• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Role of neurotropism in HIV-1 gp120 induced oxidative stress and neurodegeneration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Smith_L_2020.pdf
    Size:
    4.941Mb
    Format:
    PDF
    Download
    Author
    Smith, Lisa K.
    Chair
    Kuhn, Thomas
    Committee
    Kullberg, Max
    Dunlap, Kriya
    Chen, Jack
    Keyword
    AIDS dementia complex
    nervous system
    nerve degeneration
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11292
    Abstract
    An estimated 50% of individuals with long-term HIV infection are affected by the onset of progressive neurological and cognitive complications referred to as HIV-associated neurocognitive disorders (HAND). While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. This damage is likely mediated by a combination of indirect mechanisms involving the release of inflammatory mediators and viral proteins from infected glial cells, and direct effects mediated by the interaction of neurotoxic viral proteins with neuronal receptors. The neurotoxic HIV envelope glycoprotein gp120 interacts with neuronal receptors CCR5 and CXCR4 to induce the coalescence of lipid raft domains into large, stable platforms-- a proposed mechanism for clustering components of receptor-activated signaling cascades. The interaction of proteins with lipid-raft localized receptors as a mechanism of regulating pathologic signaling has been observed in other neurodegenerative diseases, most notably in Alzheimer's disease, where amyloid- (Aß) oligomers interact with lipid raft-anchored cellular prion protein PrPC to activate a pathway leading to the formation of cofilin-actin rods-like inclusions (rods) in neuronal processes. Rods have been linked to synaptic dysfunction via sequestration of cofilin and the disruption of vesicular transport resulting from the occlusion of neurites in which they form. Given similarities in neuronal response to gp120 and Aß, we sought to assess the ability of gp120 to induce rods. Here, we report viral envelope protein gp120 induces the formation of cofilin-actin rods in E16 mouse hippocampal neurons via a signaling pathway common to oligomeric, soluble amyloid-ß and inflammatory cytokines. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation and signaling through this pathway requires the NADPH oxidase-mediated formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These results link gp120-mediated oxidative stress formation to the generation rods in a previously undescribed mechanism of early synaptic dysfunction observed in HAND.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2020
    Date
    2020-05
    Type
    Dissertation
    Collections
    Chemistry and Biochemistry

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.