• Improvement of the Fairbanks Atmospheric Carbon Monoxide Transport Model -- A Program for Calibration, Verification and Implementation

      Carlson, Robert F.; Hok, Charlotte (University of Alaska, Institute of Water Resources, 1980-10)
      In the early 70s, state, local and federal officials in Fairbanks, Alaska, became concerned with the rising incidence of high carbon monoxide episodes. Because of that concern, the Alaska Department of Highways (forerunner of the Department of Transportation and Public Facilities) and the Fairbanks North Star Borough requested that the Institute of Water Resources undertake a study to develop a computer model capability for understanding the transport of carbon monoxide and other pollutants within the Fairbanks airshed. The work was completed in June of 1976. Two publications (Carlson and Fox, 1976; Norton and Carlson, 1976) describe the initial development, documentation and implementation of the computer model. The model, ACOSP (Atmospheric Carbon monOxide Simulation Program), describes the two-dimensional behavior of pollutants in the atmosphere via solution of the convection-diffusion equation using the finite element method of numerical analysis.
    • The influence of decomposing salmon on water chemistry

      Brickell, David C.; Goering, John J. (University of Alaska, Institute of Water Resources, 1971)
      To increase our knowledge of the biological and chemical effects of the decomposition of seafood material, we have initiated a study of the decomposition of salmon carcasses in a natural system in southeastern Alaska (i.e. Little Port Walter estuary). The Pacific salmon migrates through this estuary when returning to its natal stream to spawn. Following spawning the fish die and the carcasses are eventually carried to the estuary where they sink to the bottom. During periods of low stream flow, the dead carcasses may remain in the stream itself until higher stream flows transport them to the estuary. In years of large escapements, the density of fish in the spawning stream can be very high. In the system chosen for our work, spawning densities greater than six fish per m2 have been recorded although at the time the current study was conducted the spawning density was slightly more than two fish per m2. Since our system involves primarily pink salmon (O. gorbuscha), the average weight of the fish can be assumed to be 2-3 kilograms. Thus, our study is concerned with the fate and distribution of some 75 metric tons of organic matter in the form of salmon carcasses in one small estuary in Southeastern Alaska. We are particularly interested in determining: (1) the effects of the salmon carcass decomposition on the nitrogen chemistry of the water in which the decomposition occurs; (2) the form and distribution of the organic matter which is returned to the marine system; and (3) the rate at which remineralization occurs. This paper presents the results of our initial investigations.
    • Inherent and Maximum Microbiological Activity in Smith Lake : Project Completion Report

      Burton, S. (University of Alaska; Institute of Water Resources, 1968)
      POPULAR ABSTRACT: Bacterial populations were examined in a sub-Arctic lake to augment the understanding of the flow of organic material and other nutrients through these waters. Several micro-organisms were isolated, capable of converting atmospheric nitrogen into biologically available forms. Also organisms capable of removing organic materials at very low temperatures, psychrophiles, were isolated. Enzymes from these unusual organisms were examined to determine what allows these unusual activity at low temperatures. The activities of these enzymes were not found to be unusual.
    • Investigation of an ozone-filter system for color and iron removal at low temperatures

      Smith, Daniel W.; Hargesheimer, John M. (University of Alaska, Institute of Water Resources, 1975-10)
      The application of ozonation as a disinfectant and as a treatment process for both water and wastewater has been increasing in recent years. The study of ozone application to Arctic and subarctic waters, which are normally at low temperatures, has been limited. Many portions of the Alaskan Arctic and subarctic are plagued with waters which exceed the 1962 Drinking Water Standards for one or more parameters. The iron content and color of the water are among the most common offenders. This project was directed toward the examination of a method for water treatment utilizing ozone to meet the iron and color limits for drinking water. The three principle objectives of the project were: (1) to examine the effect of ozone on several known qualities of water, (2) to examine the effect of ozone on representative samples of surface and ground water, and (3) to develop a laboratory scale system for iron and color removal utilizing ozone followed by sand filtration.
    • Investigations of lightweight aggregates in Alaska

      Heiner, L.E.; Loskamp, A.N. (University of Alaska Mineral Industry Research Laboratory, 1966)
      Increased construction costs coupled with the current large demand for aggregate materials prompted an investigation by the Mineral Industry Research Laboratory to find deposits of shale suitable for the manufacture of lightweight aggregate near the cities of Anchorage and Fairbanks.
    • Iron in Surface and Subsurface Waters, Grizzly Bar, Southeastern Alaska

