• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Biophysical characterization of class II major histocompatibility complex (MHCII) molecules

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Osan_J_2020.pdf
    Size:
    5.750Mb
    Format:
    PDF
    Download
    Author
    Osan, Jaspreet Kaur
    Chair
    Ferrante, Andrea
    Kuhn, Thomas
    Committee
    Podlutsky, Andrej
    Chen, Jack
    Keyword
    major histocompatibility complex
    HLA histocompatibility antigens
    histocompatibility
    histocompatibility antigens
    peptides
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11284
    Abstract
    Class II Major Histocompatibility Complex (MHCII) molecules are transmembrane glycoproteins expressed on the surface of antigen-presenting cells (APCs). APCs engulf pathogens and digest pathogenic proteins into peptides, which are loaded onto MHCII in the MHCII compartment (MIIC) to form peptide-MHCII complexes (pMHCII). These pMHCII are then presented to CD4+ T cells on the surface of APCs to trigger an antigen-specific immune response against the pathogens. HLA-DM (DM), a non-classical MHCII molecule, plays an essential role in generating kinetically stable pMHCII complexes which are presented to CD4+ T cells. When a few peptides among the pool of the peptide repertoire can generate the efficient CD4+ T cell response, such peptides are known as immunodominant. The selection of immunodominant epitopes is essential to generate effective vaccines against pathogens. The mechanism behind immunodominant epitope selection is not clearly understood. My work is focused on investigating various factors that help in the selection of immunodominant epitopes. For this purpose, peptides derived from H1N1 influenza hemagglutinin protein with known CD4+ T cell responses have been used. We investigated the role of DM-associated binding affinity in the selection of immunodominant epitopes. Our analysis showed that the presence of DM significantly reduces the binding affinity of the peptides with low CD4+ T cell response and inclusion of DM-associated IC50 in training MHCII algorithms may improve the binding prediction. Previous studies have shown that there is an alternate antigen presentation depending on antigen protein properties. Here, we showed that the immunodominant epitope presentation is dependent on the pH and length of the peptides. To study the MHCII in its native form, we assembled full-length MHCII in a known synthetic membrane model known as nanodiscs. We noted that, based on the lipid composition, assembly of the MHCII differs. Preliminary binding studies with this tool showed that there might be a difference in the binding based on the type of the nanodisc. Collectively, our results showed that the immunodominant epitope selection is a complex process that is driven by various biochemical features.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2020
    Date
    2020-05
    Type
    Dissertation
    Collections
    Chemistry and Biochemistry

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.