• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Genetic diversity and population genetic structure of tanner crab Chionoecetes bairdi in Alaskan waters

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Johnson_G_2019.pdf
    Size:
    3.312Mb
    Format:
    PDF
    Download
    Author
    Johnson, Genevieve M.
    Chair
    López, J. Andrés
    Committee
    Eckert, Ginny L.
    Hardy, Sarah M.
    Keyword
    Tanner crabs
    genetics
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10506
    Abstract
    Tanner crab (Chionoecetes bairdi) is a large-bodied species of crab harvested in commercial, personal use, and subsistence fisheries across Alaska. The commercial fisheries were highly productive until the 1980s, when most stocks faced major declines and were closed to harvest. The recovery success of stocks throughout the state has been variable throughout the subsequent decades, leading managers to question whether there are aspects of the population dynamics that are not accounted for. There is limited information on the genetic population structure of C. bairdi in Alaskan waters, which has caused uncertainty about whether established management areas align well with distribution and migration patterns for this species. I applied novel high throughput sequencing methods to measure genetic diversity and investigate the genetic population structure of C. bairdi in Alaskan waters. Genomic DNA was isolated from samples collected from Southeast Alaska, Prince William Sound, and the Eastern Bering Sea, both east and west of 166°W longitude, and processed according to a Double-Digest Restriction-Associated DNA Sequencing protocol. The final genotype assembly included 89 individuals that were genotyped at 2,740 independent, neutral single-nucleotide polymorphism (SNP) sites, and contained 3.06% missing data. The average observed heterozygosity across SNP sites within regions was significantly lower than the average heterozygosity expected for populations in Hardy-Weinberg equilibrium. An analysis of molecular variance indicated that genetic variability was mostly found within individuals (90%), 10% of variability was observed between individuals within sampling regions, and no significant amount of variation was detected between sampling regions. Furthermore, pairwise FST estimates between sampling regions were low, and thus the null model of panmixia could not be rejected. Principal components analysis was also congruent with a model of no differentiation among regions. Bayesian analysis implemented in the program STRUCTURE did not support any population partitioning above K = 1 clusters, again indicating that there is not substantial genetic differentiation among the regions sampled from across the state of Alaska. These results indicate high gene flow throughout the distribution of Tanner crab across the Alaska continental shelf. Recognized stocks are genetically indistinguishable from each other. This may indicate that stocks exchange a substantial number of migrants, and may not operate independently. This new information can provide insights as management plans are evaluated and refined.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2019
    Table of Contents
    General introduction -- Chapter 1 : Characterizing genetic diversity and population genetic structure of Tanner crab Chionoecetes bairdi in Alaska using reduced-representation sequencing -- General conclusion -- Appendix A.
    Date
    2019-05
    Type
    Thesis
    Collections
    College of Fisheries and Ocean Sciences
    Theses (Fisheries)

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.