 2.1 shows an example of the numerical integration of the continuity
equation in one dimension using a finite differences leapfrog scheme. For instance the

discretized continuity equation becomes with pV, = F|

P S o g
2At 20z’
which as an algorithm becomes

(2.7)

ot = o = R (P — FL). (2.8)
Equation (2.8) is consistent with the continuity equation with a truncation error of
O (At?, Az?). Note, that a Taylor expansion of the discretized terms implies that a
first order error in Az corresponds to a second order derivative of p, i.e., to diffusion

and the second order error to a third order derivative in p. Therefore, the achieved



































































































































































































































































































































































































