• Compilation of the data on the land withdrawals in Alaska

      Metz, P.A.; Pearson, R.W.; Lynch, D.F. (University of Alaska Mineral Industry Research Laboratory, 1978)
      Major decisions an the use and disposition of land in Alaska are being made by the State and Federal governments. These decisions will affect the utilization of all our land resources including minerals. Since minerals are an essential component of our existance, the availability and access to minerals is an important issue. There are approximately 2600 land orders and acts classifying land in Alaska that restrict the utilization of our minerals resources. As of April 1977, approximately twenty-six percent of Alaska, or 100,875,391 acres was open to mineral entry and location under the Federal Mining Laws and the State Mining and Mineral leasing Laws.
    • A Computer Model of the Tidal Phenomena in Cook Inlet, Alaska

      Carlson, Robert F.; Behlke, Charles E. (University of Alaska, Institute of Water Resources, 1972-03)
    • A computer processable storage and retrieval program for Alaska mineral information

      Heiner, L.E.; Porter, Eve (University of Alaska Mineral Industry Research Laboratory, 1972)
      The Mineral Industry Research Laboratory has developed a storage and retrieval file for Alaska mineral information to facilitate resource studies. The basis for the computer-processable file is the Division of ecological Survey Mineral Kardex system which contains an entry for every mineral property in Alaska that has either been recorded in the literature or has been claimed under the mineral staking laws. Use of the file has greatly increased the research capability of the laboratory to compile resource-oriented reports such as M.I.R.L. Report No. 16, IIFinal Report - Mineral Resources of Northern Alaska," M.I.R.L. Report No. 18, JlKnown and Potential Ore Reserves, Seward Peninsula, Alaska", and M.J.R.L Report No. 27, "Copper Mineral Occurrences in the Wrangell Mountain - Prince William Sound Area, Alaska" and S.E. Alaska Mineral Commodity Maps. The programs have been given the name MINFILE. MINFILEJ refers to a program that stores mineral information on magnetic tape. MINFILE2 is a Retreival program, MINFILE3 is a program to correct and make additions to the file. MINFILE4 and MINFILE5 are utility programs used for maintenance of the system.
    • Conference on Alaskan placer mining, focus: gold recovery systems

      Beistline, E.H.; Cook, D.J.; Thomas, B.I.; Wolff, E.N. (University of Alaska Mineral Industry Research Laboratory, 1979)
      Alaska Miners' Association and the School of Mineral Industry, University of Alaska, Fairbanks conference proceedings of the Alaskan Placer Mining conference on Gold Recovery Systems.
    • Constraints on the development of coal mining in arctic Alaska based on review of Eurasian arctic practices

      Lynch, D.F.; Johansen, N.I.; Lambert, C., Jr.; Wolff, E.N. (University of Alaska Mineral Industry Research Laboratory, 1976)
      Arctic Alaska's enormous reserves of coal may be a significant future source of energy for the United States and for the Pacific Basin. Large coal reserves have been developed in the Arctic portions of Eurasia, where problems similar to those that might be encountered in Alaska have already been faced. To determine the nature of these problems, the Mineral Industry Research Laboratory of the University of Alaska, under contracts S 0133057 with the U.S. Bureau of Mines, has conducted a literature review on Eurasian coal mining and visited mines in Svalbard, Norway; Carmacks, Y.T.; and Healy, Alaska. The purpose was to establish the most significant physical constraints which may apply to the eventual development of Northwestern Arctic Alaskan coal.
    • Copper mineral occurrences in the Wrangell Mountains-Prince William Sound area, Alaska

      Heiner, L.E.; Wolff, E.N.; Grybeck, D.G. (University of Alaska Mineral Industry Research Laboratory, 1971)
      On January 9, 1970, the U.S. Bureau of Mines entered into an agreement with the University of Alaska based upon a proposal submitted by the Mineral Industry Research Laboratory. Under the terms of this agreement, the Laboratory undertook to compile information on copper occurrences in eight quadrangles covering what are loosely known as the Copper River, White River, and Prince William Sound copper provinces. If time permitted four other quadrangles would be added, and this has been possible. Information was to be obtained by searching published and unpublished records of the Bureau of Mines, the U.S. Geological Survey, the State Division of Geological Survey, the University of Alaska, and the recording offices.
    • Cost of exploration for metallic minerals in Alaska

