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ABSTRACT

The thermal and chemical structure of the thermosphere at high 

latitudes is strongly influenced by auroral energy inputs. These inputs 

are highly variable and will affect ionospheric circulation patterns as 

well as ionic composition, electron-density distribution, and temperature 

variations. This dissertation presents the first continuous ground-based 

measurements of temperatures and ionic composition of the high-latitude 

thermosphere in the polar region.

The measurements were made with the incoherent-scatter radar located 

at Chatanika, Alaska (L = 5.6). Previous measurements of these parameters 

have been made with both rockets and satellites. The use of ground-based 

radar, however, allows continuous measurement without the coverage limi

tations of both rockets and satellites.

In this dissertation I present the results of four continuous 24- 

hour periods. The periods were selected such that conditions during 

summer, winter, near summer solstice, and near autumnal equinox were sampled. 

These periods were also chosen so that both active and quiet geomagnetic 

conditions existed. Therefore, the variations in electron and ion temper

atures and ion composition due to diurnal, seasonal, and auroral effects 

have been examined.
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The temperature variations during particle precipitation and joule

heating events are quite dramatic. The electron temperature increased as

much as 1000 K above the neutral-gas temperature during precipitation.

The ion temperature also increased by a similar amount during a large 
2joule heating event (30 ergs/cm -s).

During quiet periods, the solar extreme ultraviolet radiation deter

mines the diurnal temperature variations. For example, the F-region 

electron temperatures varied as much as 1000 K over the day/night cycle. 

The ion temperatures varied only 100 K over the same period. These 

quiet-time results are similar to measurements made at midlatitudes.

The term "transition altitude" is used to describe variations in 

the ion composition. Above this altitude, 0+ ions dominate; below this 

altitude, molecular ions (N0+, 0*) dominate. Large electric fields were 

observed to have a significant effect on ion composition. In fact, the 

largest change in the transition altitude occurred during the large joule 

heating event mentioned above. The transition altitude increased at 

least 50 km during that period and remained elevated for several hours.

During quiet periods the variation in composition is less dramatic. 

In the winter, the transition altitude is near 190 km at night and near 

175 km during the day. There is very little variation in the summer 

transition altitude (170 km) because at high latitude the solar zenith 

angle does not exceed about 96° and the ionospheric F-region is illumin

ated continuously. A seasonal variation, similar to midlatitude obser

vations, was also observed— i.e., the daytime transition altitude is 

approximately 15 km lower in the winter than in the summer.

iv
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I INTRODUCTION

The magnetosphere has a significant effect on the high latitude 

thermosphere because it directs large amounts of solar energy in two 

forms: energetic electrons and convection electric fields. These

energy inputs are highly variable and are often larger than the energy 

deposited at ionospheric altitudes directly by the solar extreme ultra

violet (EUV) and X-ray radiation. The resultant effects are significant—  

the thermospheric temperature structure and ionic composition are strongly 

influenced by the dissipation of the magnetospheric energy sources. 

Ionospheric circulation patterns also will be affected by changes in the 

thermal structure.

During intense particle precipitation associated with magneto- 

spheric substorms, the electron temperature is elevated by 1000 K or 

more in the F-region. Similarly, ion temperatures can be as high as 

2000 to 3000 K (twice the ambient temperature) during periods when large 

convection electric fields (60 to 100 mV/m) are present.

A number of techniques have been previously employed to measure the 

effects of these magnetospheric substorm manifestations. Satellite and 

rocket-borne instrumentation have provided most of the previous measure

ments of temperatures (electron and ion) and ionic composition. These 

measurements have a number of limitations, however. With rockets and 

satellites it is difficult to determine the effects on the ionosphere of 

large energy inputs for a number of reasons:
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® The satellite data are limited to a single altitude at 

a particular location.

® The rocket data provide a single profile of the 

measurable parameters.

0 Satellite data provide only gross temporal variation 

(~ 90 min period); neither satellite nor rocket data 

are continuous in time.

This dissertation presents the first continuous measurements of ion 

and electron temperatures and ionic composition at auroral latitudes.

It also demonstrates the success of a technique to determine ion compo

sition never before used at high latitudes. The measurements were per

formed using the incoherent scatter radar at Chatanika, Alaska (L = 5.6). 

The experiments were largely exploratory because analysis techniques 

used by incoherent-scatter radars at midlatitudes were not directly 

applicable and had to be adapted for use in the more complex high- 

latitude ionosphere. The techniques developed by Evans and Oliver [1972], 

Waldteuful [1971], and others for a midlatitude ionosphere were extended 

and modified as required by the auroral conditions.

The ground-based incoherent-scatter radar is well suited for 

determining both temporal and spatial variation of ionospheric parameters 

such as the electron density, ion velocity, electron and ion temperature, 

and the ionic mass, all as functions of altitude for a desired period. 

Briefly, the electron density is derived from the received backscattered 

power, the ion velocity from the Doppler shift, and the electron and ion 

temperatures (T , T.) and ion mass (M.) from the spectral shape of the
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received signal. In a later section these parameters are discussed in 

detail, particularly the dependence of the spectral shape on ,

and M ..x

Seasonal and diurnal variations in electron and ion temperatures, 

and ionic composition have been examined for the high-latitude iono

sphere. Four 24-hour periods were chosen for detailed analysis in order 

to present samples of summer, winter, and near-equinox conditions. The 

magnetic activity varied from quiet to storm conditions in the selected 

data base. In addition, the effects of large energy inputs (both joule 

and energetic particle precipitation) on the temperature and ionic com

position have been analyzed.

This dissertation is organized in the following manner:

° Section II contains a background discussion of the 

auroral processes and their effect on the high- 

latitude ionosphere. This discussion is based on 

theoretical works by Rees [1975], Walker and Rees 

[1968], and others. The effects of auroral energy 

input on ion composition are also discussed.

0 Section III contains the following:

- A brief description of incoherent scatter theory

- A description of techniques used at midlatitudes

for determining T., T , M..l e i

- A description of the technique adapted for high 

latitudes for determining T. , T , M. .
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- A description of the experimental procedure

- A description of the method for determining energy 

inputs from radar-measured parameters.

Section IV contains the data from the four 24-hour periods 

and data taken during a simultaneous rocket flight. The 

rocket carried a mass spectrometer; consequently, a com

parison of radar composition measurements with in situ 

measurements can be made.

Section V contains the analysis and discussion of the 

temperature and ion composition data; both quiet and 

active periods are discussed. The analysis is aided by 

numerically modeling the ion composition using a simpli

fied system of reactions.

Section VI contains the conclusions and recommendations 

for future research.

The Appendix contains the error analysis.
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II BACKGROUND

The high-latitude thermosphere, in contrast with the midlatitude 

thermosphere, is strongly coupled to the magnetosphere. As a result, 

large amounts of energy and momentum are transferred from the magneto

sphere to the ionosphere. These energy inputs have a significant effect 

on the morphology, thermodynamics, and chemistry of the high-latitude 

ionosphere. Energetic auroral particles are responsible for both 

heating effects and the production of ionization. Electric fields are 

responsible for joule heating. The relationship between the auroral 

processes and their manifestation in the high-latitude ionosphere is 

outlined in Figure 1.

A . Particle Precipitation and Electron Temperature

On the left side of the auroral diagram we indicate the heating 

process due to auroral electrons. A flux of energetic electrons 

bombards the upper atmosphere, the depth of penetration depending on

the electron energy. Most of the energy is deposited between 100 and

120 km. The energetic primary electrons transfer energy through the 

ionization of the ambient neutral constituents (N2> C>2, and 0). The 

collision reactions are:

N2 + e  N2 + 2e (1)

N2 + e  N+ + N + 2e (2)

02 + e ---->- 02 + 2e (3)

5
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In the above ionizing reactions some of the energy from primary 

electrons goes into the production of excited states of N , 0 , N, and

0. Enhanced vibrational and rotational levels of N*, 0^, and 0* are 

also produced. The secondary electrons have energies of tens of elec

tron volts. Much of this energy is lost in inelastic collisions with 

neutrals and finally the remaining energy is shared with the ambient 

electrons producing a temperature enhancement.

Auroral zone electron temperatures have been calculated by Walker 

and Rees [1968] and Rees et al. [1971]. The temperature is determined 

by solving the electron energy equation taking into account local heating, 

cooling, and conduction. Examples of enhanced electron temperature pro

files are shown in Figure 2. F-region temperatures near 3000 K are 

predicted to occur during intense precipitation periods. Measured elec

tron temperatures are compared with those determined theoretically in 

Section V.

B. Joule Heating and Ion Temperature

Referring again to Figure 1, the right side indicates the process 

of heating by electric fields perpendicular to the magnetic field. 

Magnetospheric E fields are mapped down along magnetic field lines and
-4

are consequently applied to the ionosphere. The field produced E X B 

drift of both ions and electrons. As the ions drift through the neutral 

atmosphere they collide with neutrals and frictional heating (or joule 

heating) results.
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1 MARCH. Source: Walker and Rees [1968],
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Theoretical calculations of ion temperatures in the presence of 

perpendicular electric fields have been performed by Schunk and Walker

[1973] and Rees [1975]. An example of ion temperature as a function of 

the E field magnitude is given in Figure 3. The ion temperature can ex

ceed both the neutral and electron temperatures at ionospheric heights. 

Temperatures near 3000 K have been predicted as the result of heating 

by a 60 mV/m orthogonal E field. Ion temperatures measured during 

similar fields are discussed in Section V.

C . Auroral Zone Ion Composition

This dissertation is concerned with the distinction between atomic 

ions (0+) and molecular ions (N0+ , 0*). (The radar technique does not 

allow the distinction between N0+ and 0* to be made, because there is 

insufficient mass difference between them.) This section will concen

trate on the auroral ion chemistry of these ions. The discussion will 

include what is known both theoretically and experimentally.

Auroral zone ion composition has been studied theoretically by 

Jones and Rees [1973], Vallance Jones [1974], and others. In addition 

to the ionization reactions, the principal reactions are as follows:

N2 + ° --► N0+ + N (6)

N2 + °2 — ► °2 + N2 (7)

n+ + 02 — ► N0+ + 0 (8)

N+ + °2 °2 + N (9)

°2 + N2 ---- N0+ + NO (10)
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TEMPERATURE —  K

FIGURE 3 ION, ELECTRON, AND NEUTRAL TEMPERATURES RESULTING FROM HEATING BY 
AN ORTHOGONAL ELECTRIC FIELD. A small magnetospheric heat flux, Qoo, was 
assumed to exist in the electron gas at 1000 km. For the ion gas Qoo = 0 at the 
upper boundary. Source: Rees [1975],
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°2 + N N0+ + 0 (11)

02 + NO — N0+ + 02 (12)

0+ + N 2 N0+ + N (13)

0+ + 02 °; + ° (14)

N2 + e — N + N (15)

°2 + 6 — 0 + 0 (16)

N0+ + e __► N + 0. (17)

There are also reactions involving excited states— 0+(2D, 2P), —

which produc N* by

0+ (2D) + N2  ►  N2 + ° (18)

0+ (2P) + N2 --- >» N2 + 0 (19)

0+ (a4«) + N2  N2 + °2. (20)

There are, of course, other reactions, however, those listed above 

are the principal ones.

