• A Catalog of Hydroclimatological Data for Alaska's Coastal Zone

      Carlson, Robert F.; Weller, Gunter (University of Alaska, Institute of Water Resources, 1972-05)
      In order to perceive a better understanding of the interrelationships of the coastal zone water we proposed a research project which was to sort out many of the complex variables. The project was not begun due to the lack of sufficient funds. We did, however, begin a limited literature search and listing of hydroclimatological data sources of Alaska's coastal zone. We felt this would be a modest but useful start towards the larger study. It should also have some practical usefulness to others. This data catalog is a result of this initial study. Because of the wide variety of types of agency which collect data and the literally hundreds of sources through which they are reported, it is often quite bewildering for even experienced investigators to sort out what can be found and where. Although we are sure that the catalog is far from complete, we feel that it is a useful beginning towards an attempt to better understand the hydroclimatological processes in Alaska's coastal zone. We wish to invite contributions and criticisms which could lead to an improved and more comprehensive version at some future date.
    • The Characteristics and Ultimate Disposal of Waste Septic Tank Sludge

      Tilsworth, Timothy (University of Alaska, Institute of Water Resources, 1974-11)
    • Clearing Alaskan Water Supply Impoundments : Data

      Smith, Daniel W.; Justice, Stanley R. (University of Alaska, Institute of Water Resources, 1976-04)
      The data contained in IWR-67 (Clearing Alaskan Supply Impoundments: Management and Laboratory Study) was collected to determine the effect on water quality of five proposed Alaskan reservoirs as a function of the extent of clearing in site preparation. The study developed a methodology for such analysis and made recommendations as to the best clearing alternatives for each reservoir site. For graphic presentation and evaluation of the data, refer to IWR-67 and IWR-67-A (Literature Review), published by the Institute of Water Resources, University of Alaska, Fairbanks, Alaska.
    • Clearing Alaskan Water Supply Impoundments : Literature Review

      Justice, Stanley R.; Smith, Daniel W. (University of Alaska, Institute of Water Resources, 1976-04)
      This literature review was prepared in conjunction with a research project evaluating the effect on water quality of five proposed Alaskan Reservoirs and recommending clearing alternatives. For the results of the laboratory study and discussion of impoundment management in northern regions refer to "Clearing Alaskan Water Supply Impoundments, Management and Laboratory Study" (IWR-67). The data developed in the laboratory portion of the study is contained in IWR-67-B. Contact the Institute of Water Resources if access to this material is desired. Much of the material in this review was derived from the paper "The Effect of Reservoirs on Water Quality" which was prepared by Stan Justice in partial fulfillment of the requirements for the degree of Master of Science in Environmental Quality Engineering.
    • Clearing Alaskan water supply impoundments: management, laboratory study, and literature review

      Smith, Daniel W.; Justice, Stanley R. (University of Alaska, Institute of Water Resources, 1976-04)
      Water supply impoundments in northern regions have seen only limited application. Reasons for the lack of use of such impoundments include the following: 1) little demand for water due to the low population densities and rustic life styles; 2) a lack of conventional distribution systems in many communities; 3) poorly developed technology for construction of dams on permafrost; 4) adequacy of existing river, lake, ice, and lagoon water supplies; 5) shortage of capital to finance the high cost of construction in remote regions.
    • Cold climate water/wastewater transportation and treatment - a bibliography: completion report

      Tilsworth, Timothy; Smith, Daniel M.; Zemansky, G. M.; Justice, Stanley R. (University of Alaska, Institute of Water Resources, 1977-12)
      This bibliography contains 1,400 citations, including published and unpublished papers, on cold-climate water and wastewater transportation and treatment systems. Sources listed include state and federal agency files which contain information on systems in Alaskan communities and the Alyeska Pipeline Service Company camps. References to systems in other northern countries are also included. The objectives of this study were to identify causes of the failure of Alaskan water and wastewater treatment and transportation facilities and to seek methods for design improvements. Originally, the investigators contemplated an evaluation of systems performance in remote areas in relation to the original conception, planning, design, and construction. Because of the tremendous amount of literature examined, the evaluation was undertaken in a subsequent study, "Alaska Wastewater Treatment Technology" (A-058-ALAS) by Dr. Ronald A. Johnson.
    • Community Response Strategies for Environmental Problems of Water Supply and Wastewater Disposal in Fairbanks, Alaska

      Smith, Daniel W.; Pearson, Roger W. (University of Alaska, Institute of Water Resources, 1975-06)
      This report examines the history of the response strategies of the Fairbanks, Alaska, community to problems of water supply and wastewater disposal. Fairbanks is significant since it is the largest settlement in the northern subarctic and arctic regions of North America. Today, the City of Fairbanks and the surrounding urban area have a combined population of over 40,000.
    • A Computer Model of the Tidal Phenomena in Cook Inlet, Alaska

      Carlson, Robert F.; Behlke, Charles E. (University of Alaska, Institute of Water Resources, 1972-03)
    • Development of a Conceptual Hydrologic Model for a Sub-Arctic Watershed