      Grybeck, D; Peek, B.C.; Robinson, M.S. (University of Alaska Mineral Industry Research Laboratory, 1976)
      The high cost of exploration for metallic minerals in Alaska not only reflects a 20-50% increase in the cost of supplies, food and salaries over those "outside" but also some additional costs that are characteristic of most Alaskan exploration efforts. Transportation in particular often represents half of the exploration budget and is a major cost of almost all programs. Helicopters commonly are used as the basic mode of field transportation; their cost is high (about $125 to $300 per hour) and increasing, and their availability is becoming less certain with the accelerating demand for them. Salaries for field personnel are also considerably higher than those paid to personnel "outside". And the demand, both from within and without the mining industry, for those with Alaskan experience is so great as to drive those salaries even higher. Fuel and communication costs not only show the usual Alaskan mark-up but are also subject to local scarcity and almost unavoidable problems. Fuel will probably continue to be available in the major population centers but there have always been difficulties in providing or obtaining fuel in the bush; these will undoubtedly be magnified with the booming development of Alaska's petroleum resources and national scarcity. Communications with the field will undoubtedly continue to be uncertain at times and will frequently present major problems that money along cannot solve and result in much frustration and delay. Contract services such as drilling, geophysical work, and geochemical analyses are available within the state in varying degree or can be obtained "outside" at rates that do not seem to be unduly expensive. However, the cost of transportation, mobilization, and demobilization of the personnel and equipment used in performing these services may result in unusually high costs for projects of short duration. Early logistical planning has always been considered wise in Alaskan field work and it will undoubtedly continue to be important, if not essential. The lack of it may be alleviated in some cases with copious applications of money but with Alaska's present booming development, the lack of planning may lead to an uncertain ability to work in the field at all. The cost of Alaskan exploration programs vary greatly. Many of the reconnaissance geologic and geochemical programs are strikingly expensive chiefly because of the need for helicopter support. Other types of programs such as prospect evaluations are not nearly so expensive and Alaskan costs for projects of limited area or duration are nor necessarily prohibitive. In almost all cases, experience, imagination, and prior planning can reduce costs significantly.
    • Cost of exploration for metallic minerals in Alaska - 1982

      Metz, P.A.; Campbell, B.W. (University of Alaska Mineral Industry Research Laboratory, 1982)
      This report prepared by the professional staff of the Mineral Industry Research Laboratory (M.I.R.L.), is a contemporary and detailed source of information relating to the costs of conducting mineral exploration for metallics in Alaska with commentary on the availability of essential services. As such it will serve the needs of established mining companies engaged in exploration ventures as well as newcomers to the Alaskan scene.
    • Current state-of-the-art in drying low-rank coals

      Rao, P.D. and Wolff, E.N. (University of Alaska Mineral Industry Research Laboratory, 1976)
      Research on drying of low-rank coals, such as lignites and subbituminous coals, has been conducted for nearly half a century. Although partial drying of Dakota lignite is practiced for freeze-proofing by mixing partially dried coal with run-of-mine coal, full scale drying of low rank coals has never been practiced commercially in this country. The reasons are: ( 1 ) drying of low rank coals by conventional methods results in severe degradation of coal particles; (2) dried coals are thus dusty and difficult to handle; (3) reabsorption of moisture in storage and transit defeats the drying process. In addition the dry coal particles will react with ambient oxygen, and heat up enough to ignite. It appears that large-scale development of Alaskan coals may have to await solutions to these problems. Our Mineral Industry Research Laboratory at the University of Alaska is making a comprehensive literature search seeking solutions to these problems and identifying areas of research that should be undertaken.
    • Deadfall Syncline coal, quality and reserves