The reaction-rate coefficients have largely been determined by 

laboratory measurements; consequently, in principle the coupled continuity 

equations for the various species can be solved. The results give pro

files of the various ion concentrations. The variations of the concen

trations of N0+ and 0+ are particularly important to this study. Figure 

4, taken from Jones and Rees [1973], indicates the calculated effect of 

auroral precipitation on the ratio of the number densities of N0+ to 0*.
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FIGURE 4 TEMPORAL VA RIATIO N  OF THE COMPOSITION RATIO [N 0 +] / [ 0 +] 
AT SEVERAL ALTITUDES, DURING BUILDUP OF IONIZATION. 
Source: Jones and Rees [1973],
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Following the onset of the particle flux, a gradual buildup of 0 

occurs above about 130 km. The 0+ ions are produced by electron impact 

with 0 atoms, and NO+ ions are produced mainly by the reaction involving 

N* to 0. The lifetimes of N0+ and 0+ are quite different— the lifetime 

of 0+ is approximately 20 times that of NO+ at 130 km; consequently, the 

ratio [N0+]/[0+] decreases. The ratio at 200 km tends toward unity 

after onset of the precipitation.

The other molecular ions, 0* and N*, also become more abundant 

during precipitation. The ions are produced by electron impact and by 

reactions (6) through (14) and (18) through (20), above. Swider and 

Narcisi [1974] have measured ion composition with rocket-borne mass 

spectrometers. Figure 5 indicates their results from data collected 

over Poker Flat during an intense auroral event (IBC class 3 intensity). 

It can be seen that at 170 km the concentrations of N0+ and 0+ are nearly 

equal. Unfortunately, composition profiles before the auroral event were 

not measured, so it is not known if the ratio [N0+]/[O+] is increasing 

or decreasing with time. The N2 ion concentration remains insignificant 

while the 0* concentration is about half that of N0+ .

Schunk et al. [1975, 1976] have investigated the effects of large 

E fields on the concentrations of N0+ and 0+ at high latitudes. They 

suggest that during periods of large E fields the dominant F-region ion 

could be N0+ . This could be due to a number of processes:

® enhanced [N̂ ]

© enhanced N2 vibrational temperatures

® enhanced ion temperatures.

Square brackets indicate number density.
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FIGURE 5 CALCULATED N+, N 
FLAT AURORAL DA
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CONCENTRATION —  particles/cm3

AND 0 + DISTRIBUTIONS AND 27 MARCH 1973 POKER 
,TA. Source: Swider and Narcisi [1974],
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During periods of large energy input through joule heating, it is 

expected that the neutral atmosphere should be heated by ion-neutral 

collisions. Hays et al. [1973] have shown that a heated volume element 

of neutral particles will rise with a vertical velocity which increases 

with altitude. This expansion will cause an upwelling of N2 molecules, 

thereby increasing the number density of Ng at higher altitudes. The 

number density of N0+ will be enhanced because more N2 is available to 

either react with 0+ to form N0+, or be ionized forming N*, which reacts 

with 0 forming N0+.

Another contributing factor to the enhancement of NO+ ions is the 

dependence of certain reaction rate coefficients on temperature. The 

rate coefficient for the reaction 0+ + N2 N0+ + N from Banks et al.

This in turn increases by a factor of 3.7. The result should be an

[1974] is

T'eff < 750

Teff > 750

-*/ 2 -*/ -♦where = T^ + 0.329 , and is the orthogonal E-field measured

in the neutral-wind frame. This is a simplified form assuming 

^  «  1 and B = 0.5 G (Polar region).

As an example, for an E field of 50 mV/m, and T = 900 K, Tn ’ eff
will be increased by a factor of 1.9 as compared to Tgff for no E field.
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enhancement in the number of N0+ ions. The ions are lost through 

dissociative recombination. The recombination-rate coefficient decreases 

with increasing electron temperature [Walls and Dunn, 19743; consequently, 

the net result is an increase in the number density of molecular ions.

The third point relative to the production of N0+ concerns the re

action 0+ + N2 N0+ + N, where Ng is vibrationally excited N2> The 

reaction rates for this reaction are enhanced as compared to 0*" + N2 

[Banks et al., 1974]. In the auroral oval, N2 becomes vibrationally 

excited through the processes

e (energetic electrons) + N2 N2 + e (21)

N + NO N* + 0 (22)

0(1D) + N2 -> N* + 0 (3P) . (23)

All of these processes could act jointly— i.e., (1) enhanced number 

density of Ng, (2) enhanced reaction rate coefficients due to elevated 

T^, and (3) enhanced reaction coefficients due to vibrational excitation 

of Ng. The first and second processes are mainly a result of joule heating, 

and the third process results from electron precipitation.
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Ill EXPERIMENTAL METHOD

A. Ineoherent-Scatter Theory

As mentioned earlier, the scattering of electromagnetic energy by 

free electrons in the ionospheric plasma provides a means for the remote 

probing of the ionosphere. The spectral density function of the back- 

scattered signal gives a measure of the ionospheric dynamics, thermal 

structure, and electron density.

Incoherent-scatter theory has been developed by many authors over 

the last 25 years. The initial theoretical work was performed by 

Gordon [1958], and it has been advanced by him and others such as 

Dougherty and Farley [1960], Salpeter [1961], Hagfors [1961], Fejer 

[1961], and Moorcroft [1963], The first experimental work was performed 

by Bowles [1958] when he verified Gordon’s theory that incoherent 

scatter was detectable with radar systems existing at that time. Gordon 

anticipated that the backscatter spectrum would be quite broad (on the 

order of MHz) due to the electron thermal motion. Bowles did observe 

echoes from ionospheric heights; however, i.he bandwidth was narrower 

than that predicted by Gordon.

It is now well known that within the ionospheric plasma the electron 

thermal motions are influenced by the ions. In a thermal plasma, den

sity fluctuations exist due to this ionic influence. The collective 

interaction between the electrons and ions within a Debye length pro

duces electrical forces that can be visualized as ion waves. These ion

17
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waves propagate through the ionosphere at acoustic velocities and are 

responsible for electron density fluctuations. The incident RF energy 

will be preferentially scattered by density fluctuations that have a

spacing of X , which, according to the Bragg scattering formula ise

X - Xe 2 sin (0/2)

where

X = Radar wavelength 

0 = Scattering angle.

For the backscatter case, this expression becomes simply X/2.

If the radar wavelength is sufficiently small (less than the dis

tance over which the electrons are influenced by ions— i.e., the Debye 

length), the electrons can react to the RF wave independently of the 

ions. In this case, the spectral shape is determined only by the thermal 

fluctuations of the electrons. The parameter oP = (4nD/^)^ is used to 

describe the relationship between X and the Debye length, D. When X is 

small compared to D as in the situation just described, then a »  1.

When o? «  1, the ionic interaction with electrons becomes important and 

the corresponding spectrum is narrowed and spectral width indicates the 

ion thermal speed. The width of the spectrum is proportional to the 

Doppler shift imparted by ions with average speed toward the radar of 

, where the spectral width is approximately
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This simplified picture is complicated when the effects of colli

sions, the presence of a magnetic field, unequal ion and electron tem

peratures, and a mixture of ions are included. All of these factors 

have an effect on the shape of the backscattered signal spectrum. In 

addition, since the Debye length varies with electron density and tempera

ture, the spectral shape may vary if a does not remain «  1. When these 

factors are taken into account, a complex expression for the frequency 

dependence of the incoherent backscatter signal can be derived. In 

general terms,

F . (oo/k)
S(C0) :

iD^/lOl2

where F^to/k) is the velocity distribution function for ions and D(co/k) 

is the plasma dispersion relation. The denominator is a minimum at the 

ion acoustic frequency, and S(a>) peaks at that frequency. The resulting 

spectral shape then has the characteristic ion line peaks (see Figure 6).

B. Previous Temperature and Composition Studies Using 

Incoherent-Scatter Radar

Measurements of ionospheric temperatures and composition have been 

performed with midlatitude incoherent-scatter radars by a number of 

authors [Evans and Cox, 1970; Wand, 1970; Waldteufel, 1971; Evans and 

Oliver, 1972; and Alcayde et al., 1974]. The techniques used to deter

mine the composition differ somewhat according to the capabilities of
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FREQUENCY —  kHz

FIGURE 6 INCOHERENT SCATTER SPECTRAL SHAPE. The shape o f the spectrum is a function o f the 
electron to  ion temperature ratio and o f the ion temperature to ion mass ratio. Also indicated 
is the Doppler effect (Af) produced by an ion velocity.
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the radar used. Two basic techniques, which will be described, were 

used at the Arecibo Observatory and with the Millstone and St. Santin 

systems.

The temperature and composition data are contained in the shape of

the spectrum from the ionic component of the backscattered signal.

However, T^, T ,̂ and ion composition cannot be uniquely determined,

since it is the ratios, T /T. (T ) and T./M. that determine the spectral ’ e 1 r 1 1  ^
shape We have two parameters containing three unknowns. Either assump

tions must be made, or an independent measurement of one of the three 

unknowns is required in order to determine the other two.

The experiments performed by Wand [1970] at Arecibo used a technique

that employed two independent measurements of N . The first determine
ation of Ng used the returned signal from the plasma line. The frequency

shift of the plasma line is proportional to Ng. The second determination

of used the power received from the ion line component. The received

power is proportional to both N and the temperature ratio. Therefore e
by comparing electron densities determined from the plasma frequency 

(plasma line observation) with densities determined from power measure

ments from the ion component, the temperature ratio can be determined.

The temperature ratio is related to composition by the function B (q); 

Tr(q) = B(q)Tr(l) [Wickwar, 1974] where q = [0+]/{[0+] + [N0+] + [0+]}, 

and T^(l) is the temperature ratio assuming entirely 0+. The function 

B(q) is shown in Figure 7.
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FIGURE 7 VALUES OF B(q) AS A FUNCTION OF q. Source: Wickwar [1974].
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The more serious limitations of this method are the following:

(1) varies less than 20% as a function of composition and consequently 

is insensitive to q. If one were to compute q as a function of altitude, 

the altitude where q = 0.5 could be in error as much as ± 25 km. (2)

The electron density measurements at Arecibo require a correction for

antenna near-field effects.

