Impacts of a top predator (Esox lucius) on salmonids in Southcentral Alaska: genetics, connectivity, and vulnerability
dc.contributor.author | Jalbert, Chase S. | |
dc.date.accessioned | 2019-06-06T18:08:54Z | |
dc.date.available | 2019-06-06T18:08:54Z | |
dc.date.issued | 2018-12 | |
dc.identifier.uri | http://hdl.handle.net/11122/10298 | |
dc.description | Thesis (M.S.) University of Alaska Fairbanks, 2018 | en_US |
dc.description.abstract | Worldwide invasion and range expansion of northern pike (pike; Esox lucius) have been linked to the decline of native fishes and new techniques are needed to assess the effects of invasion over broad geographic scales. In Alaska, pike are native north and west of the Alaska Mountain Range but were introduced into Southcentral Alaska in the 1950s and again in the 1970s. To investigate the history of the invasion into Southcentral Alaska, I identified 7,889 single nucleotide polymorphisms (SNPs) from three native and seven introduced populations in Alaska and examined genetic diversity, structure, and affinities of native and invasive pike. Pike exhibited low genetic variability in native populations (mean heterozygosity = 0.0360 and mean π = 0.000241) and further reductions in introduced populations (mean heterozygosity = 0.0227 and mean π = 0.000131), which suggests a bottleneck following introduction. Population differentiation was high among some populations (global FST = 0.424; max FST = 0.668) when compared to other freshwater fishes. I identified five genetically distinct clusters of populations, consisting of three native groups, a single Susitna River basin invasive group, and a Kenai Peninsula group, with little evidence of admixture among groups. The extremely reduced genetic diversity observed in invasive northern pike populations does not appear to affect their invasion success as the species range Southcentral Alaska continues to expand. To assess the vulnerability of five species of Pacific salmon (Oncorhynchus spp.) to the invasion, I combined intrinsic potential habitat modeling, connectivity estimates, and Bayesian networks across 22,875km of stream reaches in the Matanuska-Susitna basin, Alaska, USA. Pink salmon were the most vulnerable species, with 15.2% (2,458 km) of their range identified as "highly" vulnerable. They were followed closely by chum salmon (14.8%) and coho salmon (14.7%). Finally, analysis of the intersection of vulnerable salmon habitats revealed 1,001 km of streams that were highly vulnerable for all five Pacific salmon. This framework is easy to implement, adaptable to any species or region, and cost effective. With increasing threats of species introductions, fishery managers need new tools like those described here to efficiently identify critical areas shared by multiple species, where management actions can have the greatest impact. | en_US |
dc.description.sponsorship | United States Geological Survey Northern Rocky Mountain Science Center | en_US |
dc.language.iso | en | en_US |
dc.subject | pike | en_US |
dc.subject | environment | en_US |
dc.subject | Southcentral Alaska | en_US |
dc.subject | genetics | en_US |
dc.subject | ecology | en_US |
dc.subject | salmonidae | en_US |
dc.subject | predators | en_US |
dc.subject | introduced fishes | en_US |
dc.title | Impacts of a top predator (Esox lucius) on salmonids in Southcentral Alaska: genetics, connectivity, and vulnerability | en_US |
dc.type | Thesis | en_US |
dc.type.degree | ms | en_US |
dc.identifier.department | Department of Fisheries | en_US |
dc.contributor.chair | Falke, Jeffrey | |
dc.contributor.chair | Westley, Peter | |
dc.contributor.committee | López, J. Andrés | |
dc.contributor.committee | Dunker, Kristine | |
refterms.dateFOA | 2020-03-06T02:50:18Z |