      Callahan, J.E.; Rao, P.D.; Walsh, D.E. (University of Alaska Mineral Industry Research Laboratory, 1992)
      PRESENT INVESTIGATION The purpose of the 1991 drilling program was twofold: 1. To evaluate the coal reserves in a previously identified thick coal in an area of low structural dips and dip-slope topography near the axial plunge of the west extension of the Deadfall Syncline, primarily for surface mining, and to determine the feasibility of mining additional beds in conjunction with the thick coal. (For the purposes of this investigation, this coal is designated K3 as explained below), 2. To examine a continuous and unbroken stratigraphic interval of the Corwin formation in the northeastern part of the Deadfall Syncline as an initial step toward evaluation of the whole basin. This was accomplished by drilling overlapping holes aligned generally parallel to the dip direction, and spaced in accordance with the magnitude of dip and depth capacity of the drill. About 720 feet of stratigraphic section were covered in this way. A total of fourteen exploratory holes were drilled, ranging from 116 to 426 feet in depth (Figure 2). The drill was a Mobil B-60 mounted on a Nodwell tracked vehicle. Circulation was provided by a large compressor mounted on another Nodwell. Most of the footage was drilled with an air hammer, which provided a significant improvement in drilling rates over conventional rotary drilling. Lithology of cuttings from all holes was logged continuously, and composite grab samples from each 5 or 10 foot interval were taken. Coal cuttings were collected on a (relatively) clean plastic sheet, and promptly double bagged in plastic to minimize loss of bed moisture. Cores were taken from the K3 coal at 3 drill hole locations, and the underlying K4 coal was also cored at one of these 3 holes. A comparison of core length to geophysical logs indicates essentially 100% recovery for all cores. All samples, including rock cuttings, were shipped to the Mineral Industry Research Laboratory (MIRL), University of Alaska Fairbanks, for analyses and/or storage. All holes were logged with a Gearhart-Owen GeoLogger using natural garmna and gammagamma density tools. The log response with these tools for coals is distinct and unambiguous, particularly that of the density log, and the resolution is sufficient to estimate bed thickness to within 3 to 4 inches (Figures 8 and 9).
    • Determination mercury in Alaskan coals by flameless atomic absorption

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1973)
      An oxygen combustion, double gold amalgamation system is constructed for the determination of mercury in Alaskan coals. Solutions have been found for certain problems in design and operation. The effect of operating variables have been thoroughly evaluated and analytical procedure is outlined. The system involves combustion of goal in an oxygen atmosphere and amalgamating mercury on gold coils. The amalgamated mercury is released by heating and measured in an atomic absorption cell.
    • Determination of molybdenum in geological materials

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1971-09)
      This paper will describe a method for the determination of molybdenum in geological materials. It is known that molybdenum as molybdate or phosphomolybdate ion can be extracted using the liquid ion exchanger, Aliquat 336 (methyl tricapryl ammonium chloride, available from General Mills, Inc. Kankakee, Ill.). Aliquat 336 has been used for analytical separation of gold, tungsten, and actinide-lanthanide elements.
    • The determination of titanium in titaniferous magnetite ores by atomic absorption spectrophotometry

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1972-03)
      Amos and Willis (1) first investigated the use of nitrous oxide for the determination of titanium. They found that the presence of HF and iron enhance the absorption of titanium. They recommended “much more extensive investigation before a practicing chemical analyst can determine this element in a routine fashion by atomic absorption.” Various authors (2, 3, 4, 5, 6) have investigated titanium by atomic absorption and have recommended a number of different procedures to remove interference. In attempting to analyze lithium metaborate fusions (7, 8) of titaniferous magnetite ores of Alaska by atomic absorption, it was found that the interferences are not completely removed by any single approach suggested in the literature. Silicon, iron and aluminum could vary widely between samples and an approach was needed that would completely eliminate interference effects of all these elements, without having to match the gross matrix composition of samples and standards.
    • Development of a Conceptual Hydrologic Model for a Sub-Arctic Watershed

      Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1972-06)
      The Caribou-Poker Creek Research Watershed began as an Alaskan inter-agency effort in 1969. As more data becomes accumulated, as more hydrologic analysis is accomplished and as a greater variety of activities are carried out on the watershed, there is a need to understand the complete hydrologic system of the watershed. This report describes the development of a general hydrologic system model which describes the runoff occurrence on the watershed. The model will provide a basis upon which to make comparative observations, to suggest changes in·the model structure and to point out further measurement needs. A conceptual model study such as this work should not be thought of as a final answer to all systems analysis within the watershed or even the most desirable answer in many cases. There is a definite need, however, for a conceptual model because of the variety of activities and investigators, many of which do not have a complete understanding of the whole system. A complete and flexible conceptual model provides a convenient focal point for all types of investigators, regardless of their background and interest in the overall system. The Caribou-Poker Creek Research Watershed is located approximately 25 miles northwest of Fairbanks, Alaska. It is about 40 square miles in size and covers a variety of terrain which is typical of Interior Alaska. Other details concerning this watershed may be found in Slaughter (1971). Results of hydrologic data to date has been primarily data collection and reporting (Slaughter, 1972). The model as it is offered in this report is not intended to be a complete study of conceptual watershed modeling. Rather, the intention is to illustrate the derivation of a conceptual model and illustrate how it is applied to a particular watershed.
    • Development of a light-weight low cost self potential unit

