• A Study of Sediment Transport in Norwegian Glacial Rivers, 1969

      Østrem, G.; Ziegler, T.; Ekman, S. R. (University of Alaska, Institute of Water Resources, 1973-02)
      Permission to translate this Norwegian report was kindly given by G. Østrem, and the translation by Helga Carstens, while she was in Alaska, is greatly appreciated. Unfortunately, Mrs. Carstens returned to her homeland, Norway, before final editing of the manuscript could be completed. Consequently, any errors in translation are due to the editor, and for these errors, the editor apologizes to the authors. Not included in this translation is an English summary contained in the original report. To keep printing costs down, the original figures and tables, which fortunately had English titles, are used in this translation. This report is the first of a series of reports being prepared for the Norwegian Water Resources and Electricity Board. The second report for 1970 has been published with an English summary and contains an extension of the data contained in the 1969 report. Because this work deals with problems very similar to those in Alaska, it was decided to translate the first report and circulate a limited number of copies to workers in the U. S. and Canada. Research very similar to the Norwegian work was initiated in Alaska under the editor's direction in cooperation with the U. S. Geological Survey. -- G. L. Guymon.
    • A Study of the Breakup Characteristics of the Chena River Basin Using ERTS Imagery: Completion Report

      Carlson, Robert F.; Wendler, Gerd (University of Alaska, Institute of Water Resources, 1974-06)
      Snowmelt and rainfall floodinq is a major water resource problem in Alaska. At the present time, forecastinq of these floods is based on a sparse hydrological and climatological network. Numerous basins with drainage areas of 5,000 km2 and less remain completely ungaged. The lack of data causes uncertainty in the design of transportation schemes such as tile Trans-Alaska oil pipeline. This project studied the utility of using ERTS-l imagery as a source of additional data for the prediction of snowmelt runoff, the most dynamic hydroloqic event in arctic and subarctic basins. Snow distribution as determined from the satellite imagery was compared with values determined from the conventional snow course stations and with the results of a snowmelt energy model. The Chena River Basin was selected because of the availability of ground truth data for comparison. Very good agreement for snow distribution and rates of ablation was found between the ERTS-l imagery, the snowmelt model, and field measurements. Monitoring snowmelt rates for relatively small basins appears to be practical. The main limitation of the ERTS-l imagery is the interval of coverage. More frequent overflights providing coverage are needed for the study of transient hydrologic events. ERTS-l data is most useful when used in conjunction with snowmelt prediction models and existing snow course data. These results should prove very useful in preliminary assessment of hydrologic conditions in ungaged watersheds and will provide a tool for month-to-month volume forecasting.
    • A Study of the Freezing Cycle in an Alaskan Stream : A Completion Report

      Benson, Carl S. (University of Alaska, Institute of Water Resources, 1973-03)
    • Study of Trace Elements in Waters of Two Alaskan Reservoir Sites

      Smith, Daniel W.; Hayes, Margaret J. (University of Alaska, Institute of Water Resources, 1975-01)
    • Sulphur isotopic evidence for the genesis of the Au-Ag-Sb-W mineralization of the Fairbanks mining district, Alaska

      Metz, P.A. (University of Alaska Mineral Industry Research Laboratory, 1984-10)
      Sulphur dioxide from sulphides was extracted for analysis by oxidation with Cuprous oxide at 1070º C, using essentially the method described by Robinson and Kusakabe (1975). The isotopic analyses of the purified sulphur dioxide were made on a modified Micromass 602 mass spectrometer with heated inlet system. The results were corrected for isobaric interference assuming a constant oxygen isotopic content and instrumental crosstalk (Coleman, 1977; 1980) and expressed in conventional del notation with respect to the Canon Diablo meteoritic troilite standard.
    • A Summary of gold fineness values from Alaska placer deposits

      Metz, P.A.; Hawkins, D.B. (University of Alaska Mineral Industry Research Laboratory, 1981)
      This report is the first in a series of publications by the Mineral Industry Research Laboratory and the Alaska Division of Geological and Geophysical Surveys under a special appropriation by the Alaska State Legislature to the School of Mineral Industry to conduct a "Mineral Appraisal of Interior Alaska Mining Districts".
    • Suprapermafrost Water: Completion Report

      Guymon, G. L. (University of Alaska, Institute of Water Resources, 1974-06)
    • Surface Erosion and Sedimentation Associated with Forest Land Use in Interior Alaska

