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EXECUTIVE SUMMARY 

This technical report summarizes the results of laboratory testing on asphalt and concrete 

pavement. A known quantity of salt brine was applied as an anti-icer, followed by snow 

application, traffic simulation, and mechanical snow removal via simulated plowing. Using a 

sample from this plowed snow, researchers measured the chloride concentration to determine the 

amount of salt brine (as chloride) that remained on the pavement surface. 

Under the investigated scenarios, the asphalt samples showed higher concentrations of 

chloride in the plowed-off snow, and therefore lower concentrations of chlorides remaining on 

the pavement surface. In comparison, the concrete samples had much lower chloride 

concentrations in the plowed-off snow, and much higher chloride concentrations remaining on 

the pavement surface. 

An interesting pattern revealed by the testing was the variation in the percentage of 

chloride that remained on the pavement surface with changes in temperature. When pavement 

type was not considered, more residual chloride was present at warmer temperatures and less 

residual chloride was present at colder temperatures. This observation warrants additional testing 

to determine if the pattern is, in fact, a statistically valid trend. 

The findings from the study will help winter maintenance agencies reduce salt usage 

while meeting the defined Level of Service (LOS). Moreover, findings will contribute to 

environmentally sustainable policies and reduce the level of salt (from snow- and ice-control 

products) introduced to the environment. 
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CHAPTER 1.0 INTRODUCTION 

Winter maintenance operations include application of anti-icing and deicing products to 

keep roads clear of snow and ice and provide safe driving conditions for the public. Deicing 

products are used to remove the ice once it has formed; anti-icing products are used to prevent 

the snow and ice from bonding with the pavement. Most commonly, solid products are used as 

deicers and liquid products are used as anti-icers. Traditionally, chloride-based liquids (e.g., salt 

brine) and solid products (e.g., rock salt) have been used by transportation agencies for winter 

maintenance activities. 

In the past two decades, many studies have been conducted to determine the application 

rate of various products at different temperatures. Application rates play a vital role in efficiently 

melting snow and ice, preventing ice from bonding to the pavement surface, and achieving the 

defined Level of Service (LOS). Over-application of products can lead to inefficiency, wasted 

product, and damage to infrastructure and the environment. Conversely, insufficient application 

of product can lead to agencies not meeting the defined LOS, and reduced safety and mobility. 

The application rate is based on environmental conditions such as air and pavement temperature, 

temperature trends, humidity, pavement friction coefficient, precipitation type and amount, and 

field performance of the product. Laboratory data on ice-melting capacity, ice-penetration 

capacity, ice-undercutting capacity, and eutectic temperature can provide key information on the 

temperature range in which a product works, how much product is required to melt a specific 

amount of material, and how long the product will continue to melt snow and ice. However, very 

few studies have attempted to recommend application rates, considering residual salt 

concentration on the pavement.
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CHAPTER 2.0 BACKGROUND 

Measuring residual salt on pavement can greatly reduce the amount of salt applied during 

a storm event or even during each subsequent storm event. Liquid products have been shown to 

be effective longer on pavement surfaces than solid deicers, as traffic disperses dry materials 

(Kahl 2004, Muthumani et al. 2015). Following application, trafficking, and plowing, residual 

salt remains on the road surface and works during the next storm event. The residual effects of 

salt can help reduce labor and costs by allowing for less frequent application of snow- and ice-

control material. Studying the longevity of snow- and ice-control products on pavement surfaces 

is important for optimizing material use, subsequent application rates, and timing. A series of 

studies have investigated the factors affecting deicer longevity, and equations to estimate the 

residual decay of deicers have been developed. 

Factors determined to affect the longevity of deicers include traffic volumes, speed, 

vehicle types, length of time since application, dispensing rate, road conditions, and weather, as 

well as whether the salt has dried out and could have been trafficked or blown away (Ketcham et 

al. 1996, Kahl 2004). Recently, Muthumani et al. (2015) found that viscosity plays a role in 

determining the ability of the product to stay on the road surface. This finding is based on the 

fact that products with higher viscosity do not mix as well with snow and ice (Wahlin & Klein-

Paste 2013), resulting in a slower speed of grain boundary penetration (German 2009). The more 

viscous products remain on the pavement surface instead of being wicked into the snowpack. 