The alternative method for computing composition requires that 

either an initial estimate of the composition profile or an estimate of 

the T profile be made. If a model of the altitude dependence of q is 

obtained— from rocket data, for instance [Carru et al., 1967], then from 

the measured spectra, T^ and T^ profiles can be determined. The q pro

file is then varied ± 10% and two new profiles for T. and T are deter-i e
mined. Smooth curves are drawn through T^ and T points such that they 

connect to the upper and lower values where composition is known (130 km 

NO+ and 240 km 0+). Thus, a new q profile is determined.

The other method requiring an assumption relies on the hypothesis

that T. = T in the altitude region below about 250 km. A T profile i n  ° n
can be determined by measuring T^ where the composition must be 0+.

Evans uses the mean ion temperature taken at 229, 261, and 294 km as 

the exospheric temperature. The CIRA 1965 model atmosphere then provides 

the Tn profile (or, equivalently, the Ti profile). Finally, the compo

sition profile is determined from the function A(q) [Wickwar, 1974],

which relates the ion temperature based on entirely 0+ to the ion tem

perature based on q at a specific height:

T. (q) = A(q)Ti(l) .
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The function A(q) is shown in Figure 8.

There are certainly limitations to both of these assumption 

methods. The first method, assuming q profiles, constrains the answer 

to be close to the initial assumption. The second method requires the 

use of models because the assumption T^ = T^ is made from the spectral 

data.

Seasonal and diurnal variations in the relative abundance of 0+ ions 

have been measured at Arecibo, Millstone, and St. Santin. Generally 

the results indicate that the transition altitude (q = 0.5) is lower in 

the winter than in the summer, the largest difference being 60 km, 

measured at Arecibo. The transition altitude is a convenient parameter 

to discuss because temporal variations are easily displayed. It is also 

an indication of the variations of [Qj/tN^] which will be discussed later.

The diurnal variations show that the transition altitude decreases with 

decreasing solar zenith angle (SZA). The variation is on the order of 

10 to 15 km.

C. Technique Used at Chatanika

1. General

The determination of composition results from an analysis of 

ion temperature profiles or in some cases electron temperature profiles.

The entire process is indicated in the flowchart in Figure 9.

The starting point is the determination of the autocorrelation 

functions of the baekscattered signals. This is done with a digital 

autocorrelator in real time— the resulting ACFs are integrated (typically
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q

FIGURE 8 VALUES OF A(q), AND C(q). Source: Wickwar [1974].
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/ - s / > ----- YES

Same procedure
as NO. However,
only a lower
bound is
determined.

FLOWCHART DESCRIBING THE ALGORITHM  USED TO DETERMINE ION 
COMPOSITION. Two techniques are used depending on the magnitude o f 
joule heat input. (5 ergs/cm^-s would enhance the ion temperature about 
100 k—which is on the order of the largest error bars expected.)
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15 s) and are recorded on magnetic tape. A computer program (MITFIT) 

is used to perform a least-squares fit of these measured ACFs to a 

library of theoretical ACFs.

The theoretical autocorrelation functions are computed using 

the equation from Fejer [1961] for frequency dependence of the back- 

scattered signal about the transmitted frequency:

■ E  :
3=1

= N /N thj 1, the fractional concentration of the j io

*  3

\ = Radar wavelength 

k = Boltzmann's constant

3

^  t2\
I = ico I exp -icut - Id

0 \ 4 J
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e kT. ! _ ° 'D. = — -— — (in mks units, en is the permittivity 
3 e N . " of free space)

, the Debye length squared (in esu).

This equation is used to calculate the theoretical spectra.

In turn, the theoretical autocorrelation functions (ACFs) for the inco- 

herent-backscatter signal were obtained by Fourier transforming the 

spectra using the FFT routine by Singleton [1969].

The fitting process uses an initial value of the temperature 

ratio (T^) and the value of T^ from the zero crossing and first minimum 

of the ACF. The program then performs a least-squares fit for all of 

the autocorrelation coefficients until the following function is minimized:

n=l

where

& = Number of lags 

Lib ACF = Theoretical autocorrelation function 

X ACF = Measured autocorrelation function 

a2 = Variance for each lag of X ACF

The Lib ACFs are computed for 100% 0 ions. Then the raw density, N , 

is corrected for the Debye length and the electron to ion temperature
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ratio by an iterative process [Baron et al.f 1970]. The final values 

are related to the initial values by the following equations

T = (1 + a2)/ r r

(1 + a 2 + T )(1 + O'2)
N = ----------- ----------  n'e 2 e

a2 = (4jtD /A)2 e
where

T = T /T. r e l
D = Debye length e

The final values are found by iterating upon the equations for Q!2 and Ne
holding T constant.

At this point, the data concerning the ion velocity and hence the

perpendicular electric fields are examined. The joule heating, J • E,
->/

(where E is the electric field in the neutral wind frame) is computed.

2. Case 1 - No Joule Heat Input

If no significant joule heating occurred ( < 5 ergs/cm2-s) ,

which would cause a temperature difference T - T «  100 K, then thei n
assumption is made that the ions should be in thermal equilibrium with 

the neutrals. Next, a neutral temperature profile is chosen from the 

CIRA 1972 model ionosphere. The particular profile is chosen by using 

an ion temperature (equivalent to the neutral temperature), measured at 

an altitude where the assumption of 100% 0+ is most probably valid-- 

generally 250 km. Therefore, the CIRA 1972 profile that satisfies the
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measured temperature at 250 km is used. This profile is then compared 

to the Ti (100% 0+) profile.

At some point below 250 km the assumption of 100% 0+ ions will

fail. This is apparent in the comparison of T^(h) with T^Ch), since T^

begins to fall below the T^ curve. An example of this comparison is

shown in Figure 10. At low enough altitudes, T^ (100% 0 ) becomes

nearly half of the value of T , indicating 100% molecular ions. The n
correction required to equate T. with T indicates the relative abun- i n
dance of molecular as compared with atomic ions.

3. Case 2 - Joule Heat Input

During periods of joule heating the assumption that T^(h) = 

Tn(h) will not necessarily be valid. Consequently, we use an alternativ< 

procedure. We plot T^ versus time for F^ and F2 region altitudes and 

examine these data during the joule heating input period. If a compo- 

ation change occurred, the electron temperature will appear to decrease 

because of the assumption of 0' ions in the least-squares fitting code.

The rate at which electrons cool by collisions with neutrals

is

~  = - (3m /m ) N k V [T _ T ] .dt e n e en e n

This cooling rate should remain fairly constant unless the 

electron density is enhanced. Therefore, a change in apparent electron 

temperature without an accompanying enhancement in electron density
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TEMPERATURE —  K [0+]/[e‘]

FIGURE 10 ION TEMPERATURES FOR VARIOUS PERCENTAGES OF 
0 + IONS, AND RESULTING COMPOSITION PROFILE.
The curve, Tn, is the neutral temperature profile from CIRA 
1972, corresponding to  the 100% 0 + ion temperature at 
260 km.
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indicates that the composition has changed such that more molecular 

ions are present at the particular altitude. We then alter the compo

sition so that the apparent electron temperature remains constant 

throughout the joule heating period.

It is certainly possible that the electron temperature is 

enhanced during the period of joule heating, either from particle pre

cipitation or from ions when Ti > Te • However, by requiring that the 

temperature at least remain constant, a lower limit on the composition 

change is determined.

D. Examples of the Effect of Temperature Ratio and Composition 

on Spectra and Autocorrelation Functions

Figures 11(a) through 13(a) give examples of spectra. (The spectra 

are assumed to be symmetrical; consequently only half of each spectrum 

is shown.) Figures 11(b) through 13(b) give corresponding examples of 

ACFs for the frequency of the Chatanika radar (1290 MHz) and for a 10-ps 

interval between ACF samples. These figures are taken from Wickwar [1974].

Figure 11 shows the effect of varying T^, or, alternatively, of

varying the electron temperature, T . In the ACF, the relative minima e
and maxima are seen to be strong functions of T^. The correlation time 

(i.e., time of the first zero crossing) is seen to decrease with increas

ing electron temperature. Figure 12 shows the effect of varying T^ and 

Tg such that T^ is constant. It is seen that the relative minima and 

maxima are constant in magnitude, although they occur at different times. 

The ACF is further seen to move in and out along the time axis according
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FIGURE 11 Tr VARIATION OF THE POWER SPECTRA AND AUTOCORRELATION FUNCTIONS
(ACFs). The curves show variations in T r from 0.5 to  4.0 in steps of 0.5 for T j = 800°K, 

«  1( and 0 + composition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

FIGURE 12 THE Tj VARIATIO N  OF THE POWER SPECTRA 
AND ACFs. These curves show eight values o f 
Tj (200, 400, 600, 800, 1200, 1600, 2400, and 
3200 K) fo r T r = 1.0, a2 «  1, and De
composition.
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FREQUENCY —  kHz

TIME —  fjs

FIGURE 13 COMPOSITION VARIATION  OF THE POWER SPECTRA 
AND ACFs. These curves show variations in composition 
from entirely mass 31 ions to entirely 0 + ions (from 
q = 0.0 to  q = 1.0 in steps o f 0.2) fo r Tj = 500,
T r = 2.0, and oP- «  1. Source: Wickwar [1974].
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to 1/7 T\ for a fixed T̂ ,. Figure 13 shows the effect of q. In going 

from q = 1.0 to q = 0.0 (from 0+ to mass 31.5 ions), the ACF appears to 

have contracted as though the ion temperature had nearly doubled.

This dependence of the ACF zero crossing on the parameters q and 

T_̂ enables us to estimate the composition profiles, if is known or 

can be estimated. Generally, is estimated from neutral atmospheric 

models because the ions and neutrals are at the same temperature in the 

altitude range of this study.

E. The Experiment

The geomagnetic coordinates of the Chatanika incoherent-scatter 

radar are given in Table 1, and its parameters are given in Table 2.

