Enabling Data-Driven Transportation Safety Improvements in Rural Alaska
Keyword
Bicycle countsCrash Data
crash records
crash reports
data analysis
data collection
data management
databases
infrastructure
manual traffic counts
mobile applications
safety audits
software
traffic counting
traffic data
traffic measurement
traffic safety
Metadata
Show full item recordAbstract
Safety improvements require funding. A clear need must be demonstrated to secure funding. For transportation safety, data, especially data about past crashes, is the usual method of demonstrating need. However, in rural locations, such data is often not available, or is not in a form amenable to use in funding applications. This research aids rural entities, often federally recognized tribes and small villages acquire data needed for funding applications. Two aspects of work product are the development of a traffic counting application for an iPad or similar device, and a review of the data requirements of the major transportation funding agencies. The traffic-counting app, UAF Traffic, demonstrated its ability to count traffic and turning movements for cars and trucks, as well as ATVs, snow machines, pedestrians, bicycles, and dog sleds. The review of the major agencies demonstrated that all the likely funders would accept qualitative data and Road Safety Audits. However, quantitative data, if it was available, was helpful.Date
2019-12Type
Technical ReportCollections
Related items
Showing items related by title, author, creator and subject.
-
2007–2016 FATAL TRAFFIC CRASHES IN ALASKA, HAWAII, IDAHO, AND WASHINGTON AND CHARACTERISTICS OF TRAFFIC FATALITIES INVOLVING HAWAIIANS AND CSET MINORITIESPrevedouros, Panos; Bhatta, Kishor; Miah, M. Mintu (2019-04)Data for this comparative study were collected from the Fatality Analysis and Reporting System (FARS) for the years 2007 to 2016 for the states of Alaska, Hawaii, Idaho, and Washington. The rates of roadway fatalities, especially those of American Indians (which include Aleuts and Eskimos), Guamanians, Samoans, and Native Hawaiians (which include part-Hawaiians) were the focus of the study; they are referred to as “CSET Minorities” in this report; all other races are referred to as “All Others.” Three main contributing factors for fatal crashes—alcohol use, speeding, and non-usage of restraint—were analyzed for each population group. CSET states are lagging behind many countries in terms of traffic safety. Significant differences in the involvement of alcohol, speeding, and non-usage of restraint were indicated between CSET Minority fatalities and All Others. For all types of crashes examined, CSET Minorities exhibited statistically significant differences, nearly all of them being higher or worse than All Others, except for motorcycle crashes. In Hawaii, the proportion of Hawaiians in the population is steady at approximately 21%, but their proportion in FARS database is at 28% and rising. Aggregate data analysis of traffic fatalities focused on three rural, indigenous, tribal, and isolated (RITI) communities in Hawaii, the entire Big Island of Hawaii, and the rural communities of Waianae and Waimanalo on the island of Oahu. All three locations are known for their relatively large number of Hawaiians and part-Hawaiians. The percentage of Hawaiians in traffic fatalities was 32% on the Big Island, 50% in Waianae, and 78% in Waimanalo.
-
Assessment of the Contribution of Traffic Emissions to the Mobile Vehicle Measured PM2.5 Concentration by Means of WRF-CMAQ SimulationsMolders, Nicole; Tran, Huy N.Q. (Alaska University Transportation Center, Fairbanks Northstar Borough, 2012)
-
DRONES FOR IMPROVING TRAFFIC SAFETY IN RITI COMMUNITIES IN WASHINGTON STATEBan, Xuegang (Jeff); Abramson, Daniel; Zhang, Yiran (2020-04-04)Transportation and traffic safety is a primary concern in Rural, Isolated, Tribal, or Indigenous (RITI) communities in Washington (WA) State. Parallel to this, while emerging technologies (e.g., connected/autonomous vehicles, drones) have been developed and tested in addressing traffic safety issues, they are often not widely shared in RITI communities for various reasons. Compared with other technological advances, drone technologies have been rapidly improved and can be flexibly applied to multiple fields, including engineering, agriculture and disaster managements. The goal of this study is to explore and synthesize the opportunities, challenges and scenarios that drone technologies can assist to resolve traffic safety related issues and concerns in RITI communities. Through the outreach activities with the outer Pacific Coast in WA state, it is found that the principal concern within these communities are disaster management and mitigation since they are facing the threat of coastal erosion, earthquake and tsunami. Thus, the emergency management and hazard mitigation becomes the major way to further explore drone applications in the selected communities. To achieve this, we reviewed the current state of the drone technologies, conducted surveys from National Guard and coastal communities in WA, including City of Westport, South Beach Region, Grays Harbor County, Shoalwater Bay Tribe, and Quinault Indian Nation, to better understand their current needs, challenges and issues. Ultimately, recommendations of drone applications under specific scenarios are provided based upon the integration of drone technologies with community safety needs.