• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Laboratory investigation of infiltration process of nonnewtonian fluids through porous media in a non-isothermal flow regime for effective remediation of adsorbed contaminants

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Naseer_F_2019.pdf
    Size:
    7.791Mb
    Format:
    PDF
    Download
    Author
    Naseer, Fawad
    Chair
    Misra, Debasmita
    Committee
    Metz, Paul
    Awoleke, Obadare
    Najm, Majdi Abou
    Keyword
    soil remediation
    non-newtonian fluids
    soil infiltration rate
    guar gum
    xanthan gum
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10907
    Abstract
    Contamination of soil and groundwater have serious health implications for man and environment. The overall goal of this research is to study a methodology of using nonNewtonian fluids for effective remediation of adsorbed contaminants in porous media under nonisothermal flow regimes. Non-Newtonian fluids (Guar gum and Xanthan gum solutions) provide a high viscous solution at low concentration and these fluids adjust their viscosities with applied shear rate and change in temperature. Adjustment of viscosity with an applied rate of shear is vital for contaminant remediation because non-Newtonian shear thinning fluids can penetrate to low permeability zones in subsurface by decreasing their viscosities due to high shear rates offered by low permeability zones. The application of non-Newtonian shear thinning fluids for contaminant remediation required the improvement in understanding of rheology and how the factors such as concentration, temperature and change in shear rate impacted the rheology of fluids. In order to study the rheology, we studied the changes in rheological characteristics (viscosity and contact angle) of non-Newtonian fluids of different concentrations (i.e., 0.5g/l, 1g/l, 3g/l, 6g/l and 7g/l) at different temperatures ranging from 0 ºC to 30 ºC. OFITE model 900 viscometer and Tantec contact angle meter were used to record the changes in viscosity of fluids for an applied range of shear rate (i.e., 17.02 s⁻¹ to 1021.38 s⁻¹) and contact angles, respectively, for different concentrations of non-Newtonian fluids. Understanding the flow characteristic of non-Newtonian fluids under low temperature conditions could help in developing methods to effectively remediate contaminants from soils. Results of rheological tests manifested an increase in the viscosity of both polymers with concentration and decrease in temperature. Mid (i.e., 3g/l) to high (i.e., 6g/l and 7g/l) concentrations of polymers manifested higher viscosities compared to 0.5g/l for both polymers. Flow of high viscous solutions required more force to pass through a glass-tube-bundle setup which represented a synthetic porous media to study the flow characteristic and effectiveness of Newtonian and non-Newtonian fluids for contaminant remediation. Low concentrations of 0.5g/l were selected for flow and remediation experiments because this concentration can flow through porous media easily without application of force. The 0.5g/l of Xanthan gum and de-ionized water were used to conduct the infiltration experiments to study the flow characteristics of Newtonian and non-Newtonian fluids at 0.6°C, 5°C and 19°C in synthetic porous media. Infiltration depth of both Newtonian and non-Newtonian fluids would decrease with the decrease in temperature because of the change in their properties like dynamic viscosity, density and angle of contact. The result of comparison of Newtonian and non-Newtonian fluids showed water to be more effective in remediating a surrogate adsorbent contaminant (Dichlobenil) from the synthetic porous media at 19°C. This result was counter-intuitive to what we began with as our hypothesis. However, it was also observed later that 0.5 g/l concentration of Guar gum behaved more like a Newtonian fluid and 0.5 g/l concentration of Xanthan gum had not shown strong non-Newtonian behavior compared to higher concentrations of Xanthan gum. Hence more analysis needs to be done to determine what concentration of non-Newtonian fluid should be more effective for remediation.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2019
    Table of Contents
    Chapter 1: Introduction -- Chapter 2: Effect of temperature on rheological properties of Guar gum and Xanthan gum of different concentrations -- Chapter 3: Porous media flow characteristics of Newtonian and non-Newtonian Fluids under different thermal regimes -- Chapter 4: Comparison of Newtonian and non-Newtonian fluid for remediation of adsorbent contaminant -- Chapter 5: Conclusion.
    Date
    2019-12
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.