• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Organic matter sources on the Chukchi Sea shelf in a changing Arctic

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zinkann_A_2020.pdf
    Size:
    6.455Mb
    Format:
    PDF
    Download
    Author
    Zinkann, Ann-Christine
    Chair
    Iken, Katrin
    Committee
    Wooller, Matthew
    Danielson, Seth
    Leigh, Mary Beth
    Gibson, Georgina
    Keyword
    seawater
    organic compound content
    Chukchi Sea
    benthic animals
    marine benthic ecology
    benthos
    Arctic Ocean
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11304
    Abstract
    Climate-change induced alterations of the organic matter flow from various primary production sources to the benthic system in the Arctic Chukchi Sea could have major implications on carbon cycling, sequestration, and benthic food web structure sustaining upper trophic levels. In particular, the role and contribution of terrestrial matter and bacterial matter could become more prominent, with increasing erosion and permafrost melt being discharged from land, and warming water temperatures raising bacterial metabolism. In this study, I used essential amino acid (EAA) specific stable isotope analysis to trace the proportional contributions of bacterial, phytoplankton, and terrestrial organic matter in sediments, as well as benthic invertebrates on the Chukchi Sea shelf. Across the upper 5 cm of sediments, most organic matter sources were equally distributed, except for a slight decrease with depth in phytoplankton EAA. Terrestrial sources contributed the majority of EAA (~76 %) in all sediment layers, suggesting a potential accumulation of this material due to slow degradation processes. These results indicate a well-mixed upper sediment horizon, possibly due to bioturbation activity by the abundant benthos. Experimental observations of increases in bacterial production, measured as phospholipid fatty acid (PLFA) production, at water temperatures 5 °C above ambient (0 °C) and under sufficient substrate conditions suggest that bacterial organic matter in sediments could become a greater organic matter source in the sediments of a future, warmer Arctic. EAA source contribution to various benthic invertebrate feeding types (FT) were similar but showed significant differences among genera within the same FT, suggesting that feeding habits are more genus-specific rather than FT-specific. These differences were attributed to variations in other characteristics such as mobility, selectivity, and assimilation efficiency. Terrestrial EAA contributed high amounts to all benthic genera, supporting other recent findings that this source is readily utilized by benthic invertebrate consumers. These results of organic matter source contributions across sediments and benthic invertebrate feeding types were then used to better resolve the detrital pathways in an Ecopath mass-balance model of the Chukchi Sea. The incorporation of terrestrial matter as an organic matter source to Chukchi Sea food webs and updated organic matter use in benthic invertebrate diets balanced energy flow from phytoplankton and bacterial production through the food web. Simulations of potential future reductions of the pelagic production to the benthos negatively impacted benthic feeding taxa, which could be partially compensated by a simulated increase in terrestrial and bacterial organic matter supply.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2020
    Table of Contents
    Chapter 1: Digging deep: depth distribution of organic matter sources in Arctic Chukchi Sea sediments -- Chapter 2: Does feeding type matter? Contribution of organic matter sources to benthic invertebrates on the Arctic Chukchi Sea shelf -- Chapter 3: The Arctic Chukchi Sea food web: simulating ecosystem impacts of future changes in organic matter flow -- General conclusion.
    Date
    2020-05
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.