      Aldrich, James W.; Johnson, Ronald A. (University of Alaska, Institute of Water Resources, 1979-05)
      The magnitude of sheet-rill erosion associated with various landscape manipulations is presented. The Universal Soil Loss Equation's usefulness for predicting annual sheet-rill erosion within interior Alaska is confirmed. Investigations of sheet-rill erosion indicate that removing the trees from forested areas with only minor ground cover disturbance did not increase erosion. Removing the ground cover, however, increased erosion 18 times above that on forested areas. Erosion is substantially reduced when disturbed areas are covered with straw mulch and fertilizer. Comparison of the actual erosion and the quantity of erosion predicted with the Universal Soil Loss Equation indicates that the equation overestimates annual erosion by an average of 21 percent. It overestimates individual storm erosion by an average of 174 percent. Data are also presented concerning sheet-rill erosion in a permafrost trail, distribution of the rainfall erosion index, and suggested cover and management factor values.
    • A Survey of Lentic Waters with Respect to Dissolved and Particulate Lead

      Nyquist, David; Casper, L. A.; LaPerriere, Jacqueline D. (University of Alaska, Institute of Water Resources, 1972-11)
      Some of the strongest temperature inversions in the world occur at Fairbanks, Alaska. Benson (1970) has reported that a temperature gradient of 10 to 30C/1OO m is common in the winter inversions that form at Fairbanks. Air pollution is especially severe during these inversions when it is accompanied by the formation of ice crystals in the air, a condition known as ice fog. This phenomenon occurs when the temperature drops below -20F (-35C) (Benson, 1970), and it intensifies with time if the inversion is not broken. The ice crystals in this fog have been found to adsorb dust and gasses, including the lead halides which are present in the air as a result of the combustion of tetraethyl lead and/or other lead-hydrocarbon compounds used as anti-knock additives in automotive gasoline. Lazrus et al. (1970) have found lead concentrations in precipitation to be highly significantly correlated with the amount of gasoline used in the area sampled. There are two factors that bring the concentration of lead to high levels in ice fogs. Evaporation of the ice crystals tends to concentrate pollutants in the air mass, especially over the core area of the city where precipitation is retarded by the heating effect of the city. Also, during the extreme cold weather accompanying this phenomenon, many people allow their cars to idle when they are parked to increase performance and for reasons of personal comfort. Eventually, much of the pollutants suspended in the ice fog is precipitated and causes unnaturally high levels of lead in the snow. (Winchester et al., 1967). It is suspected that some of this particulate lead collected in the snow may be carried along with the associated surface runoff into 1entic (standing) surface waters during thawing. The objectives of this project were: 1. to measure the amount of dissolved and particulate lead in a number of selected 1entic waters in the Fairbanks area, and 2. to measure the amount of lead that has been incorporated into net plankton organisms located in the selected lentic waters.
    • Thermal Tolerances of Interior Alaskan Arctic Grayling (Thymallus arcticus)

      LaPerriere, Jacqueline D.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1973-12)
    • Thermogravimetric and distillation studies on mercury, antimony and arsenic sulfides

      Town, J.W.; Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1975)
      Thermogravimetric studies were made on naturally occurring sulfides of mercury, antimony and arsenic to determine activation energies and Arrhenius rates of reaction in vacuum and in atmospheres of air and nitrogen. Of the three sulfides only antimony showed an appreciable change in rate of reaction for the different test conditions. Distillation results on three flotation concentrates from Alaska mining operations showed that cinnabar (mercury sulfide) could be distilled in a closed system, with over 99 percent recovery of the mercury as metal when the sulfur was reacted with iron. Over 98 percent mercury recovery was obtained from a cinnabar-stibnite (antimony sulfide) concentrate, with less than 1 percent of the antimony distilled from the furnace charge. Cinnabarrealgar-orpiment (arsenic sulfides) could not be separated by distillation and large quantities of soot (condenser residue) formed with the metallic mercury in the condenser.
    • Third annual conference on Alaskan placer mining

      Campbell, B.W. (University of Alaska Mineral Industry Research Laboratory, 1981)
      This Conference has been designed to present pertinent information on the foregoing facets of Placer Mining for the benefit of the industry; to allow discussion with fellow miners, and to permit sharing experience so that each may benefit i n conducting his own operation.
    • Thirty Summers and a Winter: U.S. Geological Survey Illustrations

      ; Mertie, Evelyn (Mineral Industry Research Laboratory, School of Mineral Engineering, University of Alaska, 1982)
    • A Town Meeting on Energy : Prepared for Interior Alaskans

