Show simple item record

dc.contributor.authorGurav, Yojana Shivaji
dc.date.accessioned2020-09-26T20:31:52Z
dc.date.available2020-09-26T20:31:52Z
dc.date.issued2020-05
dc.identifier.urihttp://hdl.handle.net/11122/11272
dc.descriptionThesis (M.S.) University of Alaska Fairbanks, 2020en_US
dc.description.abstractUmiat field, located in Alaska North Slope poses unique development challenges because of its remote location and permafrost within the reservoir. This hinders the field development, and further leads to a potential low expected oil recovery despite latest estimates of oil in-place volume of 1550 million barrels. The objective of this work is to assess various possible well patterns of the Umiat field development and perform a detailed parametric study to maximize oil recovery and minimize well costs using statistical methods. Design of Experiments (DoE) is implemented to design simulation runs for characterizing system behavior using the effect of certain critical parameters, such as well type, horizontal well length, well pattern geometry, and injection/production constraints on oil recovery. After carrying out simulation runs using a commercially available simulation software, well cost is estimated for each simulation case. Response Surface methodology (RSM) is used for optimization of well pattern parameters. The parameters, their interactions and response are modeled into a mathematical equation to maximize oil recovery and minimize well cost. Economics plays a key role in deciding the best well pattern for any field during the field development phase. Hence, while solving the optimization problem, well costs have been incorporated in the analysis. Thus, based on the results of the study performed on selected parameters, using interdependence of the above mentioned methodologies, optimum combinations of variables for maximizing oil recovery and minimizing well cost will be obtained. Additionally, reservoir level optimization assists in providing a much needed platform for solving the integrated production optimization problem involving parameters relevant at different levels, such as reservoir, wells and field. As a result, this optimum well pattern methodology will help ensure optimum oil recovery in the otherwise economically unattractive field and can provide significant insights into developing the field more efficiently. Computational algorithms are gaining popularity for solving optimization problems, as opposed to manual simulations. DoE is effective, simple to use and saves computational time, when compared to algorithms. Although, DoE has been used widely in the oil industry, its application in domains like well pattern optimization is novel. This research presents a case study for the application of DoE and RSM to well optimization in a real existing field, considering all possible scenarios and variables. As a result, increase in estimated oil recovery is achieved within economical constraints through well pattern optimization.en_US
dc.language.isoen_USen_US
dc.subjectpetroleum reservesen_US
dc.subjectAlaskaen_US
dc.subjectNorth Slopeen_US
dc.subjectoil fieldsen_US
dc.titleApplication of design of experiments for well pattern optimization in Umiat oil field: a natural petroleum reserve of Alaska case studyen_US
dc.typeThesisen_US
dc.type.degreemsen_US
dc.identifier.departmentDepartment of Petroleum Engineeringen_US
dc.contributor.chairDandekar, Abhijit
dc.contributor.chairPatil, Shirish
dc.contributor.committeeKhataniar, Santanu
dc.contributor.committeeClough, James
dc.contributor.committeePatwardhan, Samarth
refterms.dateFOA2020-09-26T20:31:53Z


Files in this item

Thumbnail
Name:
Gurav_Y_2020.pdf
Size:
8.759Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record