      Carlson, Robert F. (University of Alaska, Institute of Water Resources, 1972-06)
      The Caribou-Poker Creek Research Watershed began as an Alaskan inter-agency effort in 1969. As more data becomes accumulated, as more hydrologic analysis is accomplished and as a greater variety of activities are carried out on the watershed, there is a need to understand the complete hydrologic system of the watershed. This report describes the development of a general hydrologic system model which describes the runoff occurrence on the watershed. The model will provide a basis upon which to make comparative observations, to suggest changes in·the model structure and to point out further measurement needs. A conceptual model study such as this work should not be thought of as a final answer to all systems analysis within the watershed or even the most desirable answer in many cases. There is a definite need, however, for a conceptual model because of the variety of activities and investigators, many of which do not have a complete understanding of the whole system. A complete and flexible conceptual model provides a convenient focal point for all types of investigators, regardless of their background and interest in the overall system. The Caribou-Poker Creek Research Watershed is located approximately 25 miles northwest of Fairbanks, Alaska. It is about 40 square miles in size and covers a variety of terrain which is typical of Interior Alaska. Other details concerning this watershed may be found in Slaughter (1971). Results of hydrologic data to date has been primarily data collection and reporting (Slaughter, 1972). The model as it is offered in this report is not intended to be a complete study of conceptual watershed modeling. Rather, the intention is to illustrate the derivation of a conceptual model and illustrate how it is applied to a particular watershed.
    • Development of an Operational Northern Aquatic Ecosystem Model: Completion Report

      Carlson, Robert F.; Fox, Patricia M.; LaPerriere, Jacqueline D. (University of Alaska, Institute of Water Resources, 1977-06)
    • Distribution of Organics from Salmon Decomposition: Completion Report

      Goering, J.; Brickell, D. (University of Alaska, Institute of Water Resources, 1972-12)
      In the fall of 1969, an OWRR-supported study of salmon carcass decomposition was initiated with the intent of collecting information on the biological and chemical dynamics of the decomposition and deposition of salmon wastes in Alaskan estuaries. The study aim was to elucidate the rates and mechanisms of the chemical transformations that accompany breakdown of fish flesh and to reveal the capacity of the Alaskan estuaries to handle quantities of organic seafood waste without presenting a pollution problem. This study has been in progress for several years, and the results have markedly increased our understanding of the decomposition of such organic materials in coastal streams and estuaries.
    • Economic and Organizational Issues in Alaska Water Quality Management

      Erickson, Gregg K.; Tussing, Arlon R. (University of Alaska, Institute of Water Resources, 1971-09)
    • Effect of Waste Discharges into a Silt-laden Estuary: A Case Study of Cook Inlet, Alaska

      Murphy, R. Sage; Carlson, Robert F.; Nyquist, David; Britch, Robert (University of Alaska, Institute of Water Resources, 1972-11)
      Cook Inlet is not well known. Although its thirty-foot tidal range is widely appreciated, its other characteristics, such as turbulence, horizontal velocities of flow, suspended sediment loads, natural biological productivity, the effects of fresh water inflows, temperature, and wind stresses, are seldom acknowledged. The fact that the Inlet has not been used for recreation nor for significant commercial activity explains why the average person is not more aware of these characteristics. Because of the gray cast created by the suspended sediments in the summer and the ice floes in the winter, the Inlet does not have the aura of a beautiful bay or fjord. The shoreline is inhospitable for parks and development, the currents too strong for recreational activities, and, because of the high silt concentration, there is little fishing. Yet, Cook Inlet, for all its negative attributes, can in no way be considered an unlimited dumping ground for the wastes of man. It may be better suited for this purpose than many bays in North America, but it does have a finite capacity for receiving wastes without unduly disturbing natural conditions. This report was written for the interested layman by engineers and scientists who tried to present some highly technical information in such a manner that it could be understood by environmentalists, concerned citizens, students, decision makers, and lawmakers alike. In attempting to address such a diverse audience, we risked failing to be completely understood by any one group. However, all too often research results are written solely for other researchers, a practice which leads to the advancement of knowledge but not necessarily to its immediate use by practicing engineers nor to its inclusion in social, economic, and political decision-making processes. We hope this report will shorten the usual time lag between the acquisition of new information and its use. Several additional reports will be available for a limited distribution. These will be directed to technicians who wish to know the mathematical derivations, assumptions, and other scientific details used in the study. Technical papers by the individual authors, published in national and international scientific and engineering journals, are also anticipated.
    • The Effectiveness of a Contact Filter for the Removal of Iron from Ground Water

