• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Enhancement of algorithm for detection of gold strip circuit vessel sensor errors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    DEMELO_E_2019.pdf
    Size:
    8.091Mb
    Format:
    PDF
    Download
    Author
    de Melo, Eduardo Pimenta
    Chair
    Ganguli, Rajive
    Committee
    Ghosh, Tathagata
    Arya, Sampurna
    Keyword
    detectors
    defects
    detection
    mining engineering
    mineral industries
    Pogo Gold Mine
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10615
    Abstract
    Sensors are used to understand the condition and flow of mineral processes. Having accurate and precise information is fundamental for proper operation. Even small errors are relevant to cost when considering the operational span of a mine. Finding small errors is hard; few algorithms can detect them and fewer still, when considering errors on the scale of 2% in magnitude. Some tools have recently been developed using data mining techniques for detecting small errors. Rambabu Pothina (2017) created an algorithm for detecting small errors in strip vessel temperature sensors in the carbon stripping circuit in Pogo mine. The algorithm performed well and was able to detect small magnitude errors without disrupting the industrial process. This thesis improves the understanding of the performance of the algorithm, while also making some minor changes. First, a statistical analysis of the results of the algorithm on baseline data revealed an inherent difference in how the carbon strip process was run with respect to the two strip vessels. This discovery provided insight into the algorithm, and how its performance depended on process characteristics. Second, the error detection algorithm was tested under scenarios different from Pothina (2017). Three separate types of errors were artificially added to real data: a) a fixed 2% ("fixed" error increase) b) a fixed 2% decrease ("fixed" error decrease) and c) an error with a mean value of 2% of magnitude ("noisy" error). Additionally, error was added to temperature data from each strip vessel (rather than just one), though only one at a time. The algorithm was tested under each scenario for each of the four years, 2015, 2016, 2017 and 2018. The time to detect errors ranged from 19 to 73 days. The time to detect was very high (53 to 73 days) in 2017 since there were large data gaps that year. In general, time to detect was about 30 days. The performance under noisy error were not that far below fixed error scenario. The algorithm took 10% more time to detect errors under noisy error scenario compared to fixed error scenario. On average, the algorithm detected an error after 25 cycles, regardless of the time span this represents. This is consistent in years with plentiful data, such as 2015, as well as years with less data, 2017 and 2018. In years with data gaps, 25 cycles represent a longer time period. Seeded errors that decreased vessel temperature have very similar results to its equivalent increase, i.e. the decrease in 2% of S2 has results similar to the increase of 2% in S1 and vice versa. In conclusion, these additional testing and analysis helped develop a more comprehensive understanding of the behavior of the data and the algorithms. These results validate and strengthen the findings of Pothina (2017).
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2019
    Date
    2019-08
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.