Table 1

GEOMAGNETIC COORDINATES OF THE CHATANIKA INCOHERENT-SCATTER RADAR

Geographic
Coordinates

Dipole Geomagnetic 
Coordinates Magnetic Field

Latitude Longitude Latitude Longitude Dip Angle Declination

65.103°N 147.451°W 64.75°N 105.0°W 76.5° 29.0°

The geometrical relationship between Chatanika and the auroral oval 

for moderate geomagnetic activity is shown in Figure 14. The oval is 

usually far north of Chatanika at local noon and is often overhead near 

midnight. The circle (arbitrarily located at 1500 UT) indicates the 

E-region coverage typical for these experiments.
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FIGURE 14 CHATAN IKA LOCATION (65°N) AND FELDSTEIN'S 1967 
AURORAL OVAL. Source: Feldstein and Starkov [1967].
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Table 2

PARAMETERS OF THE CHATANIKA INCOHERENT-SCATTER RADAR

Operating frequency 1290 MHz

Transmitted peak power 3 to 4 MW

Pulsewidths 60 ps, 160 ps, 320 ps

Effective antenna aperture 180 m2

Antenna on-axis gain 47.1 dB

Antenna 1/2-power-full-width 
beamwidth 0.6°

Transmit polarization Right circular

Receive polarization Left circular

System noise temperature 110 K

A/D converter sample spacing 10 ps

On-line computer system XDS 930

For two of the 24-hour experiments, a pair of 160-ps transmitted 

pulses were used. The received signal following each backscattered 

pulse was sampled, and autocorrelation functions were measured by 

taking lagged products of the appropriate samples. This sampling is 

repeated 16 times, providing 16 range gates typically placed between 

110 and 300 km with a spacing of 12 km. Electron densities are measured 

with a 67-ps pulse (10 km). The density samples are taken at 10-ps 

intervals between about 80 km to over 800 km, and are subintegrated 

three times. The two other 24-hour experiments use a 320-ps pulse for 

the spectral data. The experimental details are summarized in Table 3.
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Table 3 

EXPERIMENT PARAMETERS

Date Pulse Sequence 
(ds)

Antenna Positions 
(degrees)

Az El

13 Aug 1975 67 + 320 Scan 65

15 Oct 1975 67 + 320 209* 76.5*

89 70

150 70

18 Feb 1976 160 + 160 029 65

268t 65

15lf 65

13 May 1976 160 + 160 029 65

260 65

151 65

Data were collected on the designated international world day < 

each month beginning in August 1975 and continuing until May 1976. 

radar was operated for 24-hour periods, providing electron density, 

ion velocity, electron and ion temperatures, and ionic composition, 

antenna was cycled through three antenna positions, remaining in eac 

position for 5 minutes. The three antenna positions were chosen so 

the perpendicular electric field could be resolved from the line-of- 

sight ion velocity.

This position is parallel to B.

This position is in the L-shell.

The

that
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The two experiments using the long pulses for spectral data are 

limited in that the 48-km pulse cannot be used for E-region temperatures 

or composition analysis because the pulse length is large compared to 

the scale height. Analysis was not attempted using range gates below 

160 km.

The other experiments, which use the shorter 160-ps (24 km) pulses, 

suffer from a different problem. In order to maintain the same range 

capability, the same pulse repetition frequency is used; consequently, 

the shorter pulses contain less power in a given time interval. As a 

result, the signal-to-noise ratio (SNR) is poor, especially at altitudes 

above 200 km. During the night portion of these experiments it was 

often impossible to obtain reliable temperatures.

F. Derivation of Other Parameters

Other parameters that are derived from radar measurements include 

, Ej_, joule heat input, and particle energy deposition. The method 

used to resolve the ion velocity from the line-of-sight velocities and 

E^ are documented in Rino [1972]. The joule heating computations are 

documented in Brekke and Rino [1978], and the particle energy depo

sition calculations are found in Wickwar et al. [1975].

Briefly, the resolved ion velocities are obtained from a sequence

of measurements made with the antenna pointed in three different

directions. The most common case uses three different azimuths at one
->

elevation angle. The vector ion velocity (V^) is then determined from 

the three line-of-sight velocity measurements.
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The ion equation of motion provides the relation between the ion 

velocity and the electric field:

= Ion velocity

B = Magnetic field intensity

M = Neutral mass n
V. = Ion-neutral collision frequency 

U = Neutral velocity.

because the relatively long integration times of 5 minutes allow steady-

state conditions (dV/dt = 0) to be assumed, and because at altitudes

above 150 km, V. is small.’ in

Joule heat input is computed from the relation

where

M = Ion mass i

q = Electron charge

E = Electric Field

This equation reduces to

,2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

The E-region neutral wind is given by

rate of momentum transfer per unit volume)

N = Neutral number density from 1000 K atmosphere in 

Banks and Kockarts [1973].

The particle energy deposition is found from the equilibrium 

relation

where

°eff(h) = Height-dependent effective recombination coefficient 

[Wickwar et al., 1975]

Ng = Measured electron density

The particle energy is then computed from the production rate Q, 

assuming 35 ev are liberated per ion pair produced.

CE. + V X B)v
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IV DATA

The radar data were reduced using the techniques and computer pro

grams described in the previous section. Before presenting the data 

from the continuous 24-hour periods, we first show a comparison between 

radar-measured composition profiles and a rocket-measured profile taken 

at the same time.

A. Verification of Technique— University of Texas at Dallas

Rocket Comparison

On 28 February 1976, a Nike Tomahawk rocket carrying a University of 

Texas at Dallas (UTD) payload was launched from Poker Flat. The payload 

instrumentation included probes for measuring ion and electron densities 

and a positive-ion mass spectrometer. The radar was operated before, 

during, and after the flight in order to obtain background as well as 

simultaneous data. The data that will be compared directly are the ion 

composition profiles.

This night was moderately active, as indicated by the College,

Alaska magnetometer traces in Figure 15. The launch occurred at 1213 UT 

and the radar was operated from about 1000 UT to 1300 UT. The measured 

E-fields are shown in Figure 16. The north-south component was directed 

to the south and was also relatively small ( < 20 mV/m). The resulting 

height-integrated joule heating is plotted in Figure 17. The heat 

input is 3 ergs/cm2-s or less, prior to and during the flight. This 

input is small, and consequently the ion temperatures were not signifi

cantly enhanced (< 100 K). The energy deposition from precipitation is

43
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FIGURE 15 MAGNETOGRAM FOR 28 FEBRUARY 1976
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FIGURE 16 AVERAGE ELECTRIC FIELD FOR 28 FEBRUARY 1976. Ex is positive 
to the East; Ey is positive to the North.
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' TIME, UT

FIGURE 17 HEIGHT-INTEGRATED JOULE HEATING FOR 28 FEBRUARY 1976

a
<  TIME, UT

FIGURE 18 PARTICLE ENERGY INPUT FOR 28 FEBRUARY 1976
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shown in Figure 18 and is on the order of 5 ergs/cm2-s. This small 

input represents an average over a 5 minute period.

The radar beam was pointed along the rocket up-leg trajectory from

1215 to 1219 UT. The electron density profile measured during that

period agrees quite well with the profile measured by the rocket. The

ion temperature data were integrated during those five minutes, and are

indicated in Figure 19. Six ion temperature profiles are shown, each

corresponding to a different assumed [0+]/N ratio. Also shown is thee
neutral temperature profile from the CIRA 1972 model for an exospheric 

temperature of 900 K. This exospheric temperature was chosen based on 

ion temperatures at altitudes above 210 km, where 0+ ions should dominate 

the composition.

The composition in the transition region is then indicated by the 

intersection of Tn with the parameterized T profiles. The resulting 

composition profile is shown in Figure 20. Also shown is the compo

sition profile resulting if a different model atmosphere is used [Banks 

and Kockarts, 1973], and the profile inferred from the rocket data.

All three curves are in good agreement, indicating that the technique 

is not particularly sensitive to the assumed model atmosphere. The 

CIRA 1972 model was used for the remainder of the analysis.

B„ 24-Hour Experiments

For each of the 24-hour periods the electron and ion temperatures 

were determined. The temperatures presented here are from range gates 

at altitudes where 0+ ions usually dominate (generally above 220 km).
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FIGURE 19 ION TEMPERATURES PARAMETERIZED BY COMPOSITION FOR 28 FEBRUARY 1976
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FIGURE 20 COMPARISON OF COMPOSITION PROFILES FROM ROCKET DATA AND 
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The perpendicular electric field is also computed for the entire period.

Where the electric field is significant (>10 mV/m) the joule heating is

computed. This indicates periods when the ion temperatures are expected

to be enhanced, and consequently the assumption T. = T will not be used.i n
The energy deposition from precipitating auroral electrons is also com

puted. Finally, the ion composition is given in terms of contours of q,

where q = [0 ]/N , generally between 160-220 km. Error bars are showne
for temperature and composition data and are discussed in the Appendix.

1. 13 May 1976

The quietest 24-hour period analyzed was 13 May 1976. The 

magnetometer traces for the period are indicated in Figure 21. As a 

result of the quiet conditions, the SNR was low whenever the SZA 

exceeded about 103°. This results in rather large error bars for most 

of the derived parameters. Data from 0800 to about 1400 UT are conse

quently ignored.

The perpendicular electric fields are shown in Figure 22. As 

can be seen, both the north-south and the east-west electric fields are 

small; the resulting joule heating was computed and found to be less 

than the threshold value of 5 ergs/cm^-s.

During the early morning there was a small amount of particle 

precipitation. A plot of the resulting energy deposition is shown in 

Figure 23. The height-integrated energy input was less than 3 ergs/cm2-s. 

The smooth curve is the decay and growth of the ionization in the E layer 

produced by the solar extreme ultraviolet (EUV) radiation. The apparent
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FIGURE 21 MAGNETOGRAM FOR 13 MAY 1976
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FIGURE 22 AVERAGE ELECTRIC FIELD FOR 13 M AY 1976. Ex is positive to the 
East; Ey is positive to  the North.
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FIGURE 23 PARTICLE ENERGY DEPOSITION FOR 13 MAY 1976
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periodic structure is an artifact of cycling through three antenna 

positions, and therefore reflects spatial inhomogeneities.

The F-region temperatures are indicated in Figure 24. The 

24-hour runs begin at 0000 UT, which is 1400 local time. Consequently 

the F region is sunlit and the temperatures should be maximum near 0000 

UT. The minimum should occur near 1000 UT, when the SZA is maximum.

The electron temperatures do tend to decrease after 0600 UT; however, 

the SNR is insufficient to determine reliable temperatures between 0800 

and 1400 UT. The electron temperatures vary between 2200 K and 1000 K 

from 0000 UT to 1400 UT. The variation in the ion temperatures is much 

less, and differs from model predictions. The maximum temperature would 

be expected near 0200 UT, corresponding to minimum SZA. This is pre

dicted by the Jacchia 1971 Model and is discussed in Section V.