      Seifert, Richard; Murray, Mayo (University of Alaska, Institute of Water Resources, 1977-10)
      On March 26, 1977, an all-day Town Meeting on Energy was held at the Hutchison Career Development Center on Geist Road in Fairbanks, Alaska. This event was sponsored by the Alaska Humanities Forum in cooperation with the Fairbanks North Star Borough School District; the Institute of Water Resources at the University of Alaska, Fairbanks; and the Fairbanks Town and Village Association. This publication reports the activities during and the information resulting from this town meeting.
    • Trace element copper distribution and areal geology in a portion of the Clearwater Mountains, Alaska

      Glavinovich, P.S. (University of Alaska Mineral Industry Research Laboratory, 1967)
      The study concerns that portion of the Clearwater Mountains defined by north latitudes 63' 03' and 63' 08' and west longitudes 147' 09' and 147' 30'. Outcrop within the area consists predominantly of a sequence of intercalated andesitic and basaltic flows. Sedimentary rocks are present but comprise a very small percentage of the total section. Dikes and a small pluton are also present. The prevailing attitude of the volcanic and sedimentary rocks is east-northeast with a consistent north dip. A Triassic age is accepted for the volcanic and sedimentary rocks. Areal and local sampling indicates that all rock types are abnormally high in trace copper content, and average background is 1000 ppm. Copper distribution suggests a syngenetic origin. Frequent small copper deposits crop out along the north side of the area. The deposits are epigcnctic and are structurally controlled. The origin of these deposits may have potential exploration significance.
    • Transportation economics of coal resources of northern slope coal fields, Alaska

      Clark, P.R. (University of Alaska Mineral Industry Research Laboratory, 1973)
      This paper describes the Northern coal fields, the environment in which they are situated, and various routes and systems for transporting metallurgical qua1ity coal from these deposits to a potential market in Japan. Each transportation mode is discussed with respect to northern Alaska conditions. Capitol and operating costs were developed for each system. If the coal must support the entire transportation system cost, the transportation of coal from the North Slope of Alaska to Japan appears to be economically feasible only from easily mined areas which are close to an ocean shipping port. In the case of transportation cost sharing by other users, or by government subsidization, the prospects of northern coal exploitation would be enhanced. The final feasibility of developing any of this coal deposit cannot be determined until the mining costs and the factors which influence these costs are known.
    • Treatment of Low Quality Water by Foam Fractionation

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1968)
      The removal of iron from Alaskan groundwaters by a foam fractionation technique has been shown to very effective. Finished waters with less than 0.2 mg/l iron have been produced from raw waters containing in excess of 25 mg/l. Ethylhexadecyldimethylammonium bromide was used as the principal foaming agent. Low temperature oxidation of the ferrous iron tended to interfere with the removal rates, but high temperature oxidation followed by low temperature fractionation did not exhibit the same adverse influence. All experiments were performed in four-liter laboratory batch columns. For the Alaskan environment batch processing is thought to have advantages over continuous processes because of the need for uncomplicated equipment.
    • Tunnel lining studies II

      Johansen, N.I. and Chalich, P. (University of Alaska Mineral Industry Research Laboratory, 1980-03)
      In the CRREL tunnel (Fig. B1, B2), sublimation is extremely apparent, but because of the tunnels limited usage it poses no significant problems. However, in an operating mine with forced air ventilation and continuously operating machinery, the problems associated with sublimation may no longer be insignificant. The dust released by the evaporating ice poses not only the obvious respiratory threat, but an additional safety threat, as fine silt suspended in the air reduces visibility, and removal or suppression of the dust will be of importance.
    • Uranium exploration methodology in cold climates

      Sims, J.M. (University of Alaska Mineral Industry Research Laboratory, 1980-03)
      The uranium prospecting boom of the past decade had, as a major consequence, the rapid development and proliferation of exploration methods for source materials. Numerous established methods were developed and refined whilst new techniques were introduced proving, in some instances, to be highly successful. To the explorationist the proliferation of instrumental hardware and detection systems was something of a headache with the result that in uranium exploration, more so than in other types of prospecting, the choice of exploration method at the appropriate stage of prospecting was frequently ill founded. The situation also spawned ‘black box’ purveyors who made extravagant claims for their equipment. Money was wasted through over kill applications of exploration method accompanied in many instances by deficiencies in the interpretation of results. This project was originally conceived as a means of evaluating, reviewing and filtering from a burgeoning array of systems the most appropriate exploration techniques applicable to cold climate environments. This goal has been trimmed somewhat since it had been hoped to incorporate site investigation data assembled in the field by the writer as appropriate case history material. This was not possible and as a consequence this report is a 'state of the art review' of the applicability of currently available techniques in Arctic and Subarctic environments. Reference is made to published case history data, where appropriate, supportive of the techniques or methods reviewed.