Show simple item record

dc.contributor.authorZabihi, Khodabakhsh
dc.contributor.authorHuettmann, Falk
dc.contributor.authorYoung, Brian
dc.date.accessioned2020-03-04T14:06:04Z
dc.date.available2020-03-04T14:06:04Z
dc.date.issued2020
dc.identifier.citationZabihi, K., Huettmann, F., Young, B., 2021. Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: open-access big GIS-data mining to provide robust inference. Biodiversity Informatics 16 (1), 1–19.en_US
dc.identifier.urihttp://hdl.handle.net/11122/10924
dc.description.abstractClassified prediction map of multi-species bark beetle occurrence using 95% confidence interval of assessment/test points to differentiate predicted index of relative occurrence (RIO) of the ecological model. Value 1 (presence) represents the favorable habitats and value 0 (absence) represents regions that may not be occupied by scolytines community based on the current climatic conditions and biophysical attributes of the landscape. The map is prepared at 1-km spatial resolution and the geographic projection is NAD 1983 Alaska Albers.en_US
dc.language.isoenen_US
dc.sourceen_US
dc.subjectAlaska, Spatial Model, Map, Machine Learning, Boosted Classification and Regression Tree, Image File, Raster, Pixel, Data, GISen_US
dc.titleBinary Map (Figure 6)en_US
dc.typeDataseten_US
dc.description.peerreviewYesen_US
refterms.dateFOA2020-03-04T14:06:05Z


Files in this item

Thumbnail
Name:
BinaryMap.zip
Size:
208.7Kb
Format:
Unknown
Description:
Alaska Predicted Distribution ...

This item appears in the following Collection(s)

Show simple item record