      Hoskin, Charles M.; Slatt, Roger M. (University of Alaska, Institute of Water Resources, 1972-08)
      Atomic absorption spectrophotometric measurements for total iron were made on 69 samples of water from 8 different environments in an outwash fan built by meltwater streams from the retreating Norris Glacier on granodiorite bedrock. Norris Glacier ice contained no iron (3 samples), a subglacial stream contained 5.5 ppm Fe (1 sample), and a meltwater lake fronting Norris Glacier contained 0.7 ppm Fe (3 samples). Iron content of ground water from outwash ranged between 0.0 and 17.0 ppm (6 samples); surface streams fed by emergent ground water on the fan periphery contained 0.0 to 0.2 ppm Fe (13 samples). Taku Inlet waters contained 6.4 ppm Fe (3 samples). Subsurface water from an intertidal mud flat contained between 0.0 and 27.0, X 5.9, ppm Fe (31 samples). Surface and subsurface water from a bog and associated stream contained 1 ppm Fe (12 samples). Little exchangeable Fe was found. In situ measurements in water for Eh showed large positive values (+0.30 to +0.50 volts) and pH was slightly alkaline. The single most important source of iron was vermiculitized biotite. Iron was transported in water in the particulate state, except in outwash ground water where particulate Fe+3 was reduced to dissolved Fe+2. Iron deposits of Fe(OH)3 were found near the top of the outwash water table.
    • Known and potential ore reserves, Seward Peninsula, Alaska

      Lu, F.C.; Heiner, L.E.; Harris, D.P. (University of Alaska Mineral Industry Research Laboratory, 1968)
      The study utilizes all available information pertaining to the resources of the Seward Peninsula in an attempt to present factual data as well as to predict by statistical means the resources yet to be found.
    • Laboratory Rearing Experiments on Artificially Propagated Inconnu (Stenodus leucichthys)

      LaPerriere, Jacqueline D. (University of Alaska, Institute of Water Resources, 1973-06)
    • Land Application of Domestic Sludge in Cold Climates

      Johnson, Ronald A. (University of Alaska, Institute of Water Resources, 1979)
      Aerobically digested sludge from the Fairbanks sewage treatment plant was worked into the soil on several plots at the University of Alaska in the summer of 1978. Some of the sludge had been air dried for up to six months prior to application while some was taken directly from the thickener. Applications varied from 12 to 100 tons of solids/acre. For sludge applied in July and August, the fecal coliform count decayed by several orders of magnitude by the middle of September.. There was no significant movement of fecal coliform bacteria either vertically or laterally. Lime was used to raise the pH of one plot to 12, completely killing the fecal coliform bacteria within several days. The nutrient distribution demonstrated the potential for enriching soils by sludge addition. The main purpose of the study was to investigate the feasibility of this concept for remote military sites. Air drying followed by land application may represent a viable means of sludge disposal.
    • Land Disposal of Secondary Lagoon Effluents (Pilot Project)

      Smith, Daniel W. (University of Alaska, Institute of Water Resources, 1975-01)
      The principle objective of this effort was to assist the US Army, Cold Regions Research and Engineering Laboratory, in conducting a pilot land disposal project in the interior region of Alaska. This project was a preliminary investigation of the feasibility of land disposal of secondary effluent from an aerated lagoon during the summer months. The hope was to examine the possible use of this technique to meet 1977 standards for the quality of secondary effluents.
    • Landsat linear features and mineral occurrences in Alaska

      Metz, P.A. (University of Alaska Mineral Industry Research Laboratory, 1983)
      In order to develop and better understanding of the regional structural controls of the metallic mineral deposits of Alaska, a detailed examination was made of the linear features and trends interpreted from Landsat imagery. In addition, local structural features and alteration zones were examined by ratio analysis of selected Landsat images. The linear trend analysis provided new regional structural data for previously proposed mineral deposit models and also provided new evidence for the extension of the existing models. Preliminary evidence also suggests linear intersection control of some types of mineral occurrences and that trend analysis may result in the definition of areas favorable for future mineral exploration. Ratio image analysis indicates that alteration zones and local structural features can be identified by use of Landsat imagery. Ratio image analysis for the definition of alteration zones must be used with caution, however, since the alteration associated with the various mineral deposits may not be differentiated by the technique.
    • Late-Pleistocene Syngenetic Permafrost in the CRREL Permafrost Tunnel, Fox, Alaska

