• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Application of design of experiments for well pattern optimization in Umiat oil field: a natural petroleum reserve of Alaska case study

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gurav_Y_2020.pdf
    Size:
    8.759Mb
    Format:
    PDF
    Download
    Author
    Gurav, Yojana Shivaji
    Chair
    Dandekar, Abhijit
    Patil, Shirish
    Committee
    Khataniar, Santanu
    Clough, James
    Patwardhan, Samarth
    Keyword
    petroleum reserves
    Alaska
    North Slope
    oil fields
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11272
    Abstract
    Umiat field, located in Alaska North Slope poses unique development challenges because of its remote location and permafrost within the reservoir. This hinders the field development, and further leads to a potential low expected oil recovery despite latest estimates of oil in-place volume of 1550 million barrels. The objective of this work is to assess various possible well patterns of the Umiat field development and perform a detailed parametric study to maximize oil recovery and minimize well costs using statistical methods. Design of Experiments (DoE) is implemented to design simulation runs for characterizing system behavior using the effect of certain critical parameters, such as well type, horizontal well length, well pattern geometry, and injection/production constraints on oil recovery. After carrying out simulation runs using a commercially available simulation software, well cost is estimated for each simulation case. Response Surface methodology (RSM) is used for optimization of well pattern parameters. The parameters, their interactions and response are modeled into a mathematical equation to maximize oil recovery and minimize well cost. Economics plays a key role in deciding the best well pattern for any field during the field development phase. Hence, while solving the optimization problem, well costs have been incorporated in the analysis. Thus, based on the results of the study performed on selected parameters, using interdependence of the above mentioned methodologies, optimum combinations of variables for maximizing oil recovery and minimizing well cost will be obtained. Additionally, reservoir level optimization assists in providing a much needed platform for solving the integrated production optimization problem involving parameters relevant at different levels, such as reservoir, wells and field. As a result, this optimum well pattern methodology will help ensure optimum oil recovery in the otherwise economically unattractive field and can provide significant insights into developing the field more efficiently. Computational algorithms are gaining popularity for solving optimization problems, as opposed to manual simulations. DoE is effective, simple to use and saves computational time, when compared to algorithms. Although, DoE has been used widely in the oil industry, its application in domains like well pattern optimization is novel. This research presents a case study for the application of DoE and RSM to well optimization in a real existing field, considering all possible scenarios and variables. As a result, increase in estimated oil recovery is achieved within economical constraints through well pattern optimization.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2020
    Date
    2020-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.