Show simple item record

dc.contributor.authorKane, Douglas L.
dc.contributor.authorBelke, Charles E.
dc.contributor.authorGieck, Robert E.
dc.contributor.authorMclean, Robert F.
dc.date.accessioned2019-06-10T23:08:10Z
dc.date.available2019-06-10T23:08:10Z
dc.date.issued2000-06
dc.identifier.urihttp://hdl.handle.net/11122/10368
dc.description.abstractIn the past, culvert design where fish passage was considered generally has been based on the weakest-swimming adult fish in a river system. It has also been recognized for some time that juvenile fish are very active throughout the year, moving upstream and downstream in response to a number of environmental factors. In Alaska, many natal and nonnatal streams in southcentral and southeastern Alaska support both Chinook (Oncorhynchus tschawytscha (Walbaum)) and Coho (Oncorhynchus kisutch (Walbaum)) for one to three years, respectively, before they emigrate to sea. Are we restricting desirable habitat for these juvenile salmonids with hydraulic structures such as culverts? Unfortunately we have little information on either the behavior of juveniles in the vicinity of hydraulic structures or their swimming abilities. The objective of this study was to examine the behavior of juveniles when attempting to ascend a culvert. It was hypothesized that vertical obstacles or high velocity of opposing flow may prevent juvenile fish from moving upstream. It was also hypothesized that they would determine and take the path of least resistance to optimize their chances of successfully ascending a culvert. Four culverts were selected for intensive study regarding juvenile fish passage: Beaver and Soldotna Creeks on Kenai Peninsula and No-name and Pass Creek Tributary on Prince of Wales Island. It was postulated that fish are motivated to move upstream to obtain food if they can establish its presence. We used salmon eggs as an attractive food source both to initially capture the juveniles and then to motivate them to ascend the culvert for possible recapture. Juvenile fish were captured in a baited minnow trap and stained with a dye. They were released downstream of the culvert while the food source was placed upstream in a minnow trap. We supplemented our visual observations with underwater video cameras. We made numerous hydrologic and hydraulic measurements at each site. Although we attempted to select culverts that would prove to be quite challenging to juvenile fish passage, in three of the culverts selected, juvenile fish, of the full range of the fork length initially captured, succeeded in ascending through the culvert. For the fourth culvert, some larger juvenile fish succeeded in ascending the culvert, but not the smaller of each fish type. It was clearly established that juvenile fish were motivated to move upstream to obtain food. In the Beaver Creek culvert, fish used the large corrugations to their advantage when ascending the culverts. The Pass Creek Tributary culvert had corrugations too small for fish to utilize. No-name Creek appeared to present not problems for juvenile fish for the water levels at the time of the visit as they small along the bottom on the centerline of the culvert. In general, observations of fish attempting to move upstream through the culvert revealed that they swam very close to the culvert wall, and in the case of high velocities (Beaver Creek and Pass Creed Tributary) they swam near the surface along the sidewall where velocities are reduced. It is obvious that the juvenile fish are attempting to minimize power output and energy expenditure by taking the path of least resistance. Although not quantitavely proven, it appears that as long as fish make some headway in their upstream movement they are content. The rationale for this conclusion is that fish do not know what they may encounter upstream so they attempt to conserve as much power and energy as possible while still moving forward. They generally do so by seeking out the lowest velocities in the cross-section. In areas of steep velocity gradients along the wall (where the areal extent of low velocities is limited), it is clear in our videotapes that fish have problems maintaining their position and preferred orientation. It is apparent from our observations that because of their small size, juvenile fish are hindered by turbulence and that this area needs more study.en_US
dc.description.tableofcontentsList of Figures - ii List of Tables - iv Disclaimer - v Abstract - vi Acknowledgment - ix Introduction - 1 Objectives - 2 Procedure - 3 Study Sites - 8 Selection - 8 Beaver Creek - 8 No-name Creek - 9 Soldotna Creek - 12 Pass Creek Tributary - 12 Past Studies - 14 Fish Behavior - 14 Juvenile Movement - 15 Results - 16 Beaver Creek - 16 No-name Creek - 26 Soldatna Creek - 29 Pass Creek Tributary - 39 Summary - 47 Research Needs - 49 References - 54en_US
dc.language.isoen_USen_US
dc.subjectCulvertsen_US
dc.subjectFishen_US
dc.subjectSalmonen_US
dc.subjectField Studyen_US
dc.subjectImpacten_US
dc.subjectEnvironmental Designen_US
dc.subjectMobilityen_US
dc.titleJuvenile Fish Passage Through Culverts in Alaska: A Field Studyen_US
dc.typeTechnical Reporten_US
refterms.dateFOA2020-03-06T02:35:20Z


Files in this item

Thumbnail
Name:
2000.05_Kane_Juvenile Fish Passage ...
Size:
1.780Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record