• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • International Arctic Research Center (IARC)
    • Research Posters
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • International Arctic Research Center (IARC)
    • Research Posters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Carbon exchange rates in Polytrichum juniperinum moss of burned black spruce forest in interior Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1356920585_ISAR-3_Kim.pdf
    Size:
    1.384Mb
    Format:
    PDF
    DownloadPDF Variant
    Thumbnail
    Name:
    1356920585_ISAR-3_Kim.pptx
    Size:
    7.371Mb
    Format:
    Microsoft PowerPoint 2007
    DownloadPDF Variant
    Author
    Kim, Yongwon
    Kodama, Y.
    Iwata, H.
    Kim, S.-D.
    Shim, C.
    Kushida, K.
    Harazono, Y.
    Keyword
    Research Subject Categories::NATURAL SCIENCES::Chemistry::Organic chemistry::Physical organic chemistry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/10976
    Abstract
    Boreal black spruce forest is highly susceptible to wildfire, and postfire changes in soil temperature and substrates have the potential to shift large areas of such ecosystem from a net sink to a net source of carbon. In this paper, we examine CO2 exchange rates (e.g., NPP and Re) in juniper haircap moss (Polytrichum juniperinum) and microbial respiration in no-vegetation conditions using an automated chamber system at 5-year burned black spruce forest in interior Alaska during the fall season of 2009. Mean microbial respiration and NEP (net ecosystem productivity) of juniper haircap moss were 0.73 ± 0.36 and 0.75 ± 1.04 mgC/m2/min, respectively. CO2 exchange rates and microbial respiration showed temporal variations with fluctuation in air temperature during the fall season, suggesting the temperature sensitivity of juniper haircap moss and soil microbes after fire. During the 45-day fall period, mean NEP of P. juniperinum moss was 0.49 ± 0.28 MgC/ha after 5-year-old forest fire. On the other hand, simulated microbial respiration normalized to a 10 °C temperature might be stimulated by as much as 0.40 ± 0.23 MgC/ha. These findings demonstrate that fire-pioneer species juniper haircap moss is a net C sink in burned black spruce forest of interior Alaska.
    Date
    2013-01
    Type
    Poster
    Collections
    Research Posters

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.