Binary Map (Figure 6)
dc.contributor.author | Zabihi, Khodabakhsh | |
dc.contributor.author | Huettmann, Falk | |
dc.contributor.author | Young, Brian | |
dc.date.accessioned | 2020-03-04T14:06:04Z | |
dc.date.available | 2020-03-04T14:06:04Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Zabihi, K., Huettmann, F., Young, B., 2021. Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: open-access big GIS-data mining to provide robust inference. Biodiversity Informatics 16 (1), 1–19. | en_US |
dc.identifier.uri | http://hdl.handle.net/11122/10924 | |
dc.description.abstract | Classified prediction map of multi-species bark beetle occurrence using 95% confidence interval of assessment/test points to differentiate predicted index of relative occurrence (RIO) of the ecological model. Value 1 (presence) represents the favorable habitats and value 0 (absence) represents regions that may not be occupied by scolytines community based on the current climatic conditions and biophysical attributes of the landscape. The map is prepared at 1-km spatial resolution and the geographic projection is NAD 1983 Alaska Albers. | en_US |
dc.language.iso | en | en_US |
dc.source | en_US | |
dc.subject | Alaska, Spatial Model, Map, Machine Learning, Boosted Classification and Regression Tree, Image File, Raster, Pixel, Data, GIS | en_US |
dc.title | Binary Map (Figure 6) | en_US |
dc.type | Dataset | en_US |
dc.description.peerreview | Yes | en_US |
refterms.dateFOA | 2020-03-04T14:06:05Z |