• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Water-in-air droplet formation in plasma bonded microchannels fabricated by Shrinky-Dink® lithography

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bender_C_2011.pdf
    Size:
    11.06Mb
    Format:
    PDF
    Download
    Author
    Bender, Christopher J. Jr.
    Keyword
    microfluidics
    polydimethylsiloxane
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11329
    Abstract
    This thesis presents the first work on water-in-air droplet microfluidics. Polymeric microchannels were prototyped to illustrate water droplet formation in air by the T-junction meditated design. The first part of the thesis is on the proof of using unfiltered air as the process gas for plasma-assisted bonding of polydimethylsiloxane (PDMS) microchannels. A series of bilayered PDMS prototypes were plasma bonded under various plasma treatment parameters to determine the optimal settings for high-strength bonding. Pressure rupture tests were conducted to measure the bonding interface strength, which were shown to be as high as 135 psi. The second part of the thesis illustrates the formation and dispersion of water droplets in a continuous air flow in microchannels, and discusses the mechanisms of how droplets are formed. The Shrinky Dinks lithography and plasma-assisted bonding were used to prototype leakage-free microcbannels for testing droplet production. Droplets are formed under the competition between the fluid viscosity and surface tension forces. The channel dimensions and the fluid flow rates dictate the mechanism of droplet formation. The major finding is that the droplet length increases and droplet velocity decreases with increasing water flow rates, but some droplets were not formed at the T-Junction. These findings are discussed.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2011
    Date
    2011-08
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.