The composition contours are shown in Figure 25 They indi

cate that the transition altitude did not change appreciably during the 

24 hours. The only noticeable change is in the thickness of the transi

tion region. The thickness measured from q = 0.4 to q = 0.8 is about 

35 km in the afternoon (0000 UT) as compared to 20 km at 1900 UT.

2. 15 October 1975

15 October 1975 was somewhat more active than the 13 May 

example; however, the activity was only moderate. In addition, since 

it is close to the autumnal equinox, diurnal variations are more apparent.

The degree of activity can be seen in the College, Alaska magnetometer 

traces shown in Figure 26. The only significant feature occurs between 

1100 and 1200 UT.
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FIGURE 24 ELECTRON AND ION TEMPERATURE AT 232 km FOR 13 MAY 1976
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FIGURE 25 ION COMPOSITION CONTOURS FOR 13 MAY 1976-CO NTOURS OF q(q = [0 +] /N e)
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FIGURE 26 MAGNETOGRAM FOR 15 OCTOBER 1975
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The electric fields were again small throughout most of the 

24-hour period. (The data are shown in Figure 27.) During the night 

portion of the run, 0500 to 1000 UT, the SNR was small, causing the 

electric field data to be noisy. However, it can be seen that no signi

ficant E-fields existed after 0700 UT; consequently, no significant 

joule heating occurred.

There was, however, particle precipitation beginning near 

midnight. The energy deposition due to this precipitation is plotted 

in Figure 28. The peak deposition occurred at 1130 UT at about 20 ergs/ 
2cm -s. This was responsible for the elevated electron temperature 

during that period.

Figure 29 indicates the electron and ion temperatures at 218 

km. The temperature variations are much greater on this day than on 13 

May 1976. This is primarily due to the much greater variation in SZA.

At night, when the SZA is > 104°, the electron temperature at 218 km is 

about 600 K while after sunrise the temperature increases to almost 

1600 K at that altitude. The ion temperature also shows some increase 

in exospheric temperature with changing SZA. In addition, around 1200 

UT the effect of precipitation can be seen as the electron temperature 

increases nearly 400 K.

The composition contours for 15 October 1975 are shown in 

Figure 30. The contours indicate that as the SZA decreases, the tran

sition altitude also decreases. Nighttime transition altitudes are 

between 180 and 190 Inn; during the day the altitude is between 170 and 

180 km.
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FIGURE 27 AVERAGE ELECTRIC FIELD FOR 15 OCTOBER 1975. Ex is positive to  the East;
Ey is positive to  the North.
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FIGURE 28 PARTICLE ENERGY INPUT FOR 15 OCTOBER 1975
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FIGURE 29 ELECTRON AND ION TEMPERATURE AT 218 km FOR 15 OCTOBER 1975
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FIGURE 30 ION COMPOSITION CONTOURS FOR 15 OCTOBER 1975
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3. 13 August 1975

13 August 1975 was characterized by a moderate magnetic dis

turbance. The magnetogram is displayed in Figure 31. The period between 

0800 to 1600 UT is especially disturbed.

The electric field was computed for the 24-hour period and it 

shows the characteristic daily variation pattern of auroral zone electric 

fields. The north-south field is plotted in Figure 32. In the evening 

prior to local midnight, the field is directed to the north. Near mid

night the field reverses and is directed south during the early morning.

The field becomes quite large at 1400 UT— nearly 60 mV/m. The resulting 

joule heating is plotted in Figure 33. At 1400 UT the energy input is 

about 30 ergs/cm^-s which is substantial. This is the largest joule 

heating event analyzed in this limited data base, and, as will be seen, 

its effects are considerable.

The electron and ion temperatures at 276 km are shown in 

Figure 34. At the start of the run, 0000 UT, the ion temperature is 

fairly constant with a value of 900 K. There is little change in the 

temperature until about 1000 UT, when the joule effect begins. There 

is an obvious enhancement in ion temperature at 1400 UT— the peak of 

the joule input. The temperature remains elevated even after the joule 

heat source terminates at 1500 UT, being about 100 K higher than the 

earlier temperatures. The temperature gradually decreases and it returns 

to initial conditions by 2300 UT.

The electron temperature shows the effect of the changing SZA.

Initially, the temperature is about 2200 K and it gradually decreases
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FIGURE 31 MAGNETOGRAM FOR 13 AUGUST 1975
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FIGURE 32 AVERAGE ELECTRIC FIELD FOR 13 AUGUST 1975. The large Ex field 
(~ 5 5  m V/m) at 1400 UT produced substantial joule heating.
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FIGURE 33 HEIGHT-INTEGRATED JOULE HEATING FOR 13 AUGUST 1975
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FIGURE 34 ELECTRON AND ION TEMPERATURES AT 277 km FOR 13 AUGUST 1975
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with increasing SZA (from 0530 to 0800 UT). During the large joule 

heating event the electron temperature at this altitude appears to dip. 

However, these temperatures were computed assuming all 0+ ions. If 

heavier ions do in fact exist at 276 km during the heating period, the 

computed temperature will be too low. Therefore, the apparent dip in 

T^ is an indication that the composition was altered as high as 276 km.

The height-integrated particle energy input is indicated in 

Figure 35. The daytime E region is almost always present. However, 

particle input is apparent between 0900 and 1600 UT. The energy input

between about 1200 and 1500 UT was relatively large, varying between 10
2 "* and 20 ergs/cm -s. The anticorrelation of particle input and large E-

fields is apparent at 1400 UT (when the E-field is large the precipi

tation subsides).

The conposition contours are shown in Figure 36. The transi

tion altitude for the first 12 hours occurs as expected (between 180 to 

190 km). There is an obvious increase at 1400 UT. The transition alti

tude increases to 240 km and remains elevated for a number of hours.

This increase of 50 km is a lower bound as described in Section III.

4. 18 February 1976

The final 24-hour period to be analyzed is by far the most 

active. The magnetometer data, which require "storm magnetograms," are 

shown in Figure 37. There are large negative bays from 0800 to 1600 UT.
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TIME, UT

FIGURE 36 ION COMPOSITION CONTOURS FOR 13 AUGUST 1975. A t a fixed altitude 
the ratio o f 0 + to total ionization decreased markedly during the joule heating 
event and increased slowly thereafter. The transition altitude computed during 
the event is a lower bound w ith a 5 km uncertainty.
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FIGURE 37 MAGNETOGRAM FOR 18 FEBRUARY 1976

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

The E-field data are shown in the next figure (Figure 38.)

The daily variation patterns are characteristic of auroral zone con

ditions— directed north prior to midnight, and south after midnight.

The fields were occasionally large, about 50 mV/m, and the resulting 

joule heating was significant. A plot of the joule heating is shown in 

Figure 39. The joule input is often present with occasional peaks such 

as at 0830 and 0930 UT. The input is near zero only between 1000 UT and 

1200 UT and after 1430 UT.

Energy deposition from particle precipitation is also signifi

cant. A plot of the height-integrated input is shown in Figure 40.

From 0800 to 1500 UT there is nearly constant energy input of about 5
2 2 ergs/cm -s with occasional peaks at 20 ergs/cm -s corresponding to bright

arcs.

The election and ion temperatures, shown in Figure 41 are com

puted from the range gate corresponding to an altitude of 220 km. At 

the start of the run, before any auroral activity, the electron tempera

ture is about 1500 K and decreasing (due to increasing SZA). Just after 

0800 UT the electron temperature, responding to the energy input from 

precipitating particles, is enhanced— in fact temperatures similar to 

daytime conditions are reached. The temperature remains elevated until 

after 1500 UT, as can be seen by comparison with a quiet nighttime.

The ion temperatures also indicate the existence of energy 

input. At night, when the temperature is usually lower than during sun

lit periods, T^ is elevated at least 100 K above the daytime temperature.
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FIGURE 38 AVERAGE ELECTRIC FIELD FOR 18 FEBRUARY 1976. Ex is positive to  
the East; Ey is positive to the North.
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FIGURE 40 PARTICLE ENERGY INPUT FOR 18 FEBRUARY 1976
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TEMPERATURE —  K

FIGURE 41 ELECTRON AND ION TEMPERATURES AT  218 km FOR 18 FEBRUARY 1976
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The composition contours are shown in Figure 42. Before and 

after the activity the transition altitude is between 180 to 190 km. 

During the night the joule and particle energy inputs modify the compo

sition and the transition altitude is raised to 200 km. It is not 

possible to determine composition during much of the night because the 

F-region electron densities were too low. Consequently, the transition 

region data suffered from small SNR. It is apparent, however, that the 

composition does change such that the transition altitude is raised 

during the periods of enhanced ion temperatures.
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FIGURE 42 ION COMPOSITION CONTOURS FOR 18 FEBRUARY 1976
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V DISCUSSION

The 24-hour periods presented in the last section have been examined

both for quiet-time variations of T , T., and q, and for the effects of e 1

particle precipitation and joule heating on those parameters. In order 

to compare the theory with the experiment, published theoretical results 

have been found where the conditions were similar to the experimental 

data.

A . Temperature Results

1. Quiet Periods

The daily variations of the electron and ion temperatures are 

determined from the quiet 24-hour periods— 15 October 1975, 13 May 1976, 

and 18 February 1976. The October data are near the winter equinox, and 

consequently, the variations due to changing solar zenith angle are most 

pronounced. The May data represent near-solstice conditions and, as a 

result, little variation due to SZA is noticed.

Figure 43 shows representative daytime profiles of electron 

and ion temperatures in the altitude range of 160 to 275 km for the 

October day. F-region electron temperatures are greater than 2000 K 

and the ion temperatures are near 800 K.

79
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TEMPERATURE —  K

FIGURE 43 NOM INAL WINTER EQUINOX DAY (October 1975) ELECTRON AND 
ION TEMPERATURE PROFILES. A t F-region heights the electron 
temperature is about twice the ion temperature.
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Figure 44 shows representative nighttime temperature profiles
2measured at times when there was little (2 to 5 ergs/cm -s) particle 

precipitation. The ion temperature profiles are similar to model Tn
profiles.

The total electron temperature diurnal variation at 275 km is 

about 1000 K. This is consistent with diurnal variations measured at 

midlatitudes during sunspot minimum [Evans, 1967]. The ion temperature 

variation is much less— about 100 K— which is also consistent with mid

latitude measurements. The CIRA. 1972 model predicts exospheric tempera

ture diurnal variations on the order of 100 K.