      Kim, Steve W. (University of Alaska, Institute of Water Resources, 1971-01)
      Various types of modified filters were investigated to replace greensand filters which clogged when removing ground water. A properly designed uniform-grain sized filter can increase the filtration time more than ten times that of ordinary sand or greensand filters. The filter medium was obtained by passing commercial filter material between two standard sieves of a close size range, so that the resulting medium was of a uniform size. The head loss rate on such a medium was independent of the filter depth and was inversely proportional to the almost 3/2 power of the grain size. On the other hand, the filter depth was almost linearly proportional to the time of protective action. The effects of the grain size, filter depth, and filter material on the filter run were evaluated with a synthetic iron water; and optimum filter depths for each unisized material were determined. At identical filtration conditions, anthracite had a 70 to 110% longer filter run than the sand medium, and it was attributed to the greater porosity of the former. Expectedly, the time to reach initial leakage of the iron floc was greater with the coarse and more porous medium. but was reduced to an insignificant amount when the filter depth was increased to three to six feet. The performance of unisized filters on permanganate-treated ground water was much better than that of fine-grained greensand. Applicability of experimental data on an existing filtration theory was investigated
    • The Effects of Extreme Floods and Placer Mining on the Basic Productivity of Sub Arctic Streams : A Completion Report

      Morrow, James E. (University of Alaska, Institute of Water Resources, 1971)
      The original proposal for this project was submitted to OWRR in the fall of 1967 and envisioned a two year investigation involving the principal investigator and three graduate student assistants, with a first year budget of nearly $25,000.00. However, the project was approved for only one year, with a total budget of $5,757.00. In addition, even these funds did not become available until August 1968. Because of the lateness of availability and the sharp curtailment of the total amount, it was not possible to purchase any equipment. Hence, measurements of rainfall, current velocity, basic productivity, etc., had to be abondoned. All that could be done was to acquire data on the bottom fauna and some physico-chemical characteristics of the water.
    • Effects of Reservoir Clearing on Water Quality in the Arctic and Subarctic: Completion Report

      Smith, Daniel W.; Justice, Stanley R. (University of Alaska, Institute of Water Resources, 1975-01)
    • Effects of seasonability and variability of streamflow on nearshore coastal areas: final report

      Carlson, Robert F.; Seifert, Richard D.; Kane, Douglas L. (University of Alaska, Institute of Water Resources, 1977-01)
      General nature and scope of the study: This study examines the variability of streamflow in all gaged Alaskan rivers and streams which terminate in the ocean. Forty-one such streams have been gaged for varying periods of time by the U. S. Geological Survey, Water Resources Division. Attempts have been made to characterize streamflow statistically using standard hydrological methods. The analysis scheme which was employed is shown in the flow chart which follows. In addition to the statistical characterization, the following will be described for each stream when possible: 1. average period of break-up initiation (10-day period) 2. average period of freeze-up (10-day period) 3. miscellaneous break-up and freeze-up data. 4. relative hypsometric curve for each basin 5. observations on past ice-jam flooding 6. verbal description of annual flow variation 7. original indices developed in this study to relate streamflow variability to basin characteristics and regional climate.
    • The Effects of Surface Disturbances on the Leaching of Heavy Metals

      Dixson, David P.; Brown, Edward J. (University of Alaska, Institute of Water Resources, 1987-10)
      The harmful effects of heavy metal contamination of surface waters impacted by gold mining activity are well documented. An examination was conducted on the effects of surface disturbances in Wade Creek on the concentrations of heavy metals in solution, and whether Thiobacillus ferrooxidans, a bacteria found in heavy metal contaminated drainages from placer mines, is found in the drainage. Thiobacillus ferrooxidans was not detected in this particular setting. The effects of mining activity and relandscaping of stockpiled tailings showed in a short distance, a net increase of dissolved arsenic, copper, zinc, and iron. However, the long distance impact of dissolved metals was minimal. Generally, it seems that the dampening of the total suspended solids had a direct effect on the removal of metals dissolved in solution.
    • The Effects of Suspended Silts and Clays on Self-purification in Natural Waters: Protein Adsorption

      Murray, Ann P. (University of Alaska, Institute of Water Resources, 1972-04)
      The effects of the suspended sediments found in many natural waters on the microbial processes involved in the self-purification of those waters are not known. Clays and silts with their large surface area per unit weight have an immense capacity for adsorbing nutrient molecules from solution, but the extent to which such adsorption takes place is largely unknown. Adsorption of a major portion of a biodegradable substance from solution onto a solid surface would significantly alter its susceptibility to bacterial attack and, hence, also the rate at which it is decomposed. In this paper are reported the results of adsorption experiments with soil materials found in some Alaskan waters which are typically heavily sediment-laden. The affinities of these soils for the protein bovine serum albumin were measured as a function of pH, temperature, and protein concentration. An empirical relationship was discovered, for a given soil material, between the equilibrium protein concentration and the initial protein-to-soil ratio. Temperature variations from 5 to 25°C had no detectable effect on adsorption, whereas variations in pH between 2 and 10 had dramatic effects on the extent of adsorption. The amount of protein adsorbed at the pH of the natural water system was so small as to lead one to predict that adsorption of this protein onto suspended sediments would have a negligible effect on the rate at which the protein would be decomposed by bacteria in the aqueous environment.
    • Effects of Thermal Discharge Upon a Subarctic Stream: Completion Report

      Carlson, Robert F.; Tilsworth, Timothy; Hok, Charlotte (University of Alaska, Institute of Water Resources, 1978-06)