• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Modeling and analysis of geothermal organic rankine cycle turbines coupled with asynchronous generators as a primary power source in islanded microgrids

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Green_N_2019.pdf
    Size:
    6.324Mb
    Format:
    PDF
    Download
    Author
    Green, Nathan
    Chair
    Wies, Richard
    Committee
    Huang, Daisy
    Shirazi, Mariko
    Keyword
    geothermal power plants
    rankine cycle
    island networks
    electricity
    microgrids
    smart power grids
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10502
    Abstract
    Local renewable resources, such as geothermal hot springs, are being explored as prime electric power and heat sources in remote permanently islanded microgrids, and in some cases these renewable resources have already been implemented. In these types of remote areas, diesel electric generation is typically the prime source of power, even in areas where alternative resources are readily available, despite the high fuel cost due to transportation. This thesis shows that geothermal hot springs, when locally available, can provide primary power for these remote microgrids with temperatures as low as 20°C below the boiling point of water. The geothermal heat can be converted to electrical energy using an organic Rankine cycle turbine in combination with a self-excited induction generator. A steady-state energy balance model has been developed using MATLAB® and Simulink® for simulating greenfield and brownfield geothermal microgrids at Pilgrim Hot Springs, Alaska and Bergstagir, Iceland, respectively, to demonstrate viability of this microgrid design. The results of the simulations have shown that modest loads can be primarily powered off of these low temperature geothermal organic Rankine cycles over long time scales. As expected, more power is available during colder months when sink temperatures are lower, thus increasing the temperature differential. More research is needed to examine system response over shorter time scale transients, which are beyond the scope of this work.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2019
    Date
    2019-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.