The second example of quiet conditions is the 13 May 1976 

data. The diurnal variations due to changing solar zenith angle are 

much smaller because the SZA never exceeds 96° near solstice; therefore 

the ionosphere is continuously illuminated. Electron and ion temperature 

profiles for various SZAs are shown in Figure 45. There is no notice

able variation in the ion and electron temperature profiles for solar 

zenith angles of 55° or 75°.

A comparison of these observations with theoretical temperature

profiles computed by Dalgarno and Walker [1967] shows general agreement.

The Tt profiles are in good agreement; however, the T profiles agree

in slope only. The theoretical model has generally higher temperatures.

It is a difficult comparison because it is impossible to find measured

electron density profiles that agree exactly with the model profiles

used by Dalgarno. Agreement in T is best when the model electron dene
sity is lower than the measured one by about a factor of 2. The model 

Tg profiles are indicated in Figure 45.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

TEMPERATURE —  K

FIGURE 44 NOMINAL WINTER EQUINOX NIGHT (October 1975) ELECTRON AND 
ION TEMPERATURE PROFILES. The electron temperature exceeds the 
ion temperature indicating that some precipitation occurs even during 
"qu ie t”  periods.
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FIGURE 45 NOMINAL SUMMER SOLSTICE (May 1976) ELECTRON AND ION TEMPERATURE 
PROFILES. Also indicated are model temperature profiles from  Dalgarno and Walker 
[1967],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

The electron and ion temperature profiles for 18 February 1976

were computed from the daytime quiet portion of the run. They are shown

in Figure 46. These winter temperature profiles have the same general

appearance as the others. The T profile shows somewhat lower tempera- e
tures in the F region than do the May data. The T^ profiles are quite 

similar to the May and October data.

2. Active Periods

The energy inputs by particle precipitation and joule heating 

cause substantial changes in the electron and ion temperatures. The 

variations in temperature that were discussed previously can be over

shadowed by enhancements due to auroral inputs. Rees et al. [1971] and 

others have studied the effects of a precipitating flux of auroral elec

trons on electron temperature. Their approach has been to solve the 

electron energy balance equation allowing for local heat sources and heat 

sinks and heat conduction, and assuming a reverse current equal to the 

primary electron flux. The calculation was performed using a model aurora.

Their model was that of an intense aurora, with a total energy deposition 
2rate of 70 ergs/cm -s.

A comparison between these theoretical results and electron 

temperatures computed from radar data is given in Figure 47. The experi

mental temperatures are remarkably similar to the model of Rees et al., 

[1971] below 200 km altitude.
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FIGURE 46 NOM INAL WINTER DAY (February 1976) ELECTRON AND ION TEMPERATURE 
PROFILES. The electron and ion temperatures are nearly equal below 140 km.
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FIGURE 47 TEMPERATURE PROFILE DURING PRECIPITATION AND JOULE HEATING. 
Also includes the theoretical predictions of Te(h).
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On the other hand, the Rees model assumes topside heating flux

and consequently predicts that dT^/dh > 0 at all altitudes. As can be

seen in the figure, the measured profile falls off more rapidly than in

the model. Above 210 km the model T profile does not agree with the

measurements because dT /dh < 0. Three factors could account for this: e

® The heating rate would be expected to be different 

if the density profiles were different. The elec

tron cooling rate is also affected because it is 

proportional to Ng.

® The data are taken from one antenna position—  

azimuth 29° and elevation 65°; consequently the 

radar beam intersects magnetic field lines and 

the precipitation could vary with latitude.

® The Rees model does include the effects of heat 

flux and the conduction effects of field-aligned 

current. These effects are not apparent, however, 

at altitudes below about 250 km— i.e., the model 

profile with and without the heat flux and con

duction appear identical below 250 km.

Another example of heating by particle precipitation is shown 

in Figure 48. This temperature profile is taken from the 28 February 

1976 University of Texas rocket comparison. The precipitation was much 

less intense than in the previous example. The height-integrated energy
2deposition was on the order of 5 ergs/cm -s. The electron temperatures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 500 1000 1500

TEMPERATURE —  K

FIGURE 48 TEMPERATURE PROFILES DURING DIFFUSE PRECIPITATION 
ON 28 FEBRUARY 1976. Electron temperatures exceed the ion 
temperature at all altitudes. Height-integrated energy input was 
5 ergs/cm^-s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



are only somewhat enhanced; however, they are greater than the ion tem

perature at all altitudes. At 200 km the temperature is about 1000 K as 

compared to 2000 K for the more active night.

B. Relation Between and Joule Heating

The energy input from auroral electric fields through joule heating 

is often the same order of magnitude as that from secondary electrons. 

Substantial enhancement of ion temperatures was seen in the 18 February 

1976 and the 13 August 1975 data. The most dramatic event occurred on 

13 August when the electric field reached 55 mV/m. The joule heating 

associated with that field was between 25 and 30 ergs/cm^-s. The ion 

temperature for that period was enhanced by nearly a factor of 2.

Electron and ion temperature profiles computed at the peak of the 

energy input are shown in Figure 49. The ion temperature is greater 

than the electron temperature as high as 300 km. The temperatures are 

probably underestimated since the technique for computing the ion compo

sition change during periods of joule heating input places a lower bound 

on the effect. If the electrons were heated during this period, the com

position change was underestimated. Therefore, the ion temperature was 

probably even more enhanced than indicated.
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FIGURE 49 TEMPERATURE PROFILE DURING LARGE JOULE HEATING EVENT. The ion
temperature exceeds the electron temperature below 300 km. The joule energy 
input was approximately 30 ergs/cm2-s.
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C . Exospheric Temperature Variations

The exospheric temperature (T^) is inferred from the measured ion 

temperature at F-region altitudes. This is done only when no appreciable 

joule heating is occurring. There are two major sources of T^ variation. 

There is a diurnal variation due to solar EUV heating and there is varia

tion due to the energy input from joule and particle heating which 

occurred at some time prior to the measurement.

The diurnal variation from solar EUV heating is a gradual change 

over the 24-hour period. This has been discussed earlier in Section V-A. 

Briefly the variation near equinox is about 100 K. In the summer months 

when the SZA is less than 96° the variation is hardly noticeable— i.e., 

less than the error bars (20 to 100 K for the 160-(is pulse). The deduced 

Tw generally lies between 900 and 1000 K.

The variation due to auroral inputs can be significant. The joule 

heating event on 13 August 1975 is a good example. The inferred exo

spheric temperatures show an increase of 150 K following the heating 

event. The temperature remains elevated for 4 to 5 hours gradually de

creasing to the expected level. Figure 50 shows this temperature increase. 

Also shown is the ion temperature and the joule heating.

A similar increase in temperature was observed in the 13 May data, 

however, when there was no local auroral activity occurring. Since there 

was very little activity, the SNR was insufficient to compute temperatures 

between 0700 UT and 1500 UT. The temperature at 1500, however, was about 

150 K higher than at 0700 UT. This increase cannot be attributed to EUV 

heating because the SZA at 0700 is nearly the same as at 1500 UT, and is
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FIGURE 50 F-REGION ION TEMPERATURE, T jf HEIGHT-INTEGRATED JOULE INPUT, 
7 • E, AND EXOSPHERIC TEMPERATURE, Too, AT C H ATAN IKA ON 13 
AUGUST 1975. The first tw o variables are shown in greater detail than in 
the previous figure. The exospheric temperature is derived during those 
periods with little  or no joule heating. There is a 150-K increase in the 
exospheric temperature during the night, followed by a slow decay during 
the day. The ion temperatures were taken fo r 277 km.
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> 105°. The EUV-produced maximum and minimum temperatures should occur 

at 0000 and 1200 UT, respectively (1400 and 0200 local time), as pre

dicted by models— i.e., CIRA 1972.

Since there was no local heating occurring, the temperature in

crease must have been due to transport. Auroral activity to the north 

of Chatanika could be responsible for elevated neutral temperatures.

The meridional neutral wind in the post-midnight sector should be direc

ted equatorward [Nagy et al., 1974; Wickwar and Meriwether, 1978]. The 

warm neutral atmosphere can therefore be transported from active regions 

to lower latitudes.

D. Composition Results

1. Quiet Periods

The diurnal variation in the transition altitude is also deter

mined from the undisturbed days— 15 October and 13 May. The October day 

shows the most pronounced variation because the SZA changes significantly, 

while the May variations are quite small.

The October data indicate that the transition altitude increases 

at night. At night the altitude is greater than 190 km— generally between 

190 and 200 km. During the day the transition altitude drops, and near 

SZA minimum it is about 175 km.

In May the SZA is never greater than 96° and not less than 45°. 

The transition altitude is between 190 and 200 km even when the SZA is at 

a minimum. The variation is consequently small— about 10 km which is on 

the order of the uncertainty.
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These variations are in general agreement with other experi

mental results. The comparison will be made with the rocket data compiled 

by Oliver [1975]. His data represent rocket flights during quiet periods 

and from many locations— generally midlatitude. The May and October data 

indicate a decrease in transition height of 20 km from summer to winter. 

Oliver's rocket data also indicate such a variation. However, with so 

few data, only this general comparison can be made.

The diurnal variations are also in agreement with Oliver's 

results. Again, only a general comparison can be made because only the 

October data are appropriate. The radar data indicate a variation of 

about 15 km, the altitude being higher at night. The rocket data show 

a variation, however, of 30 to 40 km, again with the altitude higher at 

night.

This set of data in insufficient to infer a seasonal variation 

with any reliability; however, we can compare our results with other 

works. Oliver [1975] measured a summer-vanter variation of about 20 km 

in the transition altitude, with the lowest values in the winter. He 

has attributed this to the effect of a higher [0]/[N2] ratio in winter 

(the solar zenith angle effects have been removed).

A comparison of the transition altitudes observed in May 1976 

and October 1975 agree with the seasonal trend observed by Oliver. The 

transition altitudes were compared at times where the SZA was the same.

For example, for the SZA equal to 72 the May data indicate that the 

transition altitude was about 193 km, whereas in October it was 175 km.
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This would support the idea of a change in the [0]/[N2] ratio even at 

higher latitudes [Roble, 1977],

2. Active Periods

Variations in ion composition have also been observed that are 

not associated with seasonal effects or solar EUV heating. During 

periods of large energy input the composition can be significantly modi

fied. The active periods of both 13 August and 18 February show the 

effects of auroral energy inputs on composition.

The 13 August data shown in Section IV indicate a substantial

increase in the transition altitude during a joule heating event. The
oenergy input at the time was large— 30 ergs/cm -s. The transition 

altitude increased from 180 km to 240 km. Just prior to the large joule 

input, there were moderate levels of particle inputs— about 20 ergs/cm2-s. 

