• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • College of Engineering and Mines (CEM)
    • Institute of Northern Engineering
    • Arctic Infrastructure Development Center (AIDC) Publications
    • Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC) Publications
    • CESTiCC Project Reports
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • College of Engineering and Mines (CEM)
    • Institute of Northern Engineering
    • Arctic Infrastructure Development Center (AIDC) Publications
    • Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC) Publications
    • CESTiCC Project Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Cost-Effective Use of Sustainable Cementitious Materials as Reactive Filter Media (Phase I)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    CESTiCC-Report-uRCA-Cl_FINAL.pdf
    Size:
    1.870Mb
    Format:
    PDF
    Download
    Author
    Li, Wenbing
    Shi, Xianming
    Keyword
    Nano SiO2
    crushed fines recycled concrete
    modify
    chloride removal
    concrete
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10598
    Abstract
    This report presents a laboratory study on the use of nano SiO2 as modifier in crushed fines recycled concrete (CFRCs), coupled with thermal treatment, with the goal of fabricating a sustainable reactive medium to capture the chloride anions in deicer-laden stormwater runoff. A uniform design (UD) scheme was employed for the statistical design of experiments. Predictive models were developed based on the experimental data to quantify the influence of each design parameter on the effectiveness of removing Cl- ions from simulated stormwater. The models were verified, and then employed for predictions. Finally, the samples of different CFRCs modified by nano SiO2 and heating regimes were prepared under the optimal parameters identified via the Response Surface Methodology (RSM). The optimal processing of CRFCs include the use of admixing nano SiO2 at 0.3% (by mass), then heating the material at 525oC for 3h. The structure and properties of these CFRCs materials were characterized by XRD, FTIR, BET, SEM and EDS. These advanced characterization tools revealed that the modified CFRCs achieved great potential to chemically bind chloride anions. This work is expected to produce substantial benefits for highway agencies and other stakeholders of deicer stormwater runoff, through enhanced understanding of the efficacy and appropriateness of cementitious filter media in passive reactive systems for decreasing contaminant loading in stormwater runoff. The use of CRFCs as a low-cost sorbent will be economically attractive and environmentally sustainable, diverting them from waste stream and landfill and towards sustainable stormwater management.
    Date
    2019-08-31
    Type
    Technical Report
    Collections
    CESTiCC Project Reports

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.