• Thermal Tolerances of Interior Alaskan Arctic Grayling (Thymallus arcticus)

      LaPerriere, Jacqueline D.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1973-12)
    • A Town Meeting on Energy : Prepared for Interior Alaskans

      Seifert, Richard; Murray, Mayo (University of Alaska, Institute of Water Resources, 1977-10)
      On March 26, 1977, an all-day Town Meeting on Energy was held at the Hutchison Career Development Center on Geist Road in Fairbanks, Alaska. This event was sponsored by the Alaska Humanities Forum in cooperation with the Fairbanks North Star Borough School District; the Institute of Water Resources at the University of Alaska, Fairbanks; and the Fairbanks Town and Village Association. This publication reports the activities during and the information resulting from this town meeting.
    • Treatment of Low Quality Water by Foam Fractionation

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1968)
      The removal of iron from Alaskan groundwaters by a foam fractionation technique has been shown to very effective. Finished waters with less than 0.2 mg/l iron have been produced from raw waters containing in excess of 25 mg/l. Ethylhexadecyldimethylammonium bromide was used as the principal foaming agent. Low temperature oxidation of the ferrous iron tended to interfere with the removal rates, but high temperature oxidation followed by low temperature fractionation did not exhibit the same adverse influence. All experiments were performed in four-liter laboratory batch columns. For the Alaskan environment batch processing is thought to have advantages over continuous processes because of the need for uncomplicated equipment.
    • User's guide for atmospheric carbon monoxide transport model

      Norton, William R.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1976-06)
      In the winter months of Fairbanks, Alaska, a highly stable air temperature inversion creates high levels of carbon monoxide (CO) concentrations. As an aid to understanding this problem, a CO transport computer model has been created which provides a useful tool when used in conjunction with other measurement and analytic studies of traffic, meteorology, emissions control, zoning, and parking management. The model is completely documented and illustrated with several examples. Named ACOSP (Atmospheric CO Simulation Program), it predicts expected CO concentrations within a specific geographic area for a defined set of CO sources. At the present time, the model is programmed to consider automobile emissions as the major CO source and may include estimates of stationary sources. The model is coded for computer solution in the FORTRAN programming language and uses the finite-element method of numerical solution of the basic convective-diffusion equations. Although it has a potential for real-time analysis and control, at the present time the model will be most valuable for investigating and understanding the physical processes which are responsible for high CO levels and for testing remedial control measures at high speed and low cost.
    • Water Balance of a Small Lake in a Permafrost Region

      Hartman, Charles W.; Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1973-09)
    • A Water Distribution System for Cold Regions: The Single Main Recirculation Method: An Historical Review, Field Evaluation, and Suggested Design Procedures

      Murphy, R. Sage; Hartman, Charles W. (University of Alaska, Institute of Water Resources, 1969-03)
      Students and residents of the Arctic are familiar with the many problems peculiar to the geographical area. This monograph will consider an adequate, safe, and reliable water distribution system. Water supply, together with housing, transportation, and waste disposal, are demanded when a remote area becomes established as a permanent settlement. As long as the population of the North was widely distributed in small mining camps, villages, and individual cabins, water distribution systems were not necessary, as shallow wells and nearby streams adequately served most needs. With the rapidly increasing settlement of the vast lands of the North, the population is being centered in communities rather than distributed over large areas. The world population explosion will undoubtedly contribute to increasing immigration into Arctic and sub-Arctic areas. These changes have already created a need for modern water distribution systems, a need which will become more critical with time.
    • Water Quality in Alaskan Campgrounds

      Murphy, R. Sage (University of Alaska, Institute of Water Resources, 1973-01)
      This report presents an evaluation of water quality in Alaskan Campgrounds using laboratory determinations and on-site evaluations. In general, ground water quality was found to be excellent and surface water quality unacceptable for human consumption and total body contact recreation. The most pressing need was found to be the provision of an approved drinking water supply for each campground. The· environmental health aspects of campgrounds were found to be largely neglected. Many of the sewage systems are inadequate resulting in pollution of the ground and surface water. Solid waste was found to be stored and disposed of by unacceptable methods. Finally, many campgrounds are located in swampy areas or located in areas subject to annual flooding.
    • Water Quality in the Great Land, Alaska's Challenge: Proceedings

      Huntsinger, Ronald G. (University of Alaska, Institute of Water Resources, 1987-10)
      Administering water quality programs -- Surface water issues -- Groundwater issues -- Sediments and resource development
    • Water/Wastewater Evaluation for an Arctic Alaskan Industrial Camp

      Tilsworth, Timothy (University of Alaska, Institute of Water Resources, 1973-04)
      Discovery of a huge oil field at Prudhoe Bay in the late 1960's resulted in a great deal of industrial activity on the North Slope of arctic Alaska. This flurry of industrial activity was accompanied by environmental concern across the nation. The fact that Alaska was "the last frontier” placed it high on the list for ecological scrutiny.
    • Winter soil water dynamics: Completion report

      Kane, D. L. (University of Alaska, Institute of Water Resources, 1975-12)
      The movement of soil moisture through cold regions soils is an active process that continues throughout the year. It represents one mechanism of heat transport in subsurface soil, conduction being the main mode of heat flow. In frozen soils, this moisture may undergo phase change resulting in two significant events: 1. deformation of the near-surface layer, and 2. liberation or uptake of heat at the point of phase change. Where deformation (induced by either frost heaving or thaw consolidation) occurs in man-made embankments, it is readily apparent at the surface. Restoration of the deformed surface requires large sums of money.