However, as the E-field became large, the precipitation subsided. The 

composition change was not obvious until after 1300 UT which is during 

the precipitation decrease and the joule heat increase. The transition 

altitude was not affected by precipitation alone.

The F-region ion temperature exceeded 2200 K at 335 km and was 

greater than the electron temperature at altitudes below 300 km. As a 

result, various factors contribute to modify the composition. The re

action rate (O' + Ng) is enhanced, consequently, the electron density 

is reduced. The decay of ionization in the F region during the event is 

shown in Figure 51. The result is a dramatic increase in transition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

ELECTRON DENSITY —  cm '3

FIGURE 51 ELECTRON DENSITY PROFILES DURING 
THE JOULE HEATING EVENT ON 13 
AUGUST 1975. The F-region density 
decreases during the event and then 
recovers as the heating subsides.
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altitude, i.e., the function q is strongly dependent on electron den

sity. Enhanced [Ng] resulting from the heating is also a contributing 

factor to the composition change, however, the effect would be small 

since the neutral temperature enhancement was only 150 K. ( [N̂ ] at 

300 km would increase by less than a factor of 2.)

E . Numerical Modeling of Transition Altitude Variation

The effects of all of the factors described in this section are 

evaluated by modeling the composition profiles under various conditions. 

The conditions include quiet day and night parameters in order to estab

lish background composition profiles. The effects of precipitation, 

joule heating, and seasonal variation of [N2] can be examined. These 

factors can be examined with the aid of an expression derived using the 

following simplified system of reactions and continuity equations:

Vnfl

1
0* + e2 0 + 0

a2
N0+ + e

2  N0+ + N

a .3
N + N
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= q(0+) - Y1L02][0+] - Y2[N21[0+] = 0

Y2 CN2 ][0+ ] +y 3 [n ;][0] - a 2 [N0+

SC° 2 ] + + + 
_ = q (0J) + Yi[02][°+] - V ° 2 ]

3K J *  *  a.-5f-=q«p -Y3WpB] -«3WpKe

where q(x) is the production rate of species x. If 

assumed, the number densities of the various ions a

A Y9[N ][0+] Yo CN^][0][N0+] = - 2 2    + 3 2 ---

+ q(0j) + y [0 ][0+]
[0+] =  1 ----

2 " y [0] + aoN

3N = 0 e

N = 0e

= 0

steady state is 

re expressed as:
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Substitution of the above into the expression for charge neutrality,

N = [0+] + [N0+] + [0+]e

and solving for [0 ]/N , gives

[O ' ]  .
Y g tN p tO ] q(0+ )

cr N a. N2 e 1 e

9 (0 ) : 0.56[0]T]
1.15CN ] + 1.5[0 ] + 0.56[0]

+ q(Vrw I = _______ =_____2 y3[0] + c*3Ne

0 . 9 2 [ N 2 3T1 

1.15CN ] + 1 . 5 [ 0  ] + 0 .5 6 [ 0 ]

and T\ = total ion production rate [Jones and Rees, 1973]. The effects 

on the transition altitude of varying the atmospheric density, electron 

density, production rate, and temperature can then be assessed.

2 1.15[N2] + 1.5[02] + 0.56[0]
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1. Quiet Conditions— Diurnal Variation

The model atmosphere used in all cases was taken from Banks and 

Kockarts for an exospheric temperature of 1000 K, and the ionospheric 

parameters were obtained from Chatanika radar data. The model atmospheric 

and ionospheric data are given in Table 4. The composition profiles are

shown in Figure 52. The difference in the profiles is most pronounced

above 180 km. Above that altitude, the daytime electron density is at 

least an order of magnitude larger than the nighttime density. The tran

sition altitude increases by about 20 km at night.

2. Active Conditions— Particle Precipitation

The effects of electron precipitation that are considered are 

enhanced N , electron temperature, and vibrational temperature of N^.

The atmospheric and ionospheric parameters are given in Table 5. The 

first case considered uses temperature and N profiles from data taken 

on 18 February 1976. The particle energy input was approximately 20 

ergs/cm2-s. The composition profiles shown in Figure 53 indicate that, 

relative to the background profile (quiet night), the transition altitude 

is lower by more than 20 km. In fact, the transition altitude is lower

in this case than it was using daytime conditions.

The effects of enhanced vibrational temperatures of are 

examined using the above (active night) model. According to Schunk and 

Banks [1975], the vibrational temperatures during an auroral substorm 

can be in the range 1400 to 2200 K. These temperatures will increase the
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Table 4

MODEL ATMOSPHERE AND IONOSPHERIC DATA FOR QUIET DAY AND NIGHT 

Quiet Day

Alt

(km)

Ne

(cm 3)

T.1

(K)

Te

(K)

[V

(cm-3)

[0]

(cm-3)

Eh 2]

/• ~3 S(cm )

140 7.5E4* 596 650 4.40E9 2.44E10 5.37E10

160 1.0E5 765 1000 1.20E9 1.13E10 1.67E10

180 1.2E5 861 1600 4.43E8 6.45E9 6.88E9

200 1.5E5 916 1800 1.87E8 4.07E9 3.22E9

220 2.0E5 948 2000 8.48E7 2.69E9 1.60E9

240 3.0E5 967 2000 4.00E7 1.83E9 8.26E8

260 2.5E5 979 2000 1.93E7 1.26E9 4.36E8

280 2.45E5 986 2000 9.43E6 8.80E8 2.33E8

300 2.0E5 991 2000 4.67E6 6.20E8 1.26E8

Quiet Night

Alt

(km)

N
, "3n (cm )

T.l
(K)

Te
(K)

CV
(cm 3)

[0] 

(cm 3)
[y

(cm 3)

140 8.6E4 596 596 4.40E9 2.44E10 5.37E10

160 7.0E4 765 765 1.20E9 1.13E10 1.67E10

180 5.6E4 861 861 4.43E8 6.45E9 6.88E9

200 5.0E4 916 916 1.87E8 4.07E9 3.22E9

220 3.4E4 948 948 8.48E7 2.69E9 1.60E9

240 3.0E4 965 965 4.00E7 1.83E9 8.26E8
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FIGURE 52 MODEL COMPOSITION PROFILES SHOWING DIURNAL 
VARIATION
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Table 5

MODEL ATMOSPHERE AND IONOSPHERIC DATA FOR ACTIVE (AURORA) NIGHT

Alt

(km)

Ne

(cm 3)

Ti

(K)

Te

(K)

[V

(cm 3)

[0] 

(cm 3)

[y

(cm 3)

140 2.0E5 596 750 4.40E9 2.44E10 5.37E10

160 1.3E5 765 1120 1.20E9 1.13E10 1.67E10

180 1.5E5 861 1300 4.43E8 6.45E9 6.88E9

200 1.8E5 916 1800 1.87E8 4.07E9 3.22E9

220 1.9E5 948 2000 8.48E7 1.83E9 1.60E9
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FIGURE 53 MODEL COMPOSITION PROFILES SHOWING THE EFFECTS 
OF AURORAL IONIZATION
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N2 and 0+ reaction-rate coefficient by 1.5 to 3.6 times the ground-state

coefficient. Consequently, the composition profiles were recomputed

applying those factors to The results are shown in Figure 54. There

is a substantial increase in the transition altitude for the case when

T = 2200 K. v

3. Effect of Joule Heat Input

The atmospheric model and ionospheric data used to evaluate 

the effect of joule heat are given in Table 6. The ionospheric data, 

electron density, and electron and ion temperatures were taken from 13 

August 1975 data. The composition profile (Figure 55) corresponding to 

the active data indicates that more molecular ions exist at all altitudes 

as compared to the quiet period. The transition altitude increased by 

20 km. The active period was characterized by elevated ion temperature 

and decreased electron density; both factors contribute to the increase 

of the transition altitude.

4. Effect of Seasonal Variation of [N„]

The horizontal neutral winds resulting from global circulation 

cause a variation in the number density of as a function of season 

[Roble, 1977]. This variation is such that at solstice [Ng] is enhanced 

in the summer hemisphere and depleted in the winter hemisphere. The 

effect of this variation on ion chemistry can be seen in the quiet-time 

transition altitude.
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FIGURE 54 COMPOSITION PROFILES SHOWING THE EFFECT OF 
ENHANCED N2 V IBR A T IO N A L TEMPERATURE. The 
model from  Table 9 was used and the reaction-rate 
coefficient fo r N2 + 0 + was enhanced.
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Table 6

MODEL ATMOSPHERE AND IONOSPHERIC DATA USED TO EVALUATE 

THE EFFECT OF JOULE HEAT

Active Day (Joule Heating)

Alt

(km)

Ne

(cm-3)

T.l

(K)

Te

(K)

[y

(cm 3)

CO] 

(cm 3)

[n 23

(cm )

160 2.0E5 830 965 1.20E9 1.13E10 1.67E10

190 1.2E5 1050 1400 2.85E8 5.08E9 4.66E9

220 1.5E5 1200 2000 8.48E7 2„69E9 1.60E9

276 1.0E5 1800 2000 9.60E6 9.00E8 2.50E8

Quiet Day

Alt

(km)

N

(cm-3)

T.

(K)

Te

(K)
C°23 
(cm )

CO] 

(cm 3)

Cn 23 

/ -3%(cm )

160 2.0E5 765 965 1.20E9 1.13E10 1.67E10

190 2.3E5 1100 1784 2.85E8 5.08E9 4.66E9

220 3.5E5 1600 2000 8.48E7 2.69E9 1.60E9
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FIGURE 55 COMPOSITION PROFILE CORRESPONDING TO THE JOULE 
HEAT INPUT COMPARED TO THE QUIET PERIOD
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The model used to compute the transition altitude is shown in 

Table 7. In this model the parameters are identical to the quiet-day 

model used earlier, corresponding to the February 18 data. However, in 

this case the CN^] was increased above 160 km by an incremental amount 

to a factor-of-2 enhancement at 300 km. The effect can readily be seen 

in Figure 56. The relative abundance of molecular ions increased with 

enhanced [N2]. The transition altitude increased by approximately 5 km.