      Kanevskiy, M.Z.; French, H.M.; Shur, Y.L. (Institute of Northern Engineering, University of Alaska Fairbanks, 2008)
      Late-Pleistocene syngenetic permafrost exposed in the walls and ceiling of the CRREL permafrost tunnel consists of ice-and organic-rich silty sediments penetrated by ice wedges. Evidence of long-continued syngenetic freezing under cold-climate conditions includes the dominance of lenticular and micro-lenticular cryostructures throughout the walls, ice veins and wedges at many levels, the presence of undecomposed rootlets, and organic-rich layers that reflect the former positions of the ground surface. Fluvio-thermal modifications are indicated by bodies ofthermokarst-cave ('pool') ice, by soil and ice pseudomorphs, and by reticulate-chaotic cryostructures associated with freezing ofsaturated sediments trapped in underground channels.
    • The Limnology of Two Dissimilar Subarctic Streams and Implications of Resource Development

      LaPerriere, Jacqueline D.; Nyquist, David (University of Alaska, Institute of Water Resources, 1973-03)
      Because of the relatively undeveloped condition of arctic and subarctic Alaska, an opportunity is presented to draw up water quality management plans before extensive perturbation. These plans cannot, unfortunately , be based upon those drawn up for more temperate regions where much is known about natural stream conditions, for in these Alaskan areas, little is known about the natural physical, chemical, and biological cycles of streams or about their ability to handle the stresses that will be exerted on them should development take place. The Chena River, in subarctic, interior Alaska, near the city of Fairbanks, has been studied to evaluate the impact of pending construction and operation of flood control structures (Frey, Mueller and Berry, 1970). This river however has already been developed, especially along its lower reaches where the city of Fairbanks is situated. The watersheds of the two streams chosen for this study roughly parallel each other, although the Chatanika River watershed is about twice as long as that of Goldstream Creek. In addition to the dissimilarity in size, these two streams also differ in regard to terrain, at least along the respective stretches that were studied. The Goldstream Creek study area runs through a bog and extensive muskeg. The Chatanika River, however, was for the most part sampled in the area of mountainous terrain. The intent of this study was to obtain comprehensive physical and chemical data, to survey the resident invertebrates, and to evaluate the assimilative capabilities of both streams.
    • Managing Water Resources for Alaska's Development: Proceedings

      Aldrich, James W. (University of Alaska, Institute of Water Resources, 1983-11)
    • The market for insulation in Alaska and feasibility of the regional manufacture of insulating materials

      Haring, R.C.; Beasley, C.A. (University of Alaska Mineral Industry Research Laboratory, 1965)
      This investigation was undertaken jointly by the Mineral Industry Research Laboratory and the Institute of Business, Economic and Government Research at the University of Alaska. It is one of a continuing series of studies concerning the market and utilization rate for selected structural materials within Alaska. The overall objective of these studies is to identify opportunities for the regional manufacture of selected building products. In this manner, this limited study of insulation markets complements more extensive previous studies concerning Alaskan cement and clay products, markets and manufacturing feasibility.
    • The market potential for Alaskan clay products

      Beasley, C.A. (University of Alaska Mineral Industry Research Laboratory (MIRL), 1965)
      This study was originally proposed to the Alaska Department of Economic Development and Planning as part of a continuing effort by the Mineral Industry Research Lab of the University of Alaska to strengthen and diversity the mineral industry of the state.
    • Metallogeny of the Fairbanks Mining District, Alaska and adjacent areas

