• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    FRAM based low power systems for low duty cycle applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gossel_C_2019.pdf
    Size:
    3.373Mb
    Format:
    PDF
    Download
    Author
    Gossel, Cody A.
    Chair
    Raskovic, Dejan
    Committee
    Thorsen, Denise
    Sonwalkar, Vikas
    Keyword
    nonvolatile random-access memory
    embedded computer systems
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10500
    Abstract
    Ferro-Electric Random Access Memory (FRAM) is a leap forward in non-volatile data storage technology for embedded systems. It allows for persistent storage without any power consumption, fulfilling the same role as flash memory. FRAM, however, provides several major advantages over flash memory, which can be leveraged to substantially reduce sleep current in a device. In applications where most of the time is spent sleeping these reductions can have a large impact on the average current. With careful design sleep currents as low as 72 nA have been demonstrated. A lower current consumption allows for more flexibility in deploying the device; smaller batteries or alternative power sources can be considered, and operating life can be extended. FRAM is not appropriate for every situation and there are some considerations to obtain the maximum benefit from its use. An MSP430FR2311 microcontroller is used to measure the performance of the FRAM and how to structure a program to achieve the lowest power consumption. Clock speed and instruction caching in particular have a large effect on the power consumption and tests are performed to quantify their effect. Two case studies are considered, a feedback control system and a data logger. Both cases involve large amounts of data writes and allow for the effects of the FRAM to be easily observed. Expected battery life is determined for each case when the sample rate is varied, suggesting that average operating current for the two solutions will nearly converge when the sampling period exceeds 1000 s. For sampling periods on the order of one second operating current can be reduced from 15.4 μA to 730 nA by utilizing FRAM in lieu of flash.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2019
    Date
    2019-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.