Table 7

MODEL ATMOSPHERE AND IONOSPHERIC DATA USED 

TO EVALUATE THE EFFECT OF ENHANCED [N ]

Alt

(km)

Ne
(cm )

T.i
(K)

Te
(K)

» 2 ]
(cm )

[0] 

(cm 3)

CN2] 

(cm 3)

140 7.5E4 596 650 4.40E9 2.44E10 5.37E10

160 1.0E5 765 1000 1.20E9 1.13E10 1.67E10

180 1.2E5 861 1600 4.43E8 6.45E9 7.90E9

200 1.5E5 916 1800 1.87E8 4.10E9 4.19E9

220 2.0E5 948 2000 8.48E7 2.70E9 2.32E9

240 3.0E5 967 2000 4.00E7 1.80E9 1.32E9

260 2.5E5 979 2000 1.93E7 1.26E9 7.63E8

280 2.4E5 986 2000 9.43E6 8.80E8 4.43E8

300 2.0E5 991 2000 4.67E6 6.20E8 2.52E8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

q

FIGURE 56 COMPOSITION PROFILES SHOWING THE EFFECT OF 
ENHANCED [N j ]  ABOVE 160 km
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F. Time Dependence of Joule Heating and Ionic Composition Changes

During periods of large perpendicular electric fields, the tempera

ture difference (T^ - Tq) resulting from frictional heating is quickly 

established. The time required is inversely proportional to the ion- 

neutral collision frequency. In the F-region this time is on the order 

of one second or less. Although both the ions and neutrals are heated, 

a temperature difference exists as long as the heating source is present. 

When the heat source subsides, the ions quickly lose their excess thermal 

energy to the neutrals, reestablishing thermal equilibrium below about 

300 km. The resulting neutral-gas temperature is therefore enhanced.

Enhanced ion and neutral temperatures were observed during the 

August 1975 joule heating event. The temperature remained elevated for 

nearly eight hours. Although the resulting modification of the ion compo

sition was greatest during the heating period, it persisted for about 6 

to 8 hours. The decay of F-region temperatures was gradual over that 

period— decreasing from about 1050 K to about 900 K. This decay time is 

quite long— with no heat source, elevated ion temperature should decrease 

much more quickly. Evans [1965] measured ion temperatures during a solar 

eclipse and found T^ to decrease 200 K within 1 to 2 hours. Consdquently, 

the August 1975 data suggest that non-local heating was occurring just 

after the joule heating event. As mentioned earlier, southward meridional 

winds could cause the observed effect— i.e., the elevated temperatures 

are produced by activity to the north of Chatanika and the heated atmos

phere is transported by the neutral wind. These winds are typically 

directed south during the night and turn northward in the morning near 

1000 AST [Wickwar and Meriwether, 1978].
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VI SUMMARY AND CONCLUSIONS

The results of the first continuous long-term (24-hour) measurements 

of ionospheric temperatures and composition at high latitudes have been 

presented. The use of the incoherent-scatter radar technique has been 

demonstrated as particularly well suited for these experiments. The 

effects of auroral processes were observed throughout the evolution of 

the entire substorm. In addition, quiet-time observations of the same 

parameters were made and compared to midlatitude observations.

Dramatic increases in temperatures were observed during periods of 

particle precipitation and large electric fields. Increases in electron 

temperatures on the order of 1000 K were observed at night when the 
2energy deposition rate was 20 ergs/cm -s. These increases are consistent 

with theory. Similar increases in ion temperature were observed during 

joule heating events. At F-region altitudes the ion temperature more 

than doubled during a period when the energy input was 30 ergs/cm2-s.

Electron and ion temperature profiles were measured during periods 

of no auroral energy input. From these measurements, the diurnal varia

tions were determined. It was found that the profiles and the variations 

are similar to those measured at midlatitudes. The response of the elec

tron temperatures to the changing SZA is as much as 1000 K. The ion 

temperatures vary by 100 K for the same SZA change.
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Exospheric temperatures were deduced and found to be between 800 

and 1000 K. These low temperatures can be expected during sunspot mini

mum, and agree with midlatitude data [Alcayde et al., 1974], Variations 

in Tro over 24 hours do not exceed 100 K. However, the effects of heat 

inputs and possibly transport of heated neutrals have been observed.

The T^ increased by 150 K following a large joule heating event of 30 

ergs/cm2-s. Similar increases have been seen when no E-fields were 

present, suggesting that transport by meridional neutral winds could be 

responsible for the observation.

One of the main points of this experiment was the determination of 

the relative abundance of 0 ions, as compared with molecular ions (N0+ 

and 0+). It was found that, during the quiet periods, the ionic compo

sition in the high-latitude ionosphere is similar to midlatitude compo

sition. The transition altitude (the altitude where half of the ions 

are 0+) occurs near 190 km during the night in the winter and near 170 

km during the day— a diurnal variation due to variation of the solar EUV 

ionization. In summer the transition altitude occurs near 190 km during 

most of the day and night. The SZA does not exceed about 96°; consequen

tly, no detectable diurnal variation occurs. The difference in the alti

tudes from summer to winter (for the same SZA) is also similar to that 

observed at midlatitudes. This indicates that the [0]/[N2] seasonal 

variation exists also at high latitudes, resulting from global circu

lation patterns.
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There are substantial departures from these observations during 

joule heating events. The transition altitude was observed to increase 

by 50 km during the 13 August 1975 event. Similar increases were seen 

in the 18 February 1976 data. These effects have been theoretically 

predicted by Schunk et al. [1976], and others. A change in the reaction- 

rate coefficients and a change in the neutral composition due to the 

elevated temperatures are likely to cause the change in ionic composition.

This work has been an exploratory study of the effects of auroral 

energy inputs into the ionosphere and the development of a technique to 

investigate them. We are presently developing techniques that will allow 

a more sophisticated sequence of pulses to be analyzed. This will allow 

us to use short pulses suited for E and F-ĵ regions and long pulses 

suited for F region altitudes simultaneously, thus providing optimum 

i-esolution and signal strength. We expect that this hybrid technique 

will eliminate the loss of data continuity that occurs with low-SNR 

situations when using short pulses, and the loss of data that is un

avoidable below 160 km when using long pulses.
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APPENDIX

ERROR ANALYSIS

1. Temperature— Statistical Error

Statistical uncertainties in T. and T exist as a result of 
1 r

performing a least-squares fit of a theoretical ACF with experimentally 

measured ACFs. The goodness of fit depends on the quality of the 

measured ACF— i.e., good or poor SNR.

The formulation used in this dissertation was originally 

developed by Waldteufel at Arecibo and was adapted for use at Chatanika 

by Wickwar [1974]. The fitting procedure attempts to minimize the 

function:

X (x.) = 2 (1/cr [TACF (s.) - XACF ] ) J n n n j n

x . = Parameters to be determined

cr̂ = Variance of each lag 

n = 1, 2, ... , N = lag number.

TACF^ = Theoretical autocorrelation function

XACF = Experimental autocorrelation function

Footnote is on the following page.
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K = Number of frames/signal samples (integrated)

= Number of noise samples

N, S = Noise and Signal power

XACFg = Signal ACF’s

XACFat = Noise ACF’s.N

This expression is taken from Farley [1969],
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The fitting procedure begins by expanding the TACF (x ) in an j
Taylor series:

OTACF ( x . )
TACF (x + 6x.) «  TACF (x ) + 2 --- — i_ 6xn j J n j j dx jJ J

and substituting the result in the y2 expression. Now, if x2(xj is to 

be a minimum, then

3[X (x.)]

For example, in terms of the parameter x .,

OTACF (x.) 
[TACF (x.) - XACF ]  n- J

oTACF oTACF
• 2 2 -L 6x.
j n a2 9x, 3

Repeating this for all parameters leads to a system of equations that 

can be expressed in matrix form as:

Z + S •: 5x = 0
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Given a set of initial parameters, x^, the corrections required to 

approximate x^ are the Sx^'s. Solving the matrix equation above for 

6x gives

6x = -S -1 • Z .

The errors are contained in the error matrix S 1. An example of the 

random error of ion temperature as a function of signal-to-noise ratio 

is shown in Figure A-l. Data were processed for this dissertation 

using a SNR threshold of 0.15 .

2. Temperature— Systematic Error

In addition, systematic errors exist as a result of making the 

measurements over pulse lengths as long as 48 km. These errors depend 

on the gradients of the measured parameters and on the weighting effect 

of the gradient of the electron density.

The possible effect of pulse-length smearing is that the average 

temperature over the 48-km region may not be the temperature at the 

midpoint of the pulse. In order to investigate this uncertainty, the 

following procedure was used:
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FIGURE A-1 TEMPERATURE UNCERTAINTY USING THE LONG-PULSE 
CORRELATOR— 10-MINUTE INTEGRATION TIME
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(1) Compute temperature profiles for both day and 

night temperature gradients.

(2) Compute the weighted average temperature sampling 

at 4-km intervals over the 48-km pulse length.

(3) Determine the altitude that corresponds to the

weighted average temperature.

(4) Compare the above altitude with the midpoint 

altitude.

In order to compute the weighted average temperature for samples spaced

at 4-km intervals over the 48-km region corresponding to a pulse length,

the following equation was used to determine the weighted temperature:

13 20

T
13 20
2 jw + 2 (26 - j)w
3=6 J j=14 J

where

w = N (R /R)2 .e o

The weighting function, w, weights the temperature samples according to

the received power, referenced to the center of the 48-km pulse, Rq—

i.e., for values closer than the center of the pulse (R /R) > 1. The 
13 20additional weighting, _£ j, v (26 - j), takes into account the tri-

j=6 j=14
angular weighting of the autocorrelation technique. Contributions from 

values < 6 and 20 were negligible. Examples of the errors are given 

in Figure A-2.
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FIGURE A-2 WEIGHTED AVERAGE TEMPERATURE COMPARED TO THE MIDPOINT OF THE 
PULSE. The Te gradient was taken from the 13 August 1975 joule heating event.
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3. Composition— Statistical Error

Statistical uncertainties in the ion composition results arise 

from the statistical uncertainties in the temperature data. As des

cribed in Section III-B, the ion temperature for an unknown ion mass 

is related to the ion temperature for 0 ions by the following 

relation:

T(q) = A(q)T(l)

where q is the fraction of 0+ ions.

dA(q) 1 
StT^T t (D

for a given q, the uncertainty in A(q) is At/T, where At is the statis

tical error given in the previous section.
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4. Composition— Systematic Error

There are two sources of systematic errors in composition:

(1) The ion temperature uncertainty will result in an 

uncertainty in the choice of Tra. As a result, the 

Tn profile used in the analysis could have a system

atic error. This error is minimized by fitting as 

many data points as possible at altitudes where q 

can safely be assumed to be 1.

(2) The CIRA 72 neutral atmospheric model may not

accurately represent the high-latitude atmosphere.

At altitudes less than 140 km, the measured ion

temperatures were always greater than the model T .n
This effect cannot be a result of an error in the 

composition because there are a negligible number 

of atmoic ions at altitudes less than 140 km.
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