      Metz, P.A. (University of Alaska Mineral Industry Research Laboratory, 1991)
      The Fairbanks mining district encompasses an area of 1500 km2 (600 miles2) centred just north of the City of Fairbanks, Alaska. The district is one of six mining areas located in or near the northwestern margin of the Yukon-Tanana Uplands of east-central Alaska and the Yukon Territory, Canada. The six mining districts in Alaska (Fairbanks, Circle, Steese, Richardson, Tolovana and Kantishna) and the Klondike district nearby in the Yukon Territory, have an aggregate placer gold production of 25 million troy ounces. This production establishes the region as one of the largest gold producing areas of North America. The aim of the present investigation is to define, classify and explain the genesis of the several primary sources from which the placer gold deposits of the region were derived. Through geological mapping and sampling of the districts, the 350 identified primary mineral occurrences are classified into eight categories as follows: (1) metamorphosed volcanic-exhalative and associated low-sulfide Au-quartz veins, (2) Cu-Mo-Au porphyries, (3) precious metal enriched massive sulfides, (4) epithermal veins in plutonic rocks, (5) Au-bearing tungsten skarns, (6) Sn greisen-gold-quartz veins, (7) Sediment-hosted gold of the Carlin type, and (8) palaeoplacer gold deposits. Geological mapping and sampling has also established that recent faulting and regional uplift are responsible for stream capture, stream drainage reversal, resorting of stream sediments, and modem alluvial placer formation. The volcanic-exhalative mineralization is hosted in metamorphosed low-K tholeiitic basalts, Ca-poor rhyolitic tuffs, and cherts. In the Fairbanks district the rocks are informally referred to as the Cleary sequence. Detrital zircons from the sequence yield U-Pb ages in the ranges 1.2, 1.3- 1.4, 1.8-1.9,2.5, and 3.4 Ga. The bimodal volcanic rocks are enriched in Au, Ag, As, Sb, and W. Average gold contents of the rocks exceed average crustal abundances by two orders of magnitude. Locally the metavolcanic rocks contain base metal massive sulfide mineralization with grades up to 20% combined Pb-Zn, 3 g/tonne Au, and 500 g/tonne Ag. These metavolcanic rock are correlated with those occurring in the Kantishna district (Spruce Creek sequence) and in the Circle district (Bonanza Creek sequence). The mineralized bimodal metavolcanic suite is thus shown to extend along strike for 350 krn (210 miles) through the Yukon-Tanana Terrane. In the Fairbanks district the Cleary sequence rocks are thrust over Type C eclogites. These eclogites trend northeasterly along the regional strike to the Circle quadrangle and are correlated with the eclogites of the central Yukon Territory. Lead 206/204 and 207/204 ratios from galena from the metavolcanic sequences and from the vein deposits are similar with average values of 19.10 and 15.69 respectively. The eclogitic rocks are less radiogenic with 206/204 and 207/204 ratios of 18.80 and 15.65 respectively. Low sulfide Au-quartz veins within the metavolcanic sequences are shown to be the product of multiple thermal and deformational events in the terrane taking place at 160-185, 140-145, and 90-125 Ma, K-Ar. Studies of the fluid inclusions in the metamorphic and vein quartz demonstrate that fluid compositions (1-20 mole % CO2; 3-5 wt % NaCl equiv.) and homogenization temperatures (275-375°C) are closely similar. Gold contents of the vein systems range from 5 to 18 g/tonne. Calc-alkaline plutons of Cretaceous (85-1 10 Ma) and Tertiary (50-70 Ma) age K-Ar host epithermal veins, Sn-greisen, and W-skarn mineralization, all of which are demonstrably gold-bearing. Rb-Sr initial ratios for the mineralized composite plutons are greater than 0.71 1 indicating that anatexis of the lower crust was the source of the granitic magma. The Cu-Mo-Au porphyry mineralization is hosted in the Tertiary plutons that intrude lower Palaeozoic and Mesozoic sediments of the North American Continental Margin (NACM) in the Tolovana district. The NACM rocks are separated from the metavolcanic sequence by the eclogitic rocks and by major thrust faults. Paleoplacer Au deposits hosted in continental clastic rocks of Eocene to Pliocene age are described. These have formed in small grabens adjacent to major strike-slip faults bounding the Yukon-Tanana Terrane on the northeast and southwest respectively. These structures, the Tintina and Denali Faults, controlled sedimentation and placer formation in these grabens. Using compilations of tonnage/grade data from examples of primary deposits analogous to those identified in the Yukon-Tanana Terrane, it is shown that a single large-scale deposit of any of these types could have supplied all the gold contained in the placer deposits of the region.
    • Methods of Flood Flow Determination in Sparse Data Regions

      Carlson, Robert F.; Fox, Patricia M.; Shrader, Stephen D. (University of Alaska, Institute of Water Resources, 1974-06)
    • Microbial ecology of Thiobacillus ferrooxidans

      Brown, Edward J.; Rasley, Brian T.; Dixon, David P.; Hong, Seongho; Luong, Huan V.; Braddock, Joan F. (University of Alaska, Institute of Water Resources, 1990-03)
    • Mineral investigations of D-2 lands in the Philip Smith Mountains and Chandler Lake quadrangles

      Metz, P.A. and Robinson, M.S. (University of Alaska Mineral Industry Research Laboratory, 1979)
      Eight hundred and sixty-five stream sediment samples were collected over an area of approximately 2,120 square kilometers (828 square miles) in the Chandler Lake and Philip Smith Mountains quadrangles (Fig. 1). The samples were analyzed by atomic absorption methods for Cu, Pb, Zn, Ag and Mo. Statistical reduction of the data resulted in the definition of 86 anomalous samples. The majority of the anomalous samples were from streams draining either the Hunt Fork Shale, Kanayut Conglomerate, or the Lisburne Group. The anomalous samples are grouped in ten separate areas; eight of these areas warrant additional field examination. The number of geochemical anomalies within the area indicates that region has good potential for copper, lead and zinc sulfide mineral deposits.