Muthumani et al. (2015) found that agro-based products with higher viscosity remain on the 

pavement surface. However, data do not show a linear relationship between viscosity and 

reduction in bond strength; i.e., products with higher viscosity do not necessarily have the lowest 

bond strength between ice and the pavement surface. 
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Hunt et al. (2004) evaluated the persistence of anti-icing brine on various pavements in 

Ohio. A brine residual decay equation was provided as a function of time or traffic for three 

asphalt cement (AC) and two Portland cement concrete (PCC) pavements. The factors affecting 

residual concentrations on the pavement were found to be application method, pavement 

porosity, and surface roughness. The field studies yielded residual decay equations that provide 

an estimate of brine residual as a function of time or traffic for the various pavements 

investigated in the study.  

The objective of the present project was to determine and document the residual salt 

concentration on pavement after initial application of salt brine during snow- and ice-control 

operations, and then recommend modified application rates for various temperatures based on 

the residual salt concentration on the pavement. To accomplish this, laboratory tests were run on 

asphalt and concrete pavement where a known quantity of salt brine was applied as an anti-icer. 

Snow and trafficking were simulated, and the remaining snow was plowed off. Using a sample 

from this plowed snow, researchers measured the chloride concentration to determine the amount 

of salt brine (as chloride) that remained on the pavement surface. Details of the methodology are 

presented in Chapter 3.0.
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CHAPTER 3.0 METHODOLOGY 

The overall approach to this research effort included using a set of laboratory 

experiments and sodium chloride-based deicing products to measure the residual salt 

concentration on pavement after compacting, trafficking, and plowing the snow. The following 

test methods were used to accomplish this. 

To measure residual salt concentration, laboratory testing was conducted for liquid 

sodium chloride (NaCl, salt brine) at 28°F. The salt brine was made with deionized water and 

reagent-grade NaCl to create a 23.3% brine solution. The salt brine was applied to asphalt 

pavement (9 inch by 19 inch) using spray application methods to achieve application rates of 

47.8 ± 11.7 gallons per lane mile (gal/l-m). Typical salt brine anti-icing application rates used by 

state departments of transportation (DOTs) range from 40–75 gal/l-m.  

The lab testing was conducted at the 

Subzero Science and Engineering Research 

Facility (Subzero Lab) at Montana State 

University. The Western Transportation 

Institute (WTI) team has established 

operating procedures to grow and harvest 

snow particles, and to simulate the 

sequence of events consisting of periodic 

snow precipitation, trafficking, and 

plowing (Muthumani et al. 2015). To 

simulate driving on snow, a custom-operated trafficking machine designed and constructed at the 

WTI was used to simulate real-world conditions (Figure 1). The snow was sieved to 1 mm grain 

Figure 1. Trafficking machine in action in the MSU 
Subzero Lab. 
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size, and 800 g of sieved snow was applied on the pavement sample. The applied snow was then 

compacted at 60 psi for 5 minutes using a custom-built compactor. After compaction, the snow 

on the pavement surface was approximately ½-inch thick. The speed of the trafficking device is 

about 1 ft/sec or 0.7 mph, and the trafficking device applies a total vertical load of 1130 lb. The 

sample was trafficked for 500 single tire passes, which took about 18 minutes. 

After trafficking, snow was scraped from the pavement with a 4-inch stainless steel 

taping knife to simulate plowing. This snow was collected to quantify the amount of deicer that 

was removed with snow during plowing. 

3.1  Chloride Concentration 

To determine the amount of residual chloride on the pavement surface, the chloride 

concentration of the snow removed during plowing was measured using the following formula. 

The total chloride concentration applied ([Cl]T) was the application rate minus the chloride 

concentration of plowed-off snow ([Cl]P), which equals the residual chloride concentration on 

the pavement ([Cl]R) (Equation 1). Muthumani et al. (2015) found that these methods accurately 

account for chloride application and loss.  

[Cl]T - [Cl]P = [Cl]R Eq. 1 

Snow was collected after each plowing cycle and converted to liquid. The chloride 

concentration from the melted snow was then measured, and the residual amount of chloride on 

the pavement was calculated using Equation 1. Chloride analysis was completed by Bridger 

Analytical Lab, Inc., in Bozeman, Montana.
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CHAPTER 4.0 RESULTS 

During the snow and trafficking testing, the snow that was plowed/scraped off the 

pavement surface was collected, and the chloride concentration of the snow was measured to 

determine the amount of chloride removed from the pavement surface and the amount of 

chloride remaining on the pavement surface. Table 1 provides a summary of the pavement 

sample type, the measured application rate of the salt brine, the measured chloride concentration 

of the snow that was plowed/scraped off the trafficked sample, and the calculated percentage of 

chloride removed from the pavement surface and remaining on the pavement surface.  