      Zonge, K.L. (University of Alaska Mineral Industry Research Laboratory, 1968)
      A lightweight, low cost self-potential unit has been developed using solid state components. The parts for the basic unit including batteries, copper sulfate pots, and hookup wire costs approximately $70.00. The device is instant reading and weighs two pounds. The batteries used have a shelf life of ten years and an estimated operation life (based on continuous use for ten hours per day) of sixty days. This instrument was developed specifically for the Alaskan prospector who is concerned with weight and cost of field instrumentation.
    • Development of an Operational Northern Aquatic Ecosystem Model: Completion Report

      Carlson, Robert F.; Fox, Patricia M.; LaPerriere, Jacqueline D. (University of Alaska, Institute of Water Resources, 1977-06)
    • Distribution of certain minor elements in Alaskan coals

      Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1968)
      Seventy-five samples of coal from Northern Alaska, Jarvis Creek, Nenana, Matanuska, Kenai and Bering River Coal Fields were analyzed by quantitative spectrochemical procedures f o r lead, gallium, copper, barium, beryllium, nickel, titanium, vanadium, zirconium, cobalt, chromium, germanium, and tin. Other elements, of significance, identified from the spectrograms were, gold and silver identified in certain Nenana coals and silver in coals from Chickaloon in the Matanuska field, in concentrations up to several parts per million of coal ash. Forty-one of the above samples were sink-floated to study the distribution of minor elements between the organic and inorganic phases of the coals. Relative affinities of the minor of the minor elements to the organic matter in the coal is discussed.
    • Distribution of Organics from Salmon Decomposition: Completion Report

      Goering, J.; Brickell, D. (University of Alaska, Institute of Water Resources, 1972-12)
      In the fall of 1969, an OWRR-supported study of salmon carcass decomposition was initiated with the intent of collecting information on the biological and chemical dynamics of the decomposition and deposition of salmon wastes in Alaskan estuaries. The study aim was to elucidate the rates and mechanisms of the chemical transformations that accompany breakdown of fish flesh and to reveal the capacity of the Alaskan estuaries to handle quantities of organic seafood waste without presenting a pollution problem. This study has been in progress for several years, and the results have markedly increased our understanding of the decomposition of such organic materials in coastal streams and estuaries.
    • Distribution, analysis, and recovery of fine gold from alluvial deposits

      Cook, D.J.; Rao, P.D. (University of Alaska Mineral Industry Research Laboratory, 1973)
      The United States Bureau of Mines, in its Heavy Metals Program, desired to have research performed to determine the size-frequency distribution and possible economic value of gold particles in the fine size ranges of Alaskan placer deposits. Primary interest was involved in obtaining evidence of the occurrence of fine gold and to determine the ameanability of standard sampling and production methods in the evaluation and recovery processes. A research contract between the United States Bureau of Mines and the University of Alaska was initiated in June, 1968 as the first phase of this investigation, but was subsequently modified in June, 1969 to include beneficiation processes amenable to recovery as well as evaluation methods for fine and flakey gold. In searching the literature relative to fine gold in Alaskan placer deposits, it was found that virtually no research has been devoted to determining the extent of fine gold distribution and its effect on evaluation and subsequent recovery methods. Standard evaluation techniques have relied on gravity methods of concentration and recovery of the visible gold from the concentrate. In general, this has proved satisfactory in that operational recovery methods used were probably not conducive to retaining gold particles of less than 100 mesh in size. Operators have made no attempt to obtain a size analysis of gold in a head sample, but many have kept records of the size distribution of the gold as actually recovered. A review of these records, from selected areas, indicates that the -100 mesh gold represents from 0 to 5% of the total gold recovered. Although figures of this type may point to a probably fine gold loss, the difficulties inherent in evaluating the tailng material or modifying the recovery system have usually discouraged efforts in this direction.
    • Economic and Organizational Issues in Alaska Water Quality Management

      Erickson, Gregg K.; Tussing, Arlon R. (University of Alaska, Institute of Water Resources, 1971-09)