• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • College of Engineering and Mines (CEM)
    • Institute of Northern Engineering
    • Arctic Infrastructure Development Center (AIDC) Publications
    • Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC) Publications
    • CESTiCC Project Reports
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • College of Engineering and Mines (CEM)
    • Institute of Northern Engineering
    • Arctic Infrastructure Development Center (AIDC) Publications
    • Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC) Publications
    • CESTiCC Project Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    A Bio-Wicking System to Prevent Frost Heave in Alaskan Pavements: Phase II Implementation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    A Bio Wicking System Phase II ...
    Size:
    4.933Mb
    Format:
    PDF
    Download
    Author
    Galinmoghadan, Javad
    Zhang, Xiong
    Lin, Chang
    Keyword
    geotextiles
    subsurface drainage
    unsaturated soils
    pavement
    frost heave
    thaw weakening
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10746
    Abstract
    Water within pavement layers is the major cause of pavement deterioration. High water content results in significant reduction in soil’s resilient behavior and an increase in permanent deformation. Especially in cold regions, frost heave and thaw weakening cause extensive damage to roads and airfields. Conventional drainage systems can only drain gravity water not capillary water. Both preliminary lab and field tests have proven the drainage efficiency of a newly developed H2Ri geotextile with wicking fabrics. In this report, continuous research was conducted to verify the effectiveness of the wicking fabric in mitigating frost boil issues in Alaskan pavemnets. Two test sections were selected at two low volume roads on the campus of the University of Alaska Fairbanks. Soil moisture and temperature sensors were installed within the road embankments. The monitored data was used to analyze the soil migrations and evaluate the drainage performance of the wicking fabric. Preliminary monitoring results showed that the wicking fabric was effective in mitigating the frost boil problem.
    Date
    2019-11
    Type
    Technical Report
    Collections
    CESTiCC Project Reports

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.