• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Improving ultimate recovery in the Granite Point field Tyonek C sands

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nenahlo_T_2018.pdf
    Size:
    30.26Mb
    Format:
    PDF
    Download
    Author
    Nenahlo, Thomas L.
    Chair
    Dandekar, Abhijit
    Patil, Shirish
    Committee
    Ning, Samson
    Keyword
    Secondary recovery of oil
    Alaska
    Cook Inlet Watershed
    Oil field flooding
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10400
    Abstract
    The objective of this research is to determine how the ultimate recovery of the Granite Point field can be improved. An understanding of the depositional setting, structure, stratigraphy, reservoir rock properties, reservoir fluids, aquifer, and development history of the Granite Point field was compiled. This was then leveraged to provide recommendations on how the ultimate recovery can be improved. The Granite Point field Tyonek C sands are located on an anticline structure at 8,000' to 11,000' SSTVD within the offshore Cook Inlet basin. These sands were deposited in a fluvial environment with the source material provided by the Alaska Range to the northwest. Due to uplifting, the Tyonek C sands are of relatively low porosity for their depth. The sands thin, become more numerous, and are of generally lower porosity from southwest to northeast. Oil quality is excellent and displacement efficiency of the reservoir rock with water flood exceeds 50% at breakthrough. Although displacement efficiency is high, the relative permeability to water is extremely low. The fracture gradient of the reservoir rock is on the order of magnitude of 1.0 psi/ft. Many initiatives were undertaken throughout the history of the Granite Point field to improve the rate and resource recovery, all of which were met with negligible success with the exception being the introduction of horizontal wells that were first drilled in the early 1990's. The underlying reason for the lack of success of these other initiatives is the low effective permeability to oil and the extremely low effective permeability to water. Secondary recovery with water injection was successful in the early stage of development, and can be in the future, but only when applied between wells that are connected by a sand of acceptable porosity. The results of this research indicate that to improve the ultimate recovery of the Granite Point field a thorough quantification of aquifer and injection water movement must first be understood, then horizontal wells can be placed in appropriate locations to improve the offtake and leverage the weak aquifer drive to provide pressure support.
    Description
    Master's Project (M.S.) University of Alaska Fairbanks, 2018
    Date
    2018-12
    Type
    Master's Project
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.