• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • College of Fisheries and Ocean Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Diet composition and fate of contaminants in subsistence harvested northern sea otters (Enhydra lutris kenyoni) from Icy Strait, Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brown_K_2020.pdf
    Size:
    4.646Mb
    Format:
    PDF
    Download
    Author
    Brown, Kristin Lynn
    Chair
    Atkinson, Shannon
    Committee
    Andrews, Russel
    Pearson, Heidi
    Keyword
    sea otter
    Alaska
    Icy Strait
    heavy metals
    diet
    cadmium
    selenium
    lead
    mercury
    arsenic
    health
    hygiene
    Show allShow less
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11259
    Abstract
    Northern sea otters (Enhydra lutris kenyoni) in Southeast Alaska have experienced a significant population increase since their successful reintroduction to the area after previous near extirpation owing to historic fur trading. The purpose of this study was to examine sea otter diet and metals contamination in an area of Southeast Alaska with the most robust increases in sea otter numbers, Glacier Bay/Icy Strait, with the intent of gathering baseline data for a healthy population of sea otters and as a reflection of the local coastal environmental health of the area. This research was a collaborative effort with Alaska Native subsistence hunters and the Alaska Department of Environmental Conservation. In Chapter 1, sea otter stomachs (n=25) were obtained in April 2015 and April 2016 from Alaska Native subsistence hunters in Icy Strait, Alaska. There were no differences in sea otter diet between years. Bivalves dominated the sea otter diet. Northern horsemussels (Modiolus modiolus) made up the greatest proportion of the diet (0.46 ± 0.48). Fat gaper clams (Tresus capax) and northern horsemussels were found in the highest proportion of stomachs (0.64 and 0.60, respectively). There was not an apparent trend between sea otter age and the minimum number of total prey items, stomach contents mass, or mean frequency of occurrence of the top four prey species. Sea otters from this study are likely to be dietary generalists throughout their lives. In Chapter 2, brain, gonad, kidney, and liver tissues, as well as stomach contents were analyzed for arsenic, cadmium, copper, lead, total mercury, and selenium for the 2015-harvested sea otters that were also referenced in Chapter 1 (n=14). In general, arsenic and lead had the highest concentrations in stomach contents, cadmium and selenium were highest in the kidneys, and copper and total mercury were highest in the livers. While brains and gonads had the lowest metals concentrations of any tissue, the metal with the greatest concentration within the brain was copper, and within the gonads was selenium. Concentrations of arsenic, cadmium, total mercury, and lead demonstrated a relationship with sea otter length. In general, all the mean metals concentrations for these sea otters were below published effects threshold values for marine mammals. Only total mercury demonstrated biomagnification from the stomach contents (i.e., the prey) to all higher-level tissues. Selenium health benefit values were positive in all sea otter tissue types analyzed in the present study, indicating that concentrations of selenium had an overall health benefit in protecting those tissues against mercury toxicity. Evaluating how contaminants concentrate and get distributed in tissues of top trophic levels provides an indication for potential exposure to humans and demonstrates how these keystone species act as indicators of local coastal ecosystem health. The results of studies on dietary exposure and metals contamination in top trophic level consumers such as sea otters can be used in monitoring the health of sea otter populations and the local environment that they inhabit.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2020
    Date
    2020-05
    Type
    Thesis
    Collections
    Theses (Fisheries)
    College of Fisheries and Ocean Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.