 
Table 1. Summary table of chloride application rates, chloride concentration of 
the snow removed from the pavement, and the calculated percentage of 
chloride removed and remaining on the pavement surface by pavement type. 

 

The general trends that can be observed are the higher concentrations of chloride in the 

plowed-off snow from the asphalt samples (54%, 88%, and 85%), and therefore lower 

concentrations of chloride remaining on the asphalt pavement surface (46%, 12%, and 15%). By 

contrast, the concrete samples showed lower concentrations of chloride in the plowed-off snow 

(12%, 2%, and 22%), and therefore higher concentrations of chloride remaining on the pavement 

surface (88%, 98%, 78%) (Table 1). This trend has not been observed in previous testing, and 

Pavement 
Type 

(C=concrete 
or 

A=asphalt)

Salt Brine app 
rate (gal/LM)

Measured 
Chloride 

Concentration 
(mg/L)

Percent of 
chloride in the 
plowed off 
snow (%)

Percent of 
chloride 
remaining on 
the pavement 
(%)

A 36.1 406 54.4 45.6
A 59.5 1110 87.9 12.1
A 47.8 865 85.2 14.8
C 55.7 141 11.6 88.4
C 27.9 14.3 2.4 97.6
C 39.3 187 21.9 78.1
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additional work is recommended to confirm the trend. The percentages of chloride remaining on 

the pavement surfaces—Asphalt, 12–45% and Concrete, 78–98%—represent a wide range of 

residual chloride. For this reason, it is not yet feasible to make recommendations for changing 

subsequent deicer application rates based on pavement surface type (asphalt versus concrete).  

Muthumani et al. (2015) found similar rates of chloride removal with trafficking and 

plowing/scraping of snow from asphalt pavement. At 5°F, the researchers observed 80–90% 

removal of chlorides from trafficking and plowing, and at 15°F, they observed 45–80% removal 

of chlorides from trafficking and plowing (Figure 2). The data from Muthumani et al. (2015) 

show a decrease in chloride removal with warmer temperatures, which could explain the lower 

chloride removal rates with plowing at 28°F testing; however, further testing is recommended to 

confirm this trend.  

 

Figure 2. The range of residual chloride on the pavement surface (as %) after anti-icing, 
addition of snow and compaction, trafficking, and plowing, from this research effort 
(28°F on asphalt [A] and concrete [C] pavements) and from research by Muthumani et al. 
(2015) (5°F and 15°F) on asphalt (A) pavement. 
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The residual 12–97% of chloride on the pavement surface should facilitate anti-icing 

during a subsequent storm event, specifically on concrete pavement samples where the 

remaining percentages of chloride are higher. The remaining chloride on the pavement should be 

sufficient to allow for chemically wet readings measured by mobile non-invasive pavement 

surface sensors. Further testing is suggested to confirm this. With more testing it may also be 

feasible to determine a reduced subsequent deicer application rate with more consistent data and 

to collect a more robust data set on residual chloride on pavement surfaces. It is unknown how 

much chloride was lost in trafficking the sample, removing snow from the pavement surface, and 

processing samples. Additional testing that closely tracks chloride applied and chloride lost 

during testing will likely provide more accurate residual chloride data.



 

10 

CHAPTER 5.0 CONCLUSIONS 

This technical report summarizes the results of laboratory testing on asphalt and concrete 

pavement, where a known quantity of salt brine was applied as an anti-icer, followed by snow 

application, traffic simulation, and snow plowing. Using a sample from the plowed snow, 

researchers measured the chloride concentration to determine the amount of salt brine (as 

chloride) that remained on the pavement surface. 

Under the investigated scenarios, the asphalt samples showed higher concentrations of 

chloride in the plowed-off snow, and therefore lower concentrations of chlorides remaining on 

the pavement surface. In comparison, the concrete samples had much lower chloride 

concentrations in the plowed-off snow, and much higher chloride concentrations remaining on 

the pavement surface. 

An interesting pattern revealed by the testing was the variation in the percentage of 

chloride that remained on the pavement surface with changes in temperature. When pavement 

type was not considered, more residual chloride was present at warmer temperatures and less 

residual chloride was present at colder temperatures. This observation warrants additional testing 

to determine if the pattern is in fact